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ABSTRACT

The number of tornado observations in Canada is believed to be significantly lower than the actual oc-

currences. To account for this bias, the authors propose a Bayesian modeling approach founded upon the

explicit consideration of the population sampling bias in tornado observations and the predictive relationship

between cloud-to-ground (CG) lightning flash climatology and tornado occurrence. The latter variable was

used as an indicator for quantifying convective storm activity, which is generally a precursor to tornado

occurrence. The CG lightning data were generated from an 11-yr lightning climatology survey (1999–2009)

from the Canadian Lightning Detection Network. The results suggest that the predictions of tornado oc-

currence in populated areas are fairly reliable with no profound underestimation bias. In sparsely populated

areas, the analysis shows that the probability of tornado occurrence is significantly higher than what is rep-

resented in the 30-yr data record. Areas with low population density but high lightning flash density dem-

onstrate the greatest discrepancy between predicted and observed tornado occurrence. A sensitivity analysis

with various grid sizes was also conducted. It was found that the predictive statements supported by themodel

are fairly robust to the grid configuration, but the population density per grid cell is more representative to the

actual population density at smaller resolution and therefore more accurately depicts the probability of

tornado occurrence. Finally, a tornado probability map is calculated for Canada based on the frequency of

tornado occurrence derived from the model and the estimated damage area of individual tornado events.

1. Introduction

Tornadoes are one of nature’s most hazardous phe-

nomena, capable of causing significant property damage

and economic disruption as well as human injuries and

fatalities. The tornadic events in Barrie 1985 (Etkin

et al. 2001), Edmonton 1987 (Charlton et al. 1995), and

southern Ontario 2009 (Ashton et al. 2010a,b) are

amongst the most significant and costly tornado events

in Canadian history. Multidisciplinary forensic anal-

ysis of a number of tornado-damaged areas in eastern

Canada revealed that buildings in which more than

90% of the occupants were killed or seriously injured

did not have anchorage of house floors into the

foundation or anchorage of the roof to the walls

(Allen 1992, 1986, 1984; Carter et al. 1989). As a re-

sult, the 1995 National Building Code of Canada (NBCC

2005) was updated to include provisions that ensure

basic structural resilience under low-end tornadic loads
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in areas ofCanada defined as ‘‘tornado prone.’’However,

the definition of tornado-prone regions requires a rigor-

ous assessment of the spatial frequency of tornado oc-

currence, and to date these areas have not been clearly

identified in Canada and thus these life-saving structural

measures are not necessarily being implemented in areas

at risk. In light of this need, Environment Canada has

recently compiled an updated 30-yr national tornado

database, founded upon an expert meteorological as-

sessment of all existing tornado records. This database

may serve as the basis for the implementation of tornado

resiliency measures in the National Building Code of

Canada (Sills et al. 2012).

Despite the notable efforts to consolidate a national

tornado database, it is impossible to document all tor-

nado occurrences in every single area, as tornadic events

could easily be missed due to their relatively small spatial

extent and time duration, as well as due to the absence of

observers, structures, or daylight. In fact, tornado ob-

servations in any tornado dataset are often biased and

underreported (Doswell and Burgess 1988), and the

number of observations depends not only on the mete-

orological factors related to tornado occurrence (e.g.,

King et al. 2003) but also on nonmeteorological factors

such as the monitoring network, proximity to populated

areas, and/or radar locations, landscapes, and topogra-

phy (Schaefer and Galway 1982; Grazulis and Abbey

1983; Ray et al. 2003; King 1997). Thus, the development

of tornado climatology and the delineation of tornado-

prone areas that could conceivably dictate security stan-

dards and infrastructural investments are very challenging.

Of all the nonmeteorological factors investigated (e.g.,

obscured vision due to density of trees and hills, ab-

sence of roads, and buildings), population density is

documented as the key nonmeteorological factor in de-

termining the observation bias of tornadoes and non-

tornadic severe thunderstorms in many North American

studies (e.g., Anderson et al. 2007; Ray et al. 2003; King

1997; Etkin and Leduc 1994; Paruk and Blackwell

1994; Snider 1977; Tescon et al. 1983; Schaefer and

Galway 1982). The population sampling bias is typi-

cally accounted for with statistical models that correct

tornado observations in areas with high sampling bias

using nearby sites with low sampling bias and reliable

tornado records. These statistical approaches are gen-

erally limited to relatively small spatial domains due to

their underlying assumption that the tornado climatol-

ogy is homogeneous or that there is significant areal

coverage of reliable sites to derive credible adjust-

ments (e.g., Anderson et al. 2007; Ray et al. 2003; King

1997). However, this assumption is profoundly vio-

lated in countries like Canada, where extensive areas

with unreliable data exist, and thus the observational

uncertainty can significantly compromise our pre-

dictive power.

The latter problem can be overcome when simulta-

neously considering meteorological covariates of the

spatial variability of tornado occurrence. Finding po-

tentially meaningful predictive relationships between

meteorological factors and tornado occurrence could be

a valuable tool for assessing tornado climatology and

risk, particularly for large areas with significant obser-

vational uncertainty. There are many studies that have

investigated possible linkages between meteorological

covariates with tornado observations, for example,

sounding-derived parameters such as convective avail-

able potential energy, vertical wind shear (Brooks et al.

