Contents lists available at ScienceDirect





## Environment International

journal homepage: www.elsevier.com/locate/envint

# Is it appropriate to composite fish samples for mercury trend monitoring and consumption advisories?



Nilima Gandhi <sup>a</sup>, Satyendra P. Bhavsar <sup>a,b,c,\*</sup>, Sarah B. Gewurtz <sup>c</sup>, Ken G. Drouillard <sup>c</sup>, George B. Arhonditsis <sup>a</sup>, Steve Petro <sup>b</sup>

<sup>a</sup> University of Toronto, Toronto, ON M1C 1A4, Canada

<sup>b</sup> Ontario Ministry of the Environment and Climate Change, Toronto, ON M9P 3V6, Canada

<sup>c</sup> University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada

#### ARTICLE INFO

Article history: Received 20 September 2015 Received in revised form 12 November 2015 Accepted 13 November 2015 Available online xxxx

Keywords: Mercury Hg Compositing/pooling Fish Monitoring Advisories Sensitive population

#### ABSTRACT

Monitoring mercury levels in fish can be costly because variation by space, time, and fish type/size needs to be captured. Here, we explored if compositing fish samples to decrease analytical costs would reduce the effectiveness of the monitoring objectives. Six compositing methods were evaluated by applying them to an existing extensive dataset, and examining their performance in reproducing the fish consumption advisories and temporal trends. The methods resulted in varying amount (average 34–72%) of reductions in samples, but all (except one) reproduced advisories very well (96–97% of the advisories did not change or were one category more restrictive compared to analysis of individual samples). Similarly, the methods performed reasonably well in recreating temporal trends, especially when longer-term and frequent measurements were considered. The results indicate that compositing samples within 5 cm fish size bins or retaining the largest/smallest individuals and compositing in-between samples in batches of 5 with decreasing fish size would be the best approaches. Based on the literature, the findings from this study are applicable to fillet, muscle plug and whole fish mercury monitoring studies. The compositing methods may also be suitable for monitoring Persistent Organic Pollutants (POPs) in fish. Overall, compositing fish samples for mercury monitoring could result in a substantial savings (approximately 60% of the analytical cost) and should be considered in fish mercury monitoring, especially in long-term programs or when study cost is a concern.

Crown Copyright © 2015 Published by Elsevier Ltd. All rights reserved.

#### 1. Introduction

Mercury is a contaminant of global concern (UNEP, 2013a). Virtually every fish in North America, and possibly worldwide, contains mercury (Stahl et al., 2009; Depew et al., 2013; Evers et al., 2013). Consumption of fish is generally a dominant route of human exposure to mercury (UNEP/WHO, 2008). Mercury is responsible for the most number of restrictive fish consumption advisories, at least in North America (e.g., USEPA, 2013a,b; OMOECC, 2015). Due to spatial variation in fish mercury levels, location-specific advisories are typically provided (e.g., USEPA, 2013a; OMOECC, 2015). Since mercury levels vary by fish species and size (Gewurtz et al., 2011b), monitoring efforts to issue fish consumption advisories and track long-term changes require collection and analysis of a variety of fish spanning their natural size range (USEPA, 2013b). As a result, the total number of annual samples required to adequately monitor fish mercury levels for numerous locations can range from hundreds to tens of thousands. Due to analytical costs, most contaminant studies limit sample size by reducing the fish species monitored, replication of samples, sampling frequency and/or study period; however, these options are generally not suitable for agencies that rely on the data for long-term trend monitoring and issuing of fish consumption advisories aimed at protecting human health (Gewurtz et al., 2011a). Further, Article 19 of the recently formulated Minamata Convention on Mercury requires parties to develop and improve geographically representative mercury monitoring in environmental media, including fish (UNEP, 2013b). In less than a decade, monitoring data will be called upon to assist in the implementation and evaluation of the convention, which emphasizes the importance of improving monitoring efforts to optimize both the quality of the programs as well as costs.

To decrease program costs, combining multiple temporally or spatially discrete samples, widely known as composites, has been suggested as an effective alternative to chemical analysis on individual samples (USEPA, 2002; Gewurtz et al., 2011a). In addition to substantially reducing analytical cost, the data collected through compositing samples can provide wider temporal and spatial coverage without increasing the sample count. The analysis of data may give more representative estimates of mean concentrations than can the same number of

<sup>\*</sup> Corresponding author at: University of Toronto, Toronto, ON M1C 1A4, Canada. *E-mail addresses*: s.bhavsar@utoronto.ca, satyendra.bhavsar@ontario.ca (S.P. Bhavsar).

discrete samples, albeit at the cost of variability in the observations (USEPA, 2002).

