
How to Wrangle Data
using R with tidyr and dplyr

Ken Butler

March 30, 2015

1 / 44

It is said that . . .

80% of data analysis: getting the data into the right form
maybe 20% is making graphs, fitting models etc.
thus, think about the 80%, “data wrangling”.

2 / 44

Hadley Wickham

Inventor of:
tidyr

dplyr

ggplot2

stringr

and other things besides.

3 / 44

Tidy data (Wickham)

Every value belongs to a variable and an observation.
Variables in columns.
Observations in rows.
If this is done, data called “tidy”, ready for further analysis.
If not, have “untidy” data, needs tidying.
“Tidy” depends (somewhat) on kind of analysis you want to
do.

4 / 44

Gratuitous image

5 / 44

Steven Huryn’s thunderstorm data

6 / 44

The data

Data from Pearson Airport, 2006
Manual observer notes whether thunder or lightning
observed within an hour. 2 is “thunderstorm”, 3 is “intense
thunderstorm”.
Spreadsheet contains only days where at least one
thunderstorm hour was recorded.
Columns labelled 1–24 indicate whether thunderstorm was
observed in that hour (eg. “1” means midnight-1:00 am,
“17” is 4:00–5:00 pm).
Cols 1–24 all represent whether or not thunderstorm
observed: not tidy!

7 / 44

Reading in the data

Save as .csv, then:

thunder=read.csv("thunder.csv",header=T)
thunder[1:6,1:9]

site year month day weather X1 X2 X3 X4
1 6158733 2006 2 16 85 0 0 0 0
2 6158733 2006 2 17 85 2 0 0 0
3 6158733 2006 4 3 85 0 0 0 0
4 6158733 2006 4 12 85 0 0 0 0
5 6158733 2006 5 17 85 0 0 0 0
6 6158733 2006 5 31 85 0 0 0 0

Hour columns have gained an X.
All those columns show whether/not thunderstorm
recorded.
Need to be combined together into one, with indication of
which hour.

8 / 44

gather

Combine columns that all measure same thing.
Input: data frame, what makes columns different, what
makes them same, columns to combine:

library(tidyr)
thunder.2=gather(thunder,hour,is.thunder,
X1:X24)

hour and is.thunder are new variables; X1 through
X24 disappear.

9 / 44

Some of the result

thunder.2[c(1:6,33:39),c(2:4,6:7)]

year month day hour is.thunder
1 2006 2 16 X1 0
2 2006 2 17 X1 2
3 2006 4 3 X1 0
4 2006 4 12 X1 0
5 2006 5 17 X1 0
6 2006 5 31 X1 0
33 2006 7 10 X2 0
34 2006 7 15 X2 2
35 2006 7 20 X2 0
36 2006 7 23 X2 0
37 2006 8 2 X2 0
38 2006 9 8 X2 0
39 2006 10 3 X2 0

10 / 44

Next

Take out rows with no thunderstorm
Remove columns site and weather

Obtain actual hour from eg. X6
Construct actual date and time of thunderstorm hour
Make pretty picture of data.

Uses ideas from tidyr (extracting actual hour) and dplyr
(the rest).

11 / 44

Take out rows with no thunderstorm

Use filter from dplyr with condition saying what rows
you want to keep:

library(dplyr)

thunder.3=filter(thunder.2,is.thunder>0)
head(thunder.3)

site year month day weather hour is.thunder
1 6158733 2006 2 17 85 X1 2
2 6158733 2006 7 15 85 X2 2
3 6158733 2006 10 4 85 X6 2
4 6158733 2006 7 4 85 X7 2
5 6158733 2006 10 3 85 X7 2
6 6158733 2006 10 4 85 X7 2

12 / 44

Doing things in sequence

So far, we did

thunder.2=gather(thunder,hour,is.thunder,X1:X24)
thunder.3=filter(thunder.2,is.thunder>0)

This uses too many temporary variables. Compare with

thunder %>%
gather(hour,is.thunder,X1:X24) %>%
filter(is.thunder>0) %>%
head()

site year month day weather hour is.thunder
1 6158733 2006 2 17 85 X1 2
2 6158733 2006 7 15 85 X2 2
3 6158733 2006 10 4 85 X6 2
4 6158733 2006 7 4 85 X7 2
5 6158733 2006 10 3 85 X7 2
6 6158733 2006 10 4 85 X7 2

13 / 44

The chain operator %>%

Read as “and then”.
Allows layout of whole sequence of operations readably:
“start with thunder, and then. . . ”.
Output from one part of chain is input to next part, thus:

thunder is input to gather
output from gather (unnamed) input to filter
output from filter input to head

Data frame input to all of these functions not specified:
taken from output of previous part of chain.