2003b), and lightning flash polarity (Carey et al. 2003),

but none of these relationships has been used in con-

junction with predictive frameworks that explicitly ac-

commodate the observation error associated with the

tornado data. In addition, most studies typically assume

that the tornado observations are independent and ig-

nore other possible sources of spatial correlation within

the domain modeled (e.g., Anderson et al. 2007; King

1997). Like in any spatially distributed modeling exer-

cise, the explicit consideration of the error covariance in

space is essential for drawing correct statistical inference

and for identifying factors unaccounted for by themodel

(Anderson et al. 2007; Wikle and Anderson 2003). In

this study, our thesis is that the Bayesian paradigm offers

an effective means to accommodate all the aforemen-

tioned error sources and thus impartially communicate

the total uncertainty associated with the forecasting of

tornado occurrence (Arhonditsis et al. 2007, 2008a,b).

Further, the use of hierarchical Bayes offers a concep-

tually plausible way for addressing the complexity per-

vading natural systems (Clark 2005; Cheng et al. 2010).

In particular, the Bayesian hierarchical modeling can be

an indispensable methodological framework to disen-

tangle complex environmental patterns, to exploit dis-

parate sources of information, to accommodate tightly

intertwined processes operating at different spatiotem-

poral scales, and to explicitly consider the variability

pertaining to latent variables or other inherently un-

measurable quantities (Clark and Gelfand 2006; Clark

2005; Zhang and Arhonditsis 2009).

The objective of this paper is to predict tornado oc-

currence across Canada using a Bayesian modeling

approach and to shed light on the Canadian tornado

climatology. The problem of tornado occurrence as-

sessment is dissected into a two-pronged strategy in

which we first consider the covariance between lightning

flash density climatology and tornado occurrence, and

then we postulate that the likelihood to observe a tor-

nado is closely related to the population density. Our
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approach also explicitly accommodates the fact that the

model residual variability is likely to be characterized by

distinct spatial patterns, arising from themodel structural

uncertainty. This paper is organized as follows: section 2

describes the sources and treatment of the data prior to

the modeling analysis. Section 3 describes the rationale

and basic features of our Bayesian modeling approach.

Section 4 presents the results and discussion, including

a sensitivity analysis of the model predictions to the grid

resolution. Section 5 presents the conclusions and fu-

ture perspectives of the present modeling framework.

2. Data sources and processing

a. Tornado data

Our analysis is based on the updated national tornado

database for the period 1980–2009 (Sills et al. 2012). This

database includes an intensity F-scale rating (Fujita

1981) and a confidence rating of ‘‘confirmed’’ (direct

evidence of a tornado, e.g., visual evidence), ‘‘probable’’

(all available evidences point to the likelihood of a

tornado but without direct evidence), and ‘‘possible’’

(ambiguous or unreliable tornado evidence).We included

only the confirmed and probable events for all F-scale

ratings (F0–F5) to ensure that our analysis is not based on

nontornadic events that most likely are included in the

possible category. The 30-yr study considered herein can

also be compared with the last national tornado study

based on the previous 30-yr period (1950–79; Newark

1984). To achieve a more accurate representation of

the tornado occurrence for the United States–Canada

border regions, U.S. tornado data for the same period

were also obtained from the U.S. National Weather

Service Storm Prediction Center (SPC).

The tornado data were classified into grids as follows:

tornado reports of all F scales (F0–F5) were aggregated

for the 30-yr period and were plotted as points (tornado

touchdown location) or paths (track of the tornado on

the ground), if the path information was available. Using

the 1-km polygon vertices previously created by Burrows

and Kochtubajda (2010) for their lightning study, three

separate grids with cell sizes 253 25, 503 50, and 1003
100 km2 were overlaid onto Canada to cover areas from

the southern Canada–United States border to 708N.

The grid cells that were completely over water bodies

(e.g., at the center of lakes and oceans) were removed.

We tallied the tornado points and paths that occurred

within or passed through each cell i, resulting in a tor-

nado count for each of the cells. In the case of tornado

paths, a tornado is counted more than once when it

crosses more than one cell, but it cannot be counted

multiple times within the same cell. The tally was done

separately for the three grids examined. Tornado

densities were then calculated by dividing the tornado

counts per cell by the cell area. Finally, it should be noted

that as the gridcell size increased, the cells at the United

States–Canada border extended farther south and thus

moreU.S. area and SPC data were included in the analysis.

b. Lightning data

There is a body of literature relating the polarity of

lightning flashes and, in particular, the predominately

positive cloud-to-ground (CG) lightning flashes to tor-

nadic activity (e.g., Reap andMacGorman 1989; Branick

and Doswell 1992; Knapp 1994; MacGorman and Burgess

1994). However, recent empirical evidence suggests

that a large majority of tornadic storms during the warm

season (April–September) can also be associated with

predominately negative cloud-to-ground lightning flashes

in the contiguous United States (Carey et al. 2003). A

similar linkage is found between predominately nega-

tive cloud-to-ground lightning and violent tornadic

(F4 and F5) storms (Perez et al. 1997). The relationship

between lightning polarity and severe storms appears to

demonstrate significant regional variability (Carey and

Rutledge 2003; Carey et al. 2003), and therefore our

understanding is still considered to be at a developing

stage (Carey et al. 2003). Given this knowledge gap, we

did not attempt to use lightning polarity to model tor-

nado occurrences. Rather, we used the mean annual

cloud-to-ground flash density, a typical proxy for the

frequency of thunderstorm occurrence and duration

(Huffines and Orville 1999; Burrows and Kochtubajda

2010). This implies that we may be introducing an ad-

ditional source of uncertainty in regards to our capacity

to discern the actual tornado occurrence per event re-

corded, as our predictor is not directly related to the

response variable targeted. Nevertheless, our aim is to

use the climatology of CG lightning to identify areas in

Canada that are prone to thunderstorms, which are

typically required for the generation of tornadoes. Mean

annual lightning flash density has been shown to be an

ideal surrogate variable for thunderstorms (Huffines and

Orville 1999), and the lightning network data are spatially

richer andmore accurate than human-based thunderstorm

observations (Huffines andOrville 1999; Changnon 1993;