There are several potential approaches to compositing fish contaminant monitoring samples that incorporate different dimensions of the study, such as time (within/across years), location, fish species, and fish size. The optimal compositing approach would be one that reduces the total number of samples for analysis without compromising the objectives of the monitoring program. In addition, the composite method chosen should follow assumptions that correspond to the statistical analysis that is ultimately applied to the data. Several studies have used compositing as a part of their designs for both organic and inorganic contaminants in all media including biota (Rajagopal and Williams, 1989; Turle and Collins, 1992; Blomqvist, 2001; Braune and Noble, 2009; Gewurtz et al., 2011a). However, to our knowledge, a comprehensive study investigating the effectiveness of various compositing approaches for monitoring mercury in fish is lacking in the literature, especially for programs designed to generate fish consumption advice, where variability and the presence of outliers can affect overall risk (Gewurtz et al., 2011a).

In this study, we evaluate six methods of compositing fish samples by examining their performance if they would have been utilized instead of collecting >220,000 individual mercury measurements for >3000 locations by the Province of Ontario, Canada over nearly 50 years. The effectiveness of the composite methods was evaluated by comparing the fish consumption advisories and temporal trends from individual measurements (current sampling design) with those from estimated composite values, calculated by averaging the individual measurements included in each composite. The findings of the study determine whether a compositing method can effectively minimize costs for regular, long term, large scale monitoring programs and set advisories for fish consumption.

#### 2. Methods

#### 2.1. Compositing methods

Fish mercury levels vary by species and size, and can change seasonally as well as over time under the influence of a variety of internal and external factors, such as bioenergetics and ambient water chemistry (Bhavsar et al., 2010; Azim et al., 2011; Gewurtz et al., 2011a; Stern et al., 2012; Greenfield et al., 2013). As such, we opted to group species-specific samples collected during the same sampling event within the composites.

There is a well-known relationship between mercury concentrations and fish size that is typically described by the power-series regression (Gewurtz et al., 2011b). As such, similar sized samples could be considered for creating a composite sample. However, the resultant fish size range (i.e., maximum-minimum fish lengths) would likely be less than the regular, individual measurements. This could result in trimming of a regression at the extreme ends, and thereby loss of advisories for certain fish sizes. Alternatively, if one or two of the largest and/or smallest individuals are retained with all other samples being composited, then the fish size range could be captured, and a power series regression between fish length and composited mercury concentrations might be improved.

Compositing of 3, 5, 7, 10 or more samples have been used in many studies (Hites et al., 2004; Carlson and Swackhamer, 2006; French et al., 2011; Pantazopoulos et al., 2013). Since a collection of about 20 fish samples per species and sampling event over a possible maximum size range is generally considered a preferred method for mercury monitoring (e.g., Gewurtz et al., 2011a), compositing more than 5 samples (i.e., having less than four composites), may not be sufficient for characterizing the fish size/mercury relationships. Alternatively, compositing samples within a narrow size range (e.g., 35–40 cm, 40–45 cm and so on) regardless of the number of samples within that size range may be appropriate as the impact on the fish size/mercury relationship would likely be minimal.

Based on the above notes, we considered six compositing methods: (1) composite samples in batches of five in the order of decreasing fish size (Fig. 1a, b), (2) retain individual samples for the largest and smallest fish and composite samples in between in batches of five in order of decreasing fish size (Fig. 1a, c), (3) retain the two largest and smallest individual samples and composite the samples in between in batches of five in order of decreasing fish size (Fig. 1a, d), (4) retain the largest and smallest individual samples and composite the samples in between in batches of three in order of decreasing fish size (Fig. 1a, e), (5) retain the two largest and smallest individual samples and composite the samples in between in batches of three in order of decreasing fish size (Fig. 1a, e), (5) retain the two largest and smallest individual samples and composite the samples in between in batches of three in the order of decreasing fish size (Fig. 1a, f), and (6) composite samples within a 5 cm size range (Fig. 1a, g).

#### 2.2. Data source

The above described compositing methods were evaluated by simulating composite data from the individual fish measurements, assuming that the same mass of each fish is added to the composite. For this purpose, we used an extensive and consistent fish mercury dataset comprising 223,318 individual, widely varying measurements for skinless, boneless dorsal fillets of >10 cm fish of 66 fish species (Table S1) collected by the Ontario Ministry of the Environment and Climate Change (OMOECC), Canada in partnership with the Ontario Ministry of Natural Resources and Forestry and other agencies over nearly 50 years (1967-2014) from > 3000 locations in the Province of Ontario, Canada, that spans 41° to 56° N and 74° to 95° W (Fig. S1). The samples were analyzed for total mercury using acid digestion and cold vapor flameless atomic absorption spectroscopy as described in detail by Bhavsar et al. (2010). The dataset contained 16,900 species/location/year combinations for 6440 sampling events (location/year) and varied widely (1 to 274) in the number of individual samples for a species in a sampling event (species/location/year) (Fig. S2).

