
CSCB20

Introduction to Database and
Web Application Programming

Anna Bretscher
 Winter 2017	

Welcome to CSCB20	

Course Description:

A practical introduction to databases and Web
app development.

 Databases:

o  terminology and applications;
o  creating, querying and updating databases;
o  the entity-relationship model for database

design.

Welcome to CSCB20	

Course Description:

A practical introduction to databases and Web
app development.

Web documents and applications:
o  static and interactive documents;
o Web servers and dynamic server-generated

content;
o Web application development and interface

with databases.

Course Layout	

Database Design

 5-6 weeks

Web Application Design

 6-7 weeks

Lectures

 2 hours per week

Tutorials

 1 hour per week – start in week 2

Course Work	

Term Work

 3 Assignments 15% each

Exams

 Midterm 15%

 Final Exam 40%

How Do I Get Help?	

Lectures

Course Website:

 www.utsc.utoronto.ca/bretscher/b20

Course Discussion Board

Tutorials

TA and Instructor Office Hours

Textbook

 – no official book
 – good online resources linked to on website.

How Do I Stay Informed?	

Come to class!

Join Piazza and check often.

Check the calendar for due dates of term work.

Check your utoronto email – this is where I will send
out emails to the class.

Today	

Databases:

o  What?
o  Where?
o  Why?
o  When?
o  How?

Terminology

What…	

Is a Database?

o A collection of interrelated data.
o  The data is relevant to an enterprise.

Is a Database Management System (DBMS)?
o A database and
o A set of programs to access the database
o  Provides a way to store and retrieve database

information.
o Must be convenient and efficient.

Where?	

Enterprise Information:

o  Sales
o  Accounting
o  Human Resources
o  Manufacturing
o  Online Retailers

Banking and Finance:
o  Banking
o  Credit Card Transactions
o  Finance

Other Applications?
o  Universities
o  Airlines
o  Telecommunications
o  …

When?	

In the 1960s data storage changed
from tape to direct access.

This allowed shared interactive data
use.

Early databases were navigational
which was very inefficient for
searching.

Edgar Codd created a new system in the 1970s based on the
relational model.

Late 1970s and early 1980s SQL was developed based on the relational
model which is the foundation of current databases and what we will
study.

In the 2000s, with increasingly large datasets, new XML databases and
NoSQL databases are becoming more prevalent.

Why use databases?	

•  Commercialized management of large amounts of data
•  Ability to update and maintain data
•  Keep track of relationships between subsets of the data
•  Efficient access and searching capabilities
•  Multiple users can access and share data
•  Ability to limit access to a portion of the data according

to user type and enables security of data
•  Minimizes redundancy of multiple data sets
•  Enables consistency constraints
•  Allows users an abstract view of the data which hides

the details of how the data are stored and maintained.

Data Abstraction -­‐‑ How? 	

Physical Level

o  Lowest level, how the data are actually stored.
o  Usually in complex low-level data structures.

Logical Level

o  What data are stored in the database and what relationships
exist between the data.

o  Implementing the simple structure of the logical level may require
complex physical low level structures.

o  Users of the logical level don’t need to know about this.
o  We refer to this as the physical data independence.

View Level:

o  Highest level of abstraction - describes only a small portion of the
database

o  Allows user to simplify their interaction with the database system.
o  Can have many views. WHY is this good?

Data Abstraction	
1.3 View of Data 7

view 1 view 2

logical
level

physical
level

view n…

view level

Figure 1.1 The three levels of data abstraction.

languages support the notion of a structured type. For example, we may describe
a record as follows:1

type instructor = record
ID : char (5);
name : char (20);
dept name : char (20);
salary : numeric (8,2);

end;

This code defines a new record type called instructor with four fields. Each field
has a name and a type associated with it. A university organization may have
several such record types, including

• department, with fields dept name, building, and budget

• course, with fields course id, title, dept name, and credits

• student, with fields ID, name, dept name, and tot cred

At the physical level, an instructor, department, or student record can be de-
scribed as a block of consecutive storage locations. The compiler hides this level
of detail from programmers. Similarly, the database system hides many of the
lowest-level storage details from database programmers. Database administra-
tors, on the other hand, may be aware of certain details of the physical organiza-
tion of the data.

1The actual type declaration depends on the language being used. C and C++ use struct declarations. Java does not have
such a declaration, but a simple class can be defined to the same effect.

*taken from: Database System Concepts 6th Ed.,Korth,Silberschatz, Sudharshan

Relational Model	

Database is a collection of tables each having a unique name.

Each table also known as a relation.

Rows are referred to as tuples.