Reap and Orville 1990; Changnon 1988a,b, 1989). We

obtained the Canadian Lightning Detection Network

(CLDN) CG lightning flash density data for the 1999–2009

period. The 11-yr CG flash density data were originally

sorted into 1 3 1 km2 cells (Burrows and Kochtubajda

2010; Shephard et al. 2013). Using the gridded data,

mean annual CG flash densities were calculated in three

separate grids of 25 3 25 km2 (625 km2), 50 3 50 km2

(2500 km2), and 100 3 100 km2 (10 000 km2) (see also

Fig. S1 in the supplementary material).
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c. Population density

Initial reporting of tornado observations is typically

an interactive process between the general public and

the meteorological service personnel, which under-

scores the presence of a strong positive relationship

between tornado observations and population density.

However, there are a few variations of the most sensible

population density expression, such as (i) the total

county population density, where all of the population

within a county is included, and (ii) the rural population

density, where the densely populated areas (e.g., cities

or towns) within a county are excluded. The rationale

for using rural population density is that by excluding

cities or towns that are densely populated but small in

areal extent, the calculated population density provides

a more accurate portrayal of the real areal coverage of

a study site (e.g., King 1997; Paruk and Blackwell 1994).

On the other hand, the rural population density ap-

proach would not work in cases where a substantial areal

extent of the county is populated (e.g., large metropol-

itan areas; Anderson et al. 2007). To address this issue,

one can use a dataset that has a higher spatial resolution

than the county boundary units. For this reason, we

obtained Canada’s census subdivision boundary units

(Statistics Canada 2001), which have more refined spa-

tial resolution with over 40 political administrative

boundary unit types, such as cities, towns, villages, In-

dian reserves, Indian settlements, and unorganized ter-

ritories. They are all defined in separate entities, such

that most small population centers are separated from

larger rural communities. Further, since the model grid

cells cover both countries at the United States–Canada

border, we also obtained the U.S. 2000 census county

population density. Population densities in the original

boundary units were recalculated into the model grids of

253 25km2 (Fig. 1, right), 503 50km2, and 1003 100km2

(see Fig. S2 in the supplementary material) based on the

areas of overlap between census subdivision units and

model grid cells, assuming that the population density

from the original boundary units of the census sub-

division is spatially homogeneous (Goodchild et al.

1993). The spatially detailed population density from the

census subdivision would only be retained in the smaller

model grids, whereas when the grid size increases (e.g.,

100 3 100km2 grid), more population clusters would be

averaged within one cell, having an effect similar to that

of small densely populated areas for the calculation of

county population density.

3. Methodology

The tornado cell data are discrete counts that pre-

dominantly contain zeros, high observational uncer-

tainty, and intricate spatial covariance driven by

nonmeteorological and meteorological factors. These

issues havemade classical (frequentist) regressionmethods

intractable. In contrast, the use of Bayesian inference

techniques offers a flexible means to decompose the

problem of tornado occurrence into a series of conditional

models coherently linked together via Bayes’ rule

(Anderson et al. 2007; Wikle and Anderson 2003; Wikle

2003):

(explanatory factors, parameters j data)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
[1]Posterior model

} (data j explanatory factors, parameters)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
[2]Data model

3(explanatory factors j parameters)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
[3]Explanatory model

3 (parameters)|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
[4]Parametermodel

,

(1)

FIG. 1. (left) Mean annual CG lightning flash density (number of flashes km22 yr21), based on data from 1999–2009 in a 253 25 km2 grid.

(right) Areal interpolated population density (persons km22) from Canadian census 2001 subdivision boundary in 25 3 25 km2 grid.
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where the posterior model [1] reflects our beliefs related

to the relative importance of the explanatory (or pre-

dictive) factors examined and the underlying parameter

values after the consideration of the available data. This

in turn can be thought of as the product of the data

model [2], specifying the dependence of the observed

data on the processes of interest and parameters, with

the explanatory model [3] describing the nature of the

relationship between response variable and explanatory

factors, and the parameter model [4] quantifying the

uncertainty in parameter values. This formula will serve

as the basis for estimating the probability of tornado

occurrence.

a. Data model

Our model postulates that the population density is

the primary factor that determines the accuracy of tor-

nado observations in our dataset. In particular, we as-

sume that there is a threshold population density above

which all tornadoes are expected to be observed,

whereas below this threshold level the probability of

tornado detection is proportional to the population

density (Newark 1983; King 1997; Anderson et al. 2007).

Similar to the Anderson et al. (2007) study, we specify

a binomial model in which the observed tornado counts

Tobsi for each grid cell i are conditioned upon the actual

(but unobserved) tornado occurrences Tlatenti and the

probability of detection pi(b):

Tobsi jTlatenti, li,pi(b);Binomial[Tlatenti,pi(b)] .