14 / 44

Getting rid of site and weather

Uses select from dplyr. Add it to the chain:

thunder %>%
gather(hour,is.thunder,X1:X24) %>%
filter(is.thunder>0) %>%
select(c(-site,-weather)) %>%
head()

year month day hour is.thunder
1 2006 2 17 X1 2
2 2006 7 15 X2 2
3 2006 10 4 X6 2
4 2006 7 4 X7 2
5 2006 10 3 X7 2
6 2006 10 4 X7 2

Using column names in select selects just those. Putting
minus sign before column omits column named.

15 / 44

Splitting up X and hour number

Uses separate from tidyr.
Separate:

what to separate (hour),
what to call the separated bits (junk and hour.num)
and where to separate (after 1st character).

Add to chain:

16 / 44

The chain now

thunder %>%
gather(hour,is.thunder,X1:X24) %>%
filter(is.thunder>0) %>%
select(c(-site,-weather)) %>%
separate(hour,into=c("junk","hour.num"),
sep=1) %>%

head()

year month day junk hour.num is.thunder
1 2006 2 17 X 1 2
2 2006 7 15 X 2 2
3 2006 10 4 X 6 2
4 2006 7 4 X 7 2
5 2006 10 3 X 7 2
6 2006 10 4 X 7 2

17 / 44

Saving results

Can do the usual: thunder.1=thunder %>% ... to
save in variable thunder.1.
Or:

thunder %>%
gather(hour,is.thunder,X1:X24) %>%
filter(is.thunder>0) %>%
select(c(-site,-weather)) %>%
separate(hour,into=c("junk","hour.num"),
sep=1) -> thunder.1

“. . . and then save in thunder.1”.

18 / 44

Debugging a chain

One line at a time.
Do each step of the chain, and convince yourself that you
have the right thing.
Can use head() as the last step to show the first few lines
of the result, eg.

thunder %>%
gather(hour,is.thunder,X1:X24) %>%
filter(is.thunder>0) %>%
head()

site year month day weather hour is.thunder
1 6158733 2006 2 17 85 X1 2
2 6158733 2006 7 15 85 X2 2
3 6158733 2006 10 4 85 X6 2
4 6158733 2006 7 4 85 X7 2
5 6158733 2006 10 3 85 X7 2
6 6158733 2006 10 4 85 X7 2

Yes, we only have lines where there actually is thunder.
19 / 44

Next steps

Turn year, month, day, hour into a date and time
throw away junk
maybe throw away is.thunder

20 / 44

Dates and times

R has class POSIXct: represents date-times as seconds
since Jan 1 1970:

d=as.POSIXct("2015-03-30 15:00")
d

[1] "2015-03-30 15:00:00 EDT"

print.default(d)

[1] 1.428e+09
attr(,"class")
[1] "POSIXct" "POSIXt"
attr(,"tzone")
[1] ""

21 / 44

Dates and times (2)

Also class POSIXlt: represents as list, easier for
extracting month, day etc:

d=as.POSIXlt("2015-03-30 15:00")
d

[1] "2015-03-30 15:00:00 EDT"

d$mday

[1] 30

d$hour

[1] 15

22 / 44

Time zones

These classes handle time zones: unless you specify one,
uses local time zone for your computer.
Also handles daylight savings:
v=c("2015-03-30 15:00", "2015-03-20 15:00",

"2015-03-01 15:00")
as.POSIXct(v)

[1] "2015-03-30 15:00:00 EDT"
[2] "2015-03-20 15:00:00 EDT"
[3] "2015-03-01 15:00:00 EST"

as.POSIXct(v,tz="CET")

[1] "2015-03-30 15:00:00 CEST"
[2] "2015-03-20 15:00:00 CET"
[3] "2015-03-01 15:00:00 CET"

c(as.POSIXct(v,tz="CET"))

[1] "2015-03-30 09:00:00 EDT"
[2] "2015-03-20 10:00:00 EDT"
[3] "2015-03-01 09:00:00 EST"

Thunderstorm data: date-time-as-number (POSIXct) fine. 23 / 44

Construct hours

1,2,. . . ,24 are 12:00-1:00am, . . . , 11:00pm-midnight.
To align date and time, use starting hour (subtract 1 from
hour).
Paste on “:00:00”:

tt=thunder.1$hour.num
tt=paste0(as.numeric(tt)-1,":00:00")
head(tt)

[1] "0:00:00" "1:00:00" "5:00:00"
[4] "6:00:00" "6:00:00" "6:00:00"

Paste year-month-day together separated by -.
Paste the two results together, and pass into as.POSIXct.
In a chain: mutate creates new variables from old.

