CSCB20

Introduction to Database and Web Application Programming

Anna Bretscher Winter 2017

Welcome to CSCB20

Course Description:

A practical introduction to databases and Web app development.

Databases:

terminology and applications;
creating, querying and updating databases;
the entity-relationship model for database design.

Welcome to CSCB20

Course Description:

A practical introduction to databases and Web app development.

Web documents and applications:

- o static and interactive documents;
- Web servers and dynamic server-generated content;
- Web application development and interface with databases.

Course Layout

Database Design 5-6 weeks

Web Application Design 6-7 weeks

Lectures 2 hours per week

Tutorials 1 hour per week – start in week 2

Course Work

Term Work

3 Assignments 15% each

Exams

Midterm 15%

Final Exam 40%

How Do I Get Help?

Lectures

Course Website: <u>www.utsc.utoronto.ca/bretscher/b20</u>

Course Discussion Board

Tutorials

TA and Instructor Office Hours

Textbook

- no official book
- good online resources linked to on website.

How Do I Stay Informed?

Come to class!

Join Piazza and check often.

Check the calendar for due dates of term work.

Check your utoronto email – this is where I will send out emails to the class.

Today

Databases:

- o What?
- o Where?
- o Why?
- o When?
- How?

Terminology

What...

Is a Database?

- A collection of interrelated data.
- The data is relevant to an enterprise.

Is a Database Management System (DBMS)?

- A database and
- o A set of programs to access the database
- Provides a way to store and retrieve database information.
- Must be convenient and efficient.

Where?

Enterprise Information:

- \circ Sales
- o Accounting
- Human Resources
- o Manufacturing
- o Online Retailers

Banking and Finance:

- o Banking
- Credit Card Transactions
- o Finance

Other Applications?

- o Universities
- o Airlines
- Telecommunications

o ...

When?

In the 1960s data storage changed from tape to direct access.

This allowed shared interactive data use.

Early databases were *navigational* which was very inefficient for searching.

Edgar Codd created a new system in the 1970s based on the relational model.

Late 1970s and early 1980s SQL was developed based on the *relational model* which is the foundation of *current databases* and what we will study.

In the 2000s, with increasingly large datasets, new XML databases and NoSQL databases are becoming more prevalent.

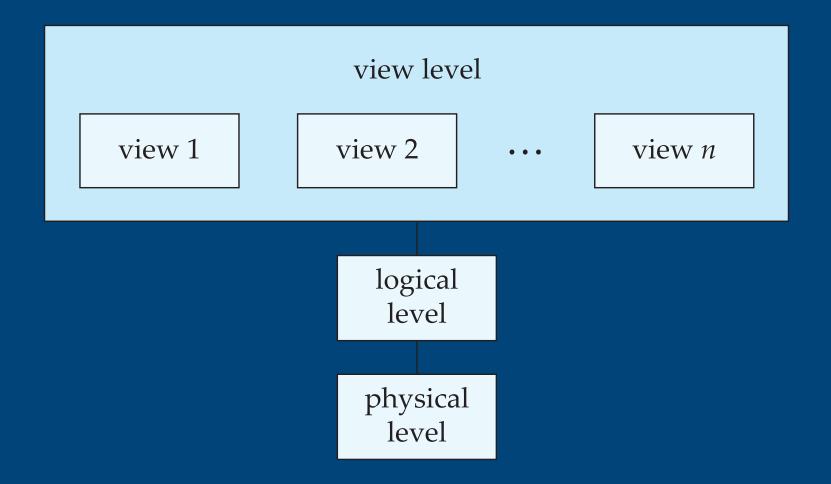
Why use databases?

- Commercialized management of large amounts of data
- Ability to update and maintain data
- Keep track of relationships between subsets of the data
- Efficient access and searching capabilities
- Multiple users can access and share data
- Ability to limit access to a portion of the data according to user type and enables security of data
- Minimizes redundancy of multiple data sets
- Enables consistency constraints
- Allows users an abstract view of the data which hides the details of how the data are stored and maintained.

Data Abstraction - How?

Physical Level

- Lowest level, how the data are actually stored.
- Usually in complex low-level data structures.


Logical Level

- What data are stored in the database and what relationships exist between the data.
- Implementing the simple structure of the logical level may require complex physical low level structures.
- Users of the logical level don't need to know about this.
- We refer to this as the physical data independence.

View Level:

- Highest level of abstraction describes only a small portion of the database
- Allows user to simplify their interaction with the database system.
- Can have many views. WHY is this good?