(2)

The probability of detection pi(b) represents the likeli-

hood to observe a tornado and is associated with the

population density yi by the following exponential ex-

pression:

pi(b)5 exp[2b/exp(yi)] , (3)

where b is the population effect parameter and exp(yi) is

the exponential transformation of the original pop-

ulation density data. The actual occurrence of tornadoes

Tlatenti in the model domain is specified as a Poisson

process, conditional on the average or expected tornado

occurrence rate per grid cell li, provided by the pre-

dictive model

Tlatenti j li ;Poisson(li) . (4)

b. Explanatory model

The explanatory (or predictive) model expresses the

logarithm of the expected tornado rate li in given grid

cell i as a linear function of the corresponding mean

annual CG flash density xi:

log(li)5a01a1xi 1 ai , (5)

where ai is a gridcell-specific random effect, captur-

ing the residual variability of the tornado frequency in

grid cell i, stemming from other explanatory factors/

processes unaccounted for by the model. For example,

Brooks et al. (2003b) found that certain thresholds of

convective available potential energy and vertical wind

shear at the 0–6-km layer show a strong correlation with

the severity of thunderstorms, and this pattern cannot be

explained by the mean annual lightning flash density

alone. Moreover, the inclusion of ai aims to address the

possibility that the signature of the lightning flash den-

sity may not be consistently evident in the tornado fre-

quency records throughout the model domain. That is,

the globally common parameterization of our predic-

tive model may be violated in smaller geographic areas

due to, for example, orographic-influenced thunder-

storms (Taylor et al. 2011) or lake-breeze convergence-

influenced convective processes (King et al. 2003). For

the same reason, it is reasonable to assume that the

random effects of the unaccounted for factors have a

regionalized/localized character and thus are spatially

correlated.

The characterization of the spatially correlated ran-

dom terms ai was based on the Bayesian conditional

autoregressive (CAR) model (Besag et al. 1991). The

random error terms are jointly distributed as a multi-

variate normal distribution with mean 0 and an un-

known covariancematrix (Besag andKooperberg 1995).

In particular, the model postulates that the spatial ran-

dom effect in cell i depends only on the neighboring cells

of i (Ni) and that all of the neighbors have equal in-

fluence (weight of 1) on i. The term ai is defined by the

conditional normal distribution ai ;N (mi, s
2/ni), where

mi 5
1

ni
�
j2N

i

ai (6)

and ni is the number of adjacent grid cells. Because we

used a first-order neighborhood approach and squared

cells,Ni represents the eight immediately adjacent cells.

c. Parameter model

In Bayesian inference, model parameters are treated

as random variables rather than fixed quantities. As

such, prior distributions can be formulated to depict our

knowledge on the relative plausibility of their values

before the consideration of the observed data (Gelman

et al. 2004). Here, we opted for ‘‘noninformative’’ or
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‘‘flat’’ priors reflecting no prior knowledge of the model

parameters. In particular, the prior distributions of b, a0,

a1, and s were specified as follows:

b;N(0, 1000), (7)

a0 ;N(0, 1000), (8)

a1 ;N(0, 1000), and (9)

s2; IG(0:001, 0:001), (10)

where N and IG denote the normal and inverse gamma

distributions for the regression coefficients and condi-

tional variance among the spatial random error terms

s2, respectively.

A sequence of realizations from the model posterior

were obtained usingMarkov chainMonte Carlo (MCMC)

simulations. Specifically, we used the general normal

proposal Metropolis algorithm as implemented in the

WinBUGS software (Lunn et al. 2000); this algorithm is

based on a symmetric normal proposal distribution,

whose standard deviation is adjusted over the first 4000

iterations such that the acceptance rate ranges between

20% and 40%. We collected 20 000 samples from two

independent chain runs for each model configuration.

The posterior statistics were calculated using a thin of 10,

which yielded a sample size of 4000 for all the model

configurations considered. The entire modeling process

is undertaken in three grid sizes (25-, 50-, and 100-km

grid squares) separately in order to assess model sensi-

tivity to the selection of the grid size.

4. Results and discussion

Posterior means and standard deviations of the model

parameters for all three model grids are shown in Table

1. The discussion of our results refers to the 25-km

model, while the comparison of the inference drawn

among the different grid configurations is presented in

a following section.

a. Comparison between predicted tornado occurrence
and tornado observations

The total predicted tornado occurrence (calculated as

the total sum of the posterior means of Tlatenti) for the

entire 30-yr period of our study for all three model grids

are at least twice the number of recorded tornadoes,

based on the counts of tornado points and paths by grid

cells (Table 1; Fig. 2). Tornado observations were on

average close to 70 yr21, whereas the model-predicted

tornado occurrence was close to 150 yr21 (Table 1).

Some areas with no tornado observations in the 30-yr

study period, for example, northern parts of Alberta and

Manitoba and northwestern Ontario, are predicted to

have a low (;0.10 tornadoes per 10 000 km2) probability

of annual tornado occurrence with the 25-km grid

model. Similarly, the southern border of Alberta and

Saskatchewan are predicted to experience even higher

probabilities of tornado occurrence [;(0.5–1.5) torna-

does per 10 000 km2]. Considering the sparse population

density and the lack of radar coverage in some of those

areas, the discrepancy between observed and predicted

tornado occurrence is not surprising. Generally, we note

that extensive areas across the prairies are corrected by

our model, whereas the more heavily populated areas in

the Edmonton–Calgary corridor, Regina, Saskatoon,

andWinnipeg are subjected to a lower observation error

(Fig. 2). Adjustments also continue eastward to north-

western Ontario and to a lesser extent in the area be-

tween northeastern Ontario and Quebec (Fig. 2). There

are no major adjustments in southern Ontario or

southern Quebec because of the more reliable tornado

detection assumed by the much denser population.