Columns are referred to as attributes.

An instance of a database is the information stored at a
particular moment in time.

A database schema is the overall design of the database.

Which changes frequently? The instance or schema of a
database?

*taken from: Database System Concepts 6th Ed.,Korth,Silberschatz, Sudharshan

University Example*	

40 Chapter 2 Introduction to the Relational Model

ID name dept name salary

10101 Srinivasan Comp. Sci. 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
22222 Einstein Physics 95000
32343 El Said History 60000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Crick Biology 72000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000

Figure 2.1 The instructor relation.

the relationship between a specified ID and the corresponding values for name,
dept name, and salary values.

In general, a row in a table represents a relationship among a set of values.
Since a table is a collection of such relationships, there is a close correspondence
between the concept of table and the mathematical concept of relation, from which
the relational data model takes its name. In mathematical terminology, a tuple is
simply a sequence (or list) of values. A relationship between n values is repre-
sented mathematically by an n-tuple of values, i.e., a tuple with n values, which
corresponds to a row in a table.

course id title dept name credits

BIO-101 Intro. to Biology Biology 4
BIO-301 Genetics Biology 4
BIO-399 Computational Biology Biology 3
CS-101 Intro. to Computer Science Comp. Sci. 4
CS-190 Game Design Comp. Sci. 4
CS-315 Robotics Comp. Sci. 3
CS-319 Image Processing Comp. Sci. 3
CS-347 Database System Concepts Comp. Sci. 3
EE-181 Intro. to Digital Systems Elec. Eng. 3
FIN-201 Investment Banking Finance 3
HIS-351 World History History 3
MU-199 Music Video Production Music 3
PHY-101 Physical Principles Physics 4

Figure 2.2 The course relation.

*taken from: Database System Concepts 6th Ed.,Korth,Silberschatz, Sudharshan

40 Chapter 2 Introduction to the Relational Model

ID name dept name salary

10101 Srinivasan Comp. Sci. 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
22222 Einstein Physics 95000
32343 El Said History 60000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Crick Biology 72000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000

Figure 2.1 The instructor relation.

the relationship between a specified ID and the corresponding values for name,
dept name, and salary values.

In general, a row in a table represents a relationship among a set of values.
Since a table is a collection of such relationships, there is a close correspondence
between the concept of table and the mathematical concept of relation, from which
the relational data model takes its name. In mathematical terminology, a tuple is
simply a sequence (or list) of values. A relationship between n values is repre-
sented mathematically by an n-tuple of values, i.e., a tuple with n values, which
corresponds to a row in a table.

course id title dept name credits

BIO-101 Intro. to Biology Biology 4
BIO-301 Genetics Biology 4
BIO-399 Computational Biology Biology 3
CS-101 Intro. to Computer Science Comp. Sci. 4
CS-190 Game Design Comp. Sci. 4
CS-315 Robotics Comp. Sci. 3
CS-319 Image Processing Comp. Sci. 3
CS-347 Database System Concepts Comp. Sci. 3
EE-181 Intro. to Digital Systems Elec. Eng. 3
FIN-201 Investment Banking Finance 3
HIS-351 World History History 3
MU-199 Music Video Production Music 3
PHY-101 Physical Principles Physics 4

Figure 2.2 The course relation.

 Instructor Relation Course Relation

Give an example of an attribute, tuple.

What is the domain of the column salary?

Terminology	

Database Schema: The logical design of the database.

Database Instance: A snapshot of the data in the database.

Relation Schema: A list of attributes and their corresponding

 domains.

The department relation has the schema:

department(dept_name,	
 building,	
 budget)	

	

The instructor relation has the schema:

instructor(ID,	
 name,	
 dept_name,	
 salary)	

	

Why is it useful to have dept_name	
 	
 in both schemas?

2.2 Database Schema 43

dept name building budget

Biology Watson 90000
Comp. Sci. Taylor 100000
Elec. Eng. Taylor 85000
Finance Painter 120000
History Painter 50000
Music Packard 80000
Physics Watson 70000

Figure 2.5 The department relation.

similarly the contents of a relation instance may change with time as the relation
is updated. In contrast, the schema of a relation does not generally change.

Although it is important to know the difference between a relation schema
and a relation instance, we often use the same name, such as instructor, to refer
to both the schema and the instance. Where required, we explicitly refer to the
schema or to the instance, for example “the instructor schema,” or “an instance of
the instructor relation.” However, where it is clear whether we mean the schema
or the instance, we simply use the relation name.