24 / 44

Making date-times

thunder.1 %>%
mutate(tt=paste0(as.numeric(hour.num)-1,":00:00")) %>%
mutate(dd=paste(year,month,day,sep="-")) %>%
select(c(tt,dd)) %>%
head()

tt dd
1 0:00:00 2006-2-17
2 1:00:00 2006-7-15
3 5:00:00 2006-10-4
4 6:00:00 2006-7-4
5 6:00:00 2006-10-3
6 6:00:00 2006-10-4

That works. (Compare with data source, reading down
columns.)

25 / 44

Paste together into one

thunder.1 %>%
mutate(tt=paste0(as.numeric(hour.num)-1,":00:00")) %>%
mutate(dd=paste(year,month,day,sep="-")) %>%
mutate(dt=as.POSIXct(paste(dd,tt))) %>%
select(dt,is.thunder) %>%
head()

dt is.thunder
1 2006-02-17 00:00:00 2
2 2006-07-15 01:00:00 2
3 2006-10-04 05:00:00 2
4 2006-07-04 06:00:00 2
5 2006-10-03 06:00:00 2
6 2006-10-04 06:00:00 2

Yep. Save it.
26 / 44

Saving into thunder.2

thunder.1 %>%
mutate(tt=paste0(as.numeric(hour.num)-1,":00:00")) %>%
mutate(dd=paste(year,month,day,sep="-")) %>%
mutate(dt=as.POSIXct(paste(dd,tt))) %>%
select(dt,is.thunder) -> thunder.2

27 / 44

What time of year do thunderstorms happen?

Make a histogram of the dates
They are actually numbers, so this works (with fiddling).

attach(thunder.2)
hist(dt,breaks="weeks",freq=T,
format="%b-%d",las=2)

Histogram of dt

dt

F
re

qu
en

cy

0

2

4

6

8

F
eb

−
13

F
eb

−
20

F
eb

−
27

M
ar

−
06

M
ar

−
13

M
ar

−
20

M
ar

−
27

A
pr

−
03

A
pr

−
10

A
pr

−
17

A
pr

−
24

M
ay

−
01

M
ay

−
08

M
ay

−
15

M
ay

−
22

M
ay

−
29

Ju
n−

05
Ju

n−
12

Ju
n−

19
Ju

n−
26

Ju
l−

03
Ju

l−
10

Ju
l−

17
Ju

l−
24

Ju
l−

31
A

ug
−

07
A

ug
−

14
A

ug
−

21
A

ug
−

28
S

ep
−

04
S

ep
−

11
S

ep
−

18
S

ep
−

25
O

ct
−

02
O

ct
−

09

detach(thunder.2)
28 / 44

Jun 26 – July 3: were there really 8 thunderstorm
hours?

d=c("2006-06-25","2006-07-04")
dates=as.POSIXct(d)
thunder.2 %>% filter(dt>dates[1],dt<dates[2])

dt is.thunder
1 2006-06-29 11:00:00 2
2 2006-06-30 12:00:00 2
3 2006-06-29 13:00:00 2
4 2006-06-28 14:00:00 2
5 2006-06-29 14:00:00 2
6 2006-06-29 15:00:00 2
7 2006-06-28 20:00:00 2
8 2006-07-01 22:00:00 2

29 / 44

ggplot and chains

The ggplot graphing mechanism fits nicely into a chain:

library(ggplot2)

thunder.2 %>% ggplot(aes(dt))+geom_histogram()

0.0

2.5

5.0

7.5

Apr Jul Oct
dt

co
un

t

30 / 44

Or, tarted up

library(scales)
thunder.2 %>% ggplot(aes(dt))+

geom_histogram(binwidth=3600*24*7*2)+
scale_x_datetime(breaks=date_breaks("1 month"),

labels=date_format("%b-%d"))

0.0

2.5

5.0

7.5

10.0

12.5

Feb−01 Mar−01 Apr−01 May−01 Jun−01 Jul−01 Aug−01 Sep−01 Oct−01 Nov−01
dt

co
un

t

31 / 44

Some different climate data

Daily weather record for one year for a secret location:

weather=read.csv("weather_2014.csv",header=T)
names(weather)