In a similarmanner, the prairies were characterized by

the highest standard deviation values of the true tornado

occurrences Tlatenti (Fig. 2, right panels). The values

decrease proportionally as we move northward to areas

with lower predicted tornado occurrences. Further, our

analysis suggests that the standard deviations slightly

increase as the grid size decreases, which is an expected

result as the posterior means also increased slightly with

TABLE 1. Posterior means and standard deviations (SD) of the parameters and model predictions.

�Tlatenti �Tobsi

Model Total Mean annual Total Mean annual

resolution b a0 a1 s (30 yr) (yr21) (30 yr) (yr21)

25 3 25 km2 Mean 3.129 23.536 1.543 1.574 4773 159.1 2069 69.0

(625 km2) SD 0.143 0.2 0.195 0.074

50 3 50 km2 Mean 3.102 22.298 2.078 1.59 4395 146.5 2088 69.6

(2500 km2) SD 0.183 0.228 0.256 0.09

100 3 100 km2 Mean 3.334 21.07 2.6 1.778 4287 142.9 2140 71.3

(10 000 km2) SD 0.26 0.263 0.353 0.131
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the decrease of the gridcell size. Conversely, in the most

populated areas, most notably from southern Ontario to

southern Quebec, the standard deviations are zero. That

is, the predicted tornado occurrences are simply equal to

Tobsi, given that our model postulated high tornado

detection efficiency in densely populated areas.

b. Importance of the lightning covariate, population
density, and spatial random effects

The posterior estimate for the parameter a1 is 1.53 6
0.19, indicative of a distinct relationship between the CG

flash density and the underlying expected tornado rate

(Table 1). The random effects term ai, representing ex-

planatory factors–processes unaccounted for by themodel,

demonstrates strong spatial covariance with the Tlatenti
posterior estimates, in that positive ai values typically co-

incide with higher Tlatenti and vice versa (Fig. 3). The

main exception to this spatial pattern was in southwestern

Ontario, where despite the higher tornado occurrence

rates relative to the central prairies, the relative ai values

are distinctly lower, especially when a larger gridcell

size is used (see Figs. S3,S4 in the supplementary mate-

rial). It is also worth noting that southwestern Ontario

experiences the most intense CG lightning flash den-

sities in Canada (Fig. 1, right). We believe that the

lower ai values for southwestern Ontario could be

a reflection of the nature of the two structural compo-

nents of our model. First, the lower ai values could stem

from the underlying assumption that the lightning–

tornado relationship is identical throughout the study

domain. Namely, the assumption of a globally common

a1 value may oversimplify the regional variability in

the nature of the explanatory linkage between CG

lightning densities and tornado frequency, which in

turn it is depicted by the systematic trends of the ai
values in the central prairies and southernOntario. The

problems arising from a geographically constant light-

ning–tornado relationship can be exemplified by one

facet of the spatial variability of the lightning densities:

namely, the length of lightning season. Different re-

gions may experience similar mean annual lightning

densities, but the length of the lightning season can be

significantly different, reflecting the potential differences

in the underlying thermodynamic processes (Burrows

and Kochtubajda 2010). For example, the Pacific coastal

region and southern Nova Scotia appear to have higher

FIG. 2. (left) Gridded observed tornado counts standardized to 10 000 km22 yr21. (center) Posterior mean of tornado occurrence

standardized to 10 000 km22 yr21. (right) Posterior standard deviation of tornado occurrence standardized to 10 000 km22 yr21. (top)–

(bottom) The 25 3 25, 50 3 50, and 100 3 100km2 models, respectively.

1 DECEMBER 2013 CHENG ET AL . 9421



lightning flash densities due to a virtual year-round

lightning season, as winter lightning commonly occurs

when Arctic air masses pass over much warmer water

(Burrows and Kochtubajda 2010). It is significantly dif-

ferent than in the Edmonton area, where over 95%of the

annual lightning occurred in May–August (Burrows and

Kochtubajda 2010). Hence, a different lightning–tornado

relationship may be expected between these regions.

Second, the spatial patterns of the ai posteriors could

similarly be a reflection of the assumption of globally

common population effects on the likelihood to observe

a tornado pi(b). Possible regional population bias may

exist because of differences in the quality of the moni-

toring networks, number of trained weather spotters,

training of meteorological service staff, and general

public awareness to tornadoes, but these factors are not

explicitly considered in the model (Anderson et al.

2007). The omission of this potential bias may influence

the probability of tornado detection and subsequently

the uncertainty estimates of Tlatenti. In such a case, it is

conceivable that the estimation of the random terms ai
may offset this systematic error, regardless of the CG

lightning flash densities.

An appealing approach to investigate the effects of

potential region-specific relationships is a Bayesian hi-

erarchical configuration of the present model. Under

this framework, the assumption of globally common

relationships is relaxed, and the model is dissected

into levels (hierarchies) that explicitly account for the

role of significant sources of spatial variability (e.g.,

geographical locations, climatic regimes, particular

features of regional monitoring networks, road density,

or landscape), thereby allowing for site-specific param-

eter estimates (Gelman and Hill 2007; Cheng et al.