Data Abstraction

• *taken from: Database System Concepts 6th Ed.,Korth,Silberschatz, Sudharshan

Relational Model

Database is a collection of *tables* each having a unique name.

Each table also known as a relation.

Rows are referred to as tuples.

Columns are referred to as attributes.

An *instance* of a database is the information stored at a particular moment in time.

A database schema is the overall design of the database.

Which changes frequently? The *instance* or *schema* of a database?

*taken from: Database System Concepts 6th Ed.,Korth,Silberschatz, Sudharshan

University Example*

Instructor Relation

Course Relation

ID	name	dept_name	salary	course_id	title	dept_name	credits
10101 12121 15151 22222 32343 33456 45565 58583 76543 76543 76766 83821 98345	Srinivasan Wu Mozart Einstein El Said Gold Katz Califieri Singh Crick Brandt Kim	Comp. Sci. Finance Music Physics History Physics Comp. Sci. History Finance Biology Comp. Sci. Elec. Eng.	65000 90000 40000 95000 60000 87000 75000 62000 80000 72000 92000 80000	BIO-101 BIO-301 BIO-399 CS-101 CS-190 CS-315 CS-319 CS-347 EE-181 FIN-201 HIS-351 MU-199 PHY-101	Intro. to Biology Genetics Computational Biology Intro. to Computer Science Game Design Robotics Image Processing Database System Concepts Intro. to Digital Systems Investment Banking World History Music Video Production Physical Principles	Biology Biology Biology Comp. Sci. Comp. Sci. Comp. Sci. Comp. Sci. Elec. Eng. Finance History Music Physics	$ \begin{array}{c} 4 \\ 4 \\ 3 \\ 4 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 4 \end{array} $

Give an example of an attribute, tuple.

What is the domain of the column salary?

*taken from: Database System Concepts 6th Ed.,Korth,Silberschatz, Sudharshan

Terminology

Database Schema: The logical design of the database.

Database Instance: A snapshot of the data in the database.

Relation Schema: A list of attributes and their corresponding domains.

The department relation has the schema:

department(dept_name, building, budget)

The instructor relation has the schema:

instructor(ID, name, dept_name, salary)

dept_name	building	budget
Biology	Watson	90000
Comp. Sci.	Taylor	100000
Elec. Eng.	Taylor	85000
Finance	Painter	120000
History	Painter	50000
Music	Packard	80000
Physics	Watson	70000

Why is it useful to have *dept_name* in both schemas?

University Example: Relations

So far we have the following schemas: department(dept_name, building, budget) instructor(ID, name, dept_name, salary) course(course_id, title, dept_name, credits)

What other schemas might we want?
 teaches(ID, course_id, sec_id, semester, year)
 section(course_id, sec_id, semester, year, , building, room_number,
 time_slot_id)
 student(ID, name, dept_name, tot_cred)
 takes(ID, course_id, sec_id, semester, year, grade)
 time_slot(time_slot_id, day, start_time, end_time)

How do we uniquely refer to a tuple or row in a schema?

Superkey: a set of one or more attributes that taken together uniquely identify a tuple in the relation.

What are possible superkeys for the instructor relation?

instructor(ID, name, dept_name, salary)

Superkey: a set of one or more attributes that taken together uniquely identify a tuple in the relation.

What about the teaches relation?

ID	course_id	sec_id	semester	year
10101	CS-101	1	Fall	2009
10101	CS-315	1	Spring	2010
10101	CS-347	1	Fall	2009
12121	FIN-201	1	Spring	2010
15151	MU-199	1	Spring	2010
22222	PHY-101	1	Fall	2009
32343	HIS-351	1	Spring	2010
45565	CS-101	1	Spring	2010
45565	CS-319	1	Spring	2010
76766	BIO-101	1	Summer	2009
76766	BIO-301	1	Summer	2010
83821	CS-190	1	Spring	2009
83821	CS-190	2	Spring	2009
83821	CS-319	2	Spring	2010
98345	EE-181	1	Spring	2009

We are interested in superkey sets that are *minimal*.

Candidate Key

instructor(ID, name, dept_name, salary)

Superkeys for relation instructor:
 {ID}, {name, dept_name}, {ID, name}

Candidate Key: A minimal superkey.

Q. Which of the above superkeys are candidate keys?

A. {ID}, {name, dept_name}

Primary Key: A candidate key chosen by the database designer to distinguish between tuples.

Next Week

Tutorials begin

Relational Model Continued Relational diagrams Relational operations Relational algebra

Intro to SQL and MySQL (tentative)