[1] "day.count" "day"
[3] "month" "season"
[5] "l.temp" "h.temp"
[7] "ave.temp" "l.temp.time"
[9] "h.temp.time" "rain"
[11] "ave.wind" "gust.wind"
[13] "gust.wind.time" "dir.wind"

32 / 44

Plot daily high and low against date

First need date as date (easier than for time):

weather %>%
mutate(date1=paste("2014",month,day,
sep="-")) %>%

mutate(date=as.Date(date1)) -> weather.2

Make empty graph, add points and lowess curves in colour:

attach(weather.2)
plot(date,h.temp,type="n",ylim=c(0,35),
ylab="temperature",
main="Daily max and min temperatures")

grid(NA,NULL,col="black")
points(date,h.temp,col="red")
lines(lowess(date,h.temp),col="red")
points(date,l.temp,col="blue")
lines(lowess(date,l.temp),col="blue")
detach(weather.2)

33 / 44

The plot

Jan Mar May Jul Sep Nov Jan

0
5

10
15

20
25

30
35

Daily max and min temperatures

date

te
m

pe
ra

tu
re

●
●●
●
●●●
●

●

●●●

●
●
●
●
●●●
●
●●●

●

●
●

●

●
●●
●●

●●
●●

●

●●

●

●

●●
●
●

●●

●

●

●
●
●

●

●

●
●●
●
●●●
●●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●●
●
●●
●●●●

●
●
●
●●
●
●●

●

●

●●●
●

●

●

●

●

●●

●

●

●

●

●
●
●●

●
●●
●

●
●●

●
●●
●

●

●●
●

●

●

●

●
●

●

●●
●

●
●●●
●
●●
●

●

●
●

●

●●

●

●
●
●●
●

●

●

●

●●
●
●

●

●

●

●

●
●

●

●

●●
●
●
●
●

●

●

●●●●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●●

●

●
●

●
●
●●
●●

●
●
●●

●

●●

●

●

●

●
●
●●
●●

●
●

●

●
●●
●

●

●
●●●●●

●●
●●
●
●●
●
●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●
●

●

●
●
●

●
●
●●●
●

●

●
●
●
●●

●

●
●
●
●
●●
●

●
●
●

●

●

●

●●

●

●
●●
●

●●

●
●
●

●●●
●
●
●

●

●

●
●

●

●●●●
●

●

●

●
●

●
●
●●●
●●
●

●●
●●
●●

●
●

●●●

●

●●
●

●
●

●

●
●

●
●
●

●
●

●●
●

●
●

●

●

●

●

●●
●●
●●

●
●

●●

●●

●●

●
●

●

●●
●●

●●●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●●●●

●●
●

●
●

●

●
●

●

●

●

●
●

●●●

●

●●

●

●

●
●
●
●

●

●

●

●●
●
●
●

●
●●
●

●
●

●●
●●

●

●●●
●
●

●

●
●
●

●

●

●

●
●
●

●

●

●●

●●●●
●●●

●
●

●

●

●●

●

●

●●
●●

●●●
●

●●●
●

●

●●
●

●

●
●●
●

●
●

●
●●

●
●
●

●
●

●
●

●●
●●
●
●
●

●
●

●●
●●
●
●

●

●
●

●
●

●
●
●●●●●

●●

●

●●●●
●●●

●

●

●
●●
●

●

●
●

●●●
●
●
●

●●●
●

●

●
●●
●
●

●●
●

●
●

●

●

●●●

●●
●

●

●

●
●●●

●
●●

●

●
●
●
●●●
●●●

●

●
●
●●

●
●

●

●

●●
●

●

●
●
●

●
●

●

●
●

●
●
●
●
●

●
●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●●●

●●
●

●
●

●

●
●●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●
●
●

●

●
●

●●
●

●

●

●●

●
●

●

●

●
●
●

34 / 44

Same with ggplot

weather.2 %>%
gather(hilo,temp,h.temp:l.temp) %>%
ggplot(aes(date,temp,group=hilo,colour=hilo))+
geom_point()+geom_smooth(se=F)

●
●●
●
●●
●
●

●

●●
●

●

●
●
●
●
●
●
●

●
●
●

●

●

●

●

●

●●
●●

●●

●
●

●

●●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●●
●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●●

●

●●
●●
●
●

●
●
●
●●

●

●
●

●

●

●
●●
●

●

●

●

●

●●

●

●

●

●

●
●
●●

●
●●
●

●

●
●

●
●
●

●

●

●
●
●

●

●

●

●
●

●

●●
●

●

●●●
●

●●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●
●
●●

●

●●

●

●

●

●

●
●●
●●

●
●

●

●

●●

●

●

●

●
●●●●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●
●
●●●

●

●

●
●
●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●
●
●

●●
●
●

●
●

●

●

●

●

●

●
●
●●
●

●

●

●
●

●
●
●●
●●●

●

●●
●●
●●

●
●

●
●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●●

●●

●
●

●

●

●

●
●

●●

●
●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●●●●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●
●
●