2010). Finally, the posterior estimate of the model in-

tercept a0 is 23.536 6 0.201 (or 0.030 6 0.006 in the

original scale), suggesting that the baseline expected

tornado rate across the study area, when we account for

the flash density and the spatial random effects, is very

low (Table 1).

The posterior estimate of the population effect pa-

rameter b is 3.129 6 0.143 (Table 1). Substituting the

mean value back to Eq. (2), we infer that the probability

of tornado detection pi(b) is approximately equal to 1

when the population density reaches the level of 6 in-

dividuals km22 (Fig. 4, left). In effect, the model allows

identifying a population threshold when all tornadoes

can be observed, and thus the variables Tlatenti and

Tobsi are identical. Interestingly, our analysis suggests

a population threshold similar to the value reported by

King (1997) using data from southern Ontario. When

the population density is below 6 individuals km22, the

tornado observational uncertainty is partly reflected

in the uncertainty estimates of Tlatenti. As the Tlatenti
posteriors are also dependent on the meteorological

submodel, it is worth noting that the standard deviations

of Tlatenti stem from the relationship between light-

ning and tornado frequency as well as the population

density effects on the probability of tornado detection

(Fig. 2).

FIG. 3. Posterior mean of the conditional autocorrelation coefficient ai on a 25 3 25 km2

model grid.
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c. Model sensitivity to gridcell size

Posterior means of the population effect parameter b

(Table 1) are quite consistent across the three model

gridcell sizes used, although a slight increase for the

posterior standard deviation is observed with the coarser

spatial resolution. This is not surprising as the pop-

ulation densities calculated for larger grid cells are less

accurate compared to the smaller grid cells. The poste-

rior means of the parameters a0 and a1 are larger as

the gridcell size increases (Table 1), which simply

stems from the scale-dependent units of Tobsi (counts

of tornadoes per cell) relative to the normalized units

of the mean annual CG lightning flash density (flash

km22). The conditional variance s of the random terms

ai is similar for the 25 3 25 and 50 3 50 km2 grids but

increases slightly with the 100 3 100 km2 grid. Some

notable differences among the three grid configurations

are as follows: (i) as the grid size increases, the pro-

portion of cells with zero tornado observations is lower

(i.e., 93%, 87%, and 80%of cells for the 253 25, 503 50,

and 100 3 100 km2 grids, respectively); (ii) the pop-

ulation density is somewhat higher with the coarser

resolution (e.g., the proportion of cells with population

density greater than 6 individuals km22 is 6%, 7%, and

9% for the 25 3 25, 50 3 50, and 100 3 100 km2 grid

cells, respectively; Fig. 4); and (iii) each population

center is associated with Tlatenti projections that are

spread over a larger areal extent with the coarser reso-

lution relative to the finer grid, and thus the predicted

tornado occurrence rates are higher with the smaller

grid size (Fig. 5). Overall, our analysis shows that the

predictive statements supported by themodel are robust

and do not depend strongly on the grid sizes, although

the smaller gridcell resolution more accurately portrays

the actual population densities and therefore better

represent the probability of tornado occurrence.

d. Extent of tornado occurrence probabilities

Based on the Tlatenti predictions with the 253 25 km2

grid configuration (Fig. 2), we used the ordinary kriging

method (see, e.g., Ray et al. 2003) to create a map that

depicts a smoothed pattern of the regions with different

tornado occurrence rate (Fig. 6). Based on the full range

of tornado occurrence rate and with reference to other

Canadian studies (Newark 1984; Hage 2003), we iden-

tified four levels [$0.05, $0.10, $1.0, and $2.0 (per

10 000 km2 yr)] to classify regions of very low, low, me-

dium, and high probability of tornado occurrence, re-

spectively. The very low probability areas begin from

central British Columbia in the west and move north-

ward to northern Alberta, before dipping southward

in Saskatchewan and extend northward again to the

northeastern tip of Manitoba. The same very low prob-

ability area extends to northern Ontario, southern

Quebec, eastern New Brunswick, and Prince Edward

Island. The low probability areas follow a smaller in

extent but similar pattern, except for a discontinuity

north of Lake Superior. The medium probability areas

have a distinctly different pattern. The area starts near

the foothills of the Alberta Rocky Mountains and

extends eastward before dipping south to central

Saskatchewan and ending near southern Manitoba. For

the eastern part of Canada, the area of medium proba-

bility of tornado occurrence begins between Georgian

Bay and Lake Ontario in southern Ontario and extends

across southwestern Ontario, where there are also some

regions with higher probabilities. Some of the significant

tornado events that have occurred in the medium

probability areas are listed in Table 2. One of the high

probability areas of tornado occurrence resides in

the central prairies, with a broad clockwise rotated

‘‘J-shaped’’ region over south-central Saskatchewan

and southernManitoba. The highest tornado occurrence

FIG. 4. (left) Probability of tornado detection estimated from the model as a function of population density. (right) Percentile of the

gridded population density. Models on a 25 3 25, 50 3 50, and 100 3 100 km2 grid are shown in dashed, gray, and black solid line,

respectively. The three inset panels show an expanded y axis for percentiles from 0% to 90%.
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predictions within this region are found in the center of

southern Saskatchewan, southeastern Saskatchewan,

and southwestern and southeastern Manitoba, with the

latter three lying just north of the broad ‘‘C-shaped’’