Consider the department relation of Figure 2.5. The schema for that relation is

department (dept name, building, budget)

Note that the attribute dept name appears in both the instructor schema and the
department schema. This duplication is not a coincidence. Rather, using common
attributes in relation schemas is one way of relating tuples of distinct relations.
For example, suppose we wish to find the information about all the instructors
who work in the Watson building. We look first at the department relation to
find the dept name of all the departments housed in Watson. Then, for each such
department, we look in the instructor relation to find the information about the
instructor associated with the corresponding dept name.

Let us continue with our university database example.
Each course in a university may be offered multiple times, across different

semesters, or even within a semester. We need a relation to describe each individ-
ual offering, or section, of the class. The schema is

section (course id, sec id, semester, year, building, room number, time slot id)

Figure 2.6 shows a sample instance of the section relation.
We need a relation to describe the association between instructors and the

class sections that they teach. The relation schema to describe this association is

teaches (ID, course id, sec id, semester, year)

University Example: Relations	

So far we have the following schemas:

department(dept_name,	
 building,	
 budget)
instructor(ID,	
 name,	
 dept_name,	
 salary)	

course(course_id,	
 title,	
 dept_name,	
 credits)	

	

What other schemas might we want?

teaches(ID,	
 course_id,sec_id,	
 semester,	
 year)
section(course_id,	
 sec_id,	
 semester,year,	
 ,	
 building,	
 room_number,	

time_slot_id)	
 	

student(ID,	
 name,	
 dept_name,	
 tot_cred)	

takes(ID,	
 course_id,	
 sec_id,	
 semester,	
 year,	
 grade)	

time_slot(time_slot_id,	
 day,	
 start_time,	
 end_time)	

…	

How do we uniquely refer to a tuple or row in a schema?

Keys	

Superkey: a set of one or more attributes that taken
together uniquely identify a tuple in the relation.

What are possible superkeys for the instructor relation?

instructor(ID,	
 name,	
 dept_name,	
 salary)	

Keys	

Superkey: a set of one or more attributes that taken
together uniquely identify a tuple in the relation.

What about the teaches relation?

44 Chapter 2 Introduction to the Relational Model

course id sec id semester year building room number time slot id

BIO-101 1 Summer 2009 Painter 514 B
BIO-301 1 Summer 2010 Painter 514 A
CS-101 1 Fall 2009 Packard 101 H
CS-101 1 Spring 2010 Packard 101 F
CS-190 1 Spring 2009 Taylor 3128 E
CS-190 2 Spring 2009 Taylor 3128 A
CS-315 1 Spring 2010 Watson 120 D
CS-319 1 Spring 2010 Watson 100 B
CS-319 2 Spring 2010 Taylor 3128 C
CS-347 1 Fall 2009 Taylor 3128 A
EE-181 1 Spring 2009 Taylor 3128 C
FIN-201 1 Spring 2010 Packard 101 B
HIS-351 1 Spring 2010 Painter 514 C
MU-199 1 Spring 2010 Packard 101 D
PHY-101 1 Fall 2009 Watson 100 A

Figure 2.6 The section relation.

Figure 2.7 shows a sample instance of the teaches relation.
As you can imagine, there are many more relations maintained in a real uni-

versity database. In addition to those relations we have listed already, instructor,
department, course, section, prereq, and teaches, we use the following relations in this
text:

ID course id sec id semester year

10101 CS-101 1 Fall 2009
10101 CS-315 1 Spring 2010
10101 CS-347 1 Fall 2009
12121 FIN-201 1 Spring 2010
15151 MU-199 1 Spring 2010
22222 PHY-101 1 Fall 2009
32343 HIS-351 1 Spring 2010
45565 CS-101 1 Spring 2010
45565 CS-319 1 Spring 2010
76766 BIO-101 1 Summer 2009
76766 BIO-301 1 Summer 2010
83821 CS-190 1 Spring 2009
83821 CS-190 2 Spring 2009
83821 CS-319 2 Spring 2010
98345 EE-181 1 Spring 2009

Figure 2.7 The teaches relation.

We are interested in
superkey sets that
are minimal.
	

Candidate Key	

 instructor(ID,	
 name,	
 dept_name,	
 salary)	

Superkeys for relation instructor:

 {ID}, {name, dept_name}, {ID, name}

Candidate Key: A minimal superkey.

Q. Which of the above superkeys are candidate keys?

A. {ID}, {name, dept_name}

Primary Key: A candidate key chosen by the database

 designer to distinguish between tuples.

Next Week	

Tutorials begin

Relational Model Continued

 Relational diagrams
 Relational operations
 Relational algebra

Intro to SQL and MySQL (tentative)