●

●
●

●●
●●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●●

●
●

●

●

●

●

●
●

●

●

●●

●●

●●●
●

●●●

●

●

●●

●

●

●
●●

●

●
●

●
●
●

●
●

●

●
●

●

●

●●

●●

●

●
●

●
●

●
●

●●
●

●

●

●
●

●
●

●
●

●●●●●

●●

●

●●
●●
●●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●●
●
●

●

●
●
●
●

●

●
●
●

●
●

●

●

●●
●

●●
●

●

●

●

●
●●

●
●
●

●

●

●
●
●●●

●
●●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●
●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●●

●

●

●

●

●
●

●

10

20

30

Jan 2014 Apr 2014 Jul 2014 Oct 2014 Jan 2015
date

te
m

p

hilo

●

●

h.temp

l.temp

35 / 44

Time of day of max and min temperature

gather the max and min times, keeping track of whether
max or min.
Pull out the hour of the time of max or min, save:

library(stringr)
weather %>%
gather(hilo,times,h.temp.time:l.temp.time) %>%
mutate(hours=str_extract(times,"[0-9]+")) %>%
select(hilo,hours) -> weather.3

36 / 44

weather.3

weather.3 %>% head(10)

hilo hours
1 h.temp.time 23
2 h.temp.time 11
3 h.temp.time 14
4 h.temp.time 01
5 h.temp.time 12
6 h.temp.time 00
7 h.temp.time 14
8 h.temp.time 13
9 h.temp.time 14
10 h.temp.time 12

37 / 44

Plot, grouping/colouring by hi/lo

weather.3 %>%
ggplot(aes(hours,group=hilo,colour=hilo))+
geom_histogram()

0

20

40

60

80

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
hours

co
un

t hilo

h.temp.time

l.temp.time

38 / 44

Rainfall and wind direction

Make boxplot of rainfall for each wind direction.
Set wind directions to be in sensible order:

attach(weather.2)
dir2=ordered(dir.wind, levels=
c("N","NNE","NE","ENE","E","ESE","SE","SSE",
"S","SSW","SW","WSW","W","WNW","NW","NNW"))

39 / 44

The boxplot

boxplot(rain~dir2,las=2)

●

●

●

●●●●●
●
●

●

●

●

●

●

●

●

●●

●●

●
●
●
●

●
●

●

●●

●
●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●
●

N

N
N

E

N
E

E
N

E E

E
S

E

S
E

S
S

E S

S
S

W

S
W

W
S

W W

W
N

W

N
W

N
N

W

0

20

40

60

40 / 44

Median and count of rainfall by wind direction

my.sum=function(x) c(md=median(x), n=length(x))
v=aggregate(rain~dir2,FUN=my.sum)

v[1:8,]

dir2 rain.md rain.n
1 N 0.00 18.00
2 NNE 0.40 8.00
3 NE 0.00 25.00
4 ENE 0.00 15.00
5 E 0.00 11.00
6 ESE 0.00 2.00
7 SE 4.85 24.00
8 SSE 8.60 31.00

v[9:16,]

dir2 rain.md rain.n
9 S 4.35 26.00
10 SSW 11.90 17.00
11 SW 5.30 11.00
12 WSW 23.40 3.00
13 W 12.40 5.00
14 WNW 1.05 24.00
15 NW 0.00 108.00
16 NNW 0.00 37.00

detach(weather.2)

41 / 44

Comments on weather at mystery location

Rainfall typically highest when wind from South to West,
and low when wind from North and East.
Wind only sometimes out of S or W, but when it is, there
can be a lot of rain.
Can be up to 60 mm of rain in a day.
Sometimes winter lows as low as 5 C.
Sometimes summer highs over 30 C (but not often).

42 / 44

So where is it?

library(ggmap)
map=get_map(c(-5,40),zoom=6)

my.loc is the (hidden) name of the place
ll=geocode(my.loc)
ll

lon lat
1 -8.629 41.16

43 / 44

All is revealed!

ggmap(map)+geom_point(aes(x=lon,y=lat),
data=ll,colour="red")

●

35.0

37.5

40.0

42.5

45.0

−12 −8 −4 0
lon

la
t

44 / 44