tornado alley in the central plains of the United States

(Brooks et al. 2003a). Because of the absence of Canadian

data along with the smoothing effect of the Brooks

et al. (2003a)’s study, the C-shaped tornado alley did not

extend to the northern plains/Canada–United States

border (e.g., Dakotas and Montana). Our analysis sug-

gests that the broad C-shaped tornado alley likely ex-

tends north into Manitoba and Saskatchewan. Other

high probability areas are located within southern On-

tario. One area can be found in the southernmost part

of Canada near Windsor, Ontario, and appears to be

a northeastern extension of the aforementioned tornado

alley identified by Brooks et al. (2003a). The other area

is located in the inland area of southern Ontario be-

tween Lakes Erie, Huron, and Ontario. This region is

largely influenced by the lake-breeze circulations gen-

erated by these lakes; the tornado activity tends to be

suppressed in regions near the lakes regularly visited by

lake-modified air, while it is enhanced at inland loca-

tions along lake-breeze fronts as well as at sites where

lake-breeze fronts interact (King et al. 2003). All the

high probability areas have experienced deadly torna-

does in the past (Table 2).

When tornado-affected areas are known, tornado

occurrence in area and time (10 000 km22 yr21) can be

expressed as tornado probabilities PT in unit per time

(yr21). Tornado probabilities are typically calculated as

follows:

PT 5

 
�
T

t51

ltwt

!,
AY , (11)

where l is the length of the tornado t,w is the width of the

tornado t, A is the area of the grid, Y is the number of

years, and T is the number of tornadoes in area A.

However, for most of the observations in this dataset,

the tornado-affected areas are unknown, and thus it

would be impossible to use Eq. (11). In an attempt to

predict tornado probabilities, we assume our sampled

tornado-affected areas are similar to the large dataset of

Schaefer et al. (1986). We applied their sampled median

affected areas of all tornadoes (F0–F5) of 0.10 km2 along

with our Tlatenti to predict tornado probabilities, which

are calculated as

PT(yr
21)5Tlatenti(occurrence3 10, 000 km22 yr21)

3 0:10 km2 .

(12)

FIG. 5. Posterior mean of Tlatenti on 25 3 25, 50 3 50, and 100 3 100 km2 model grids overlaid on the original census subdivision

boundary layer with the population density (person km22) of each census subdivision shown with gray scales. The gray scale for Tlatenti is

the same as those in Fig. 2.
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Based on this assumption, the tornado probabilities and

the return periods are directly proportional to the pre-

dicted tornado occurrences (Fig. 6): for example, areas

where the tornado occurrences are predicted to be 1 tor-

nado 10000km22 yr21 have a tornado probability of

1025 yr21, which is equivalent to a return period of 105 yr.

Our results in tornado probabilities can be compared with

the F0–F5 projections reported by Schaefer et al.

(1986). In Schaefer et al. (1986), the areas with tornado

probabilities greater than 1026 yr21 covered most of the

United States east of the RockyMountains. Based on our

results, the same frequency areas should extend well

FIG. 6. Predicted tornado occurrence (10 000km22 yr21), tornado probability (yr21), and the return period (yr), based on the posterior

mean values of Tlatenti of the 25 3 25 km2 model. Asterisk implies that the median tornado-affected area (F0–F5) of 0.10 km2 from the

Schaefer et al. (1986) records is used. An inset map of southwestern and south-central Ontario is shown in the upper right corner.

TABLE 2. Regions of $1 and $2 tornado occurrences per 10 000 km2 3 yr21 and historically significant tornado events occurred within

each region.

Tornadoes

10 000 km22 yr21 Regions Significant tornado events (fatalities or F-scale)

$1 Central Alberta Edmonton 1987 (27), Pine Lake 2000 (11)

Western-Central Saskatchewan Lloydminster 1983 and 2000 (F3s)

Southern Manitoba Elie 2007 (F5)

Southern Ontario Waterloo–Wellington 1967 (F3),

Gray–Dufferin Counties 1996 (2 F3s),

southern Ontario outbreak 2005 (2 F2s)

$2 Southern Saskatchewan Regina 1912 (28)

Southern Manitoba–United States border Portage La Prairie 1922 (5)

Tip of southwestern Ontario–United States border Sarnia 1953 (7), Windsor/Tecumseh 1946

(17), Windsor 1974 (9)

Southwestern Ontario lake convergence zone Woodstock 1979 (2), Hopeville—Barrie

1985 (12)
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northward to the Canadian plains, east of the Alberta

RockyMountains, and also to northwesternOntario. The

same frequency also characterizes areas that extend from

southwestern Ontario northward to the east of Lake Su-

perior and eastward to southwestern Quebec and New

Brunswick. Regarding the tornado probabilities of

greater than 1025 yr21, Schaefer et al. (1986)’s projections

lie closer to southwestern Ontario than to the Canadian

Prairies. However, our result suggests that a significant

portion of the Canadian Prairies close to the U.S.

northern prairies regions should also be included, as well

as a much larger portion of southwestern Ontario (i.e.,

fromWindsor, Ontario, extending to the east ofGeorgian

Bay).

5. Conclusions and future perspectives

Newark (1984) provided a first national view of the

tornado climatology of Canada. In that study, the tor-

nado observations were assumed to be reliable in areas

with population density $1 person km22, while areas

with lower population density were extrapolated based

on subjective meteorological knowledge. In this study,

we developed a Bayesian modeling approach founded

upon the explicit consideration of the population sam-

pling bias in tornado observations and the predictive

relationship between cloud-to-ground lightning flash

climatology and tornado occurrence, in order to predict

the probability of tornado occurrence in Canada. The

key findings of our analysis are as follows:

d There is a population density threshold of 6 individ-

uals km22, below which there is uncertainty in the

detection of tornadoes. Nonetheless, regional vari-

ability may be associated with differences in the

quality of the monitoring networks, number of trained

weather spotters, training of meteorological service

staff, and general public awareness.
d Mean annual CG lightning density is an important

meteorological covariate for partially explaining tor-

nado occurrence, although substantial spatial variabil-

ity exists in regards to the strength of this predictive

relationship.
d In sparsely populated areas, our analysis shows that the

probability of tornado occurrence is significantly higher

thanwhat is represented in the 30-yr data record. Areas

with low population density but high lightning flash

density demonstrate the greatest discrepancy between

predicted and observed tornado occurrence.
d The total predicted tornado occurrences for the en-

tire 30-yr period of our study were at least twice the

number of recorded tornadoes, based on the counts

of tornado points and paths by grid cells. Tornado

observations were on average close to 70 yr21,

whereas the model predicted tornado occurrence

close to 150 yr21.

The sensitivity analysis shows that the predictive

statements supported by the model are fairly robust to

the grid configuration; hence, the modeling framework

should be a sound foundation for objectively defining

tornado-prone areas for the National Building Code of

Canada. The ability of the model to delineate the im-

portance of meteorological factors and the observa-

tional error associated with the population density lays

the groundwork for a more detailed investigation of

these relationships. Future research goals would be

to examine additional lightning flash properties (e.g.,

lightning polarity, total lightning density, multiplicity,

and first stroke peak current) and other atmospheric

meteorological parameters (e.g., convective potential

available energy and deep-level wind shear) that could

potentially be relevant to tornado occurrence and their

intensity (Brooks et al. 2003b). Moreover, future in-

vestigation of the lightning–tornado relationship via

a Bayesian hierarchical framework will be valuable in

elucidating the underlying drivers of spatial variability.

Similarly, this modeling framework would be helpful in

identifying potential regional population bias associ-

ated with the likelihood of tornado detection. Such

a hierarchical configuration can conceivably augment

the capacity of tornado occurrence models to effec-

tively support hazard assessment (Banik et al. 2007), as

the realistic representation of spatial heterogeneity is

critical in developing tornado hazard maps (Tan and

Hong 2010). Further, manufactured structures, such as

mobile homes and school portables are vulnerable even

to weaker (F0 and F1) tornadoes (Ashley 2007; Sutter

and Simmons 2010), whereas critical and hazardous

facilities, such as hospitals and nuclear plants, may be

subjected to a greater risk with more intense (F2 and

higher) tornadoes. It is thus critical to develop models

for various tornado intensities, so that the associated

risks with different types of infrastructure can be evalu-

ated. Such a modeling exercise will be presented in a fu-

ture study.

From a socioeconomic perspective, one of most direct

impacts of tornadoes is their financial cost on individuals

and infrastructure. The large financial losses suffered

from recent tornadic events, such as the Goderich 2011

(CAD 75 million) and the Leamington 2010 (CAD 120

million) Ontario tornadoes (Insurance Bureau of Canada

2012), have shown that the destruction of infrastruc-

ture and losses to individual owners and insurers can

be overwhelming. These events have highlighted the

importance of developing tornado forecasting tools and
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risk information systems for engineering and financial

loss models that will improve our capacity to cope with

damage control and minimize the societal risk of tor-

nadoes. Canada is undergoing significant population

growth and expansion, centering mainly in Alberta and

southern Ontario, and thus it is expected that societal

impacts of tornadoes will increase. It is critical that the

tornado risk to Canada’s society is properly assessed, for

example, through tornado casualty models, and that

adequate tornado vigilance from the Meteorological

Service of Canada, emergency groups, and by the gen-

eral public are in place. Our predictions of tornado oc-

currence should be essential in integrating tornado risk

with future socioeconomic studies.
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Figure S1: Mean annual cloud-to-ground light flash density (number of flashes km
-2
 year

-1
), based 

on data from 1999-2009, in 25 × 25 km
2
 grid, 50 × 50 km

2
 grid and 100 × 100 km

2
 grid, respectively. 

 

Figure S2: Population density, yi, in 25 × 25 km
2
 model grid, 50 × 50 km

2
 grid and 100 × 100 km

2
 

grid, respectively. 

 

Figure S3: Posterior mean of the probability of tornado detection, pi, in 25 × 25 km
2
 model grid, 50 

× 50 km
2
 grid and 100 × 100 km

2
 grid, respectively. 

 

Figure S4: Posterior mean of the conditional autoregression coefficient, ai, in 25 × 25 km
2
 model 

grid, 50 × 50 km
2
 grid and 100 × 100 km

2
 grid, respectively. 
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Figure S2. Population density, yi, in 25 × 25 km
2
 model grid, 50 × 50 km
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Figure S3. Posterior mean of the probability of tornado detection, pi, in 25 × 25 km
2
 model grid, 50 × 50 km

2
 grid, and 100 × 100 km

2
 grid, respectively. 
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Figure S4. Posterior mean of the conditional autoregression coefficient, ai, in 25 × 25 km
2
 model grid, 50 × 50 km

2
 grid, and 100 × 100 km

2
 grid, respectively. 
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