#### 2.3. Statistical analysis

The performance of each composite method in comparison to the regular, individual measurements was evaluated based on its accuracy in reproducing the fish consumption advisories as well as the direction and magnitude of the long-term temporal trends. As illustrated in Fig. S3, a power series regression was conducted for each of 16,900 species/location/year-specific sampling events using the regular, individual measurements as well as the composite values calculated using the six methods considered in this study. Using these total 118,300 power series regressions (i.e.,  $16,900 \times 7$ ), fish mercury levels were calculated at 5 cm intervals for the available size range in each species-specific sampling event (Fig. S3). These mercury concentrations were used in calculating fish consumption advisories using the benchmarks for the general population and sensitive population (children and women of child-bearing age), which is the standard method used by the Province of Ontario, Canada (Table S2, Fig. S3). Advisories for each 5 cm interval calculated using the six composite methods were compared with those from the regular, individual measurements (Table S4), and classified into three categories: 1) same, 2) more restrictive, and 3) less restrictive..

For a comparison of temporal trend analyses from the regular and composite methods, rates of changes in fish mercury levels ( $\mu$ g/g decade) were calculated using the slope of the linear relationship between year and mercury concentration standardized to a fish length. Since the purpose is to compare rates from the regular and composite methods, appropriateness of a linear regression is essentially a moot point (Azim et al., 2011). Since a temporal trend analysis is typically conducted on a suitable indicator species with good monitoring data, four species, namely Lake Trout (*Salvelinus namaycush*), Walleye (*Sander*)

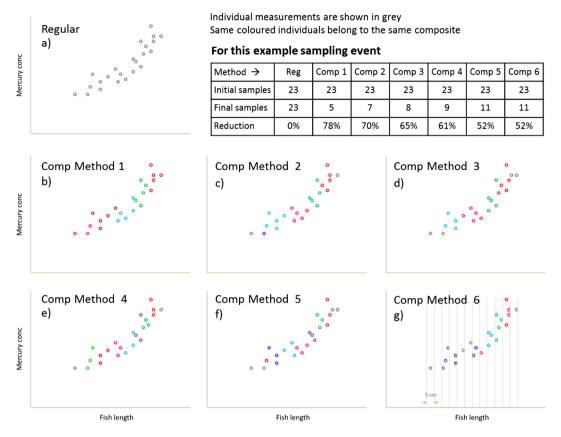
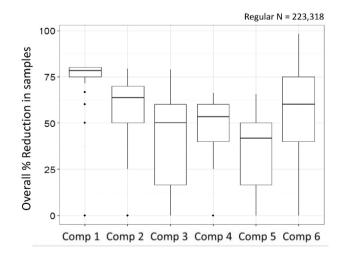



Fig. 1. Illustration of six compositing methods considered in the study.

*vitreus*), Northern Pike (*Esox lucius*) and Smallmouth Bass (*Micropterus dolomieu*), were considered. Mercury concentrations standardized to 50 cm fish size were used. The standardization was conducted using a power series regression  $y = a x^b$ , where y is concentration in µg/g, x is fish length in cm, and a and b are regression coefficients. The number of temporal trend rate estimates was maximized by considering every combination of the start and end years as illustrated in Fig. S4. In total, 83,664 rates of fish mercury changes were calculated. All statistical analyses were conducted in either Excel 2010 or R-3.2.0 for Windows<sup>TM</sup> (R Core Development Team, 2015).

#### 3. Results


#### 3.1. Reductions in samples

The composite method 1 resulted in the highest (average/median 72/78%) reduction in number of samples to be analyzed for mercury (Fig. 2). The composite methods 2 and 3 required retention of one and two extreme sized individual samples, respectively. As such, the reductions in number of samples were less (method 2: 54/64%; method 3: 40/50%; Fig. 2). The methods 4 and 5 required compositing samples in the batches of 3, compared to 5 for the methods 2 and 3. As a result, reductions in the number of samples by implementing the methods 4 and 5 were less (method 4: 45/53%; method 5: 34/42%; Fig. 2). Although the composite method 6 resulted in more variable (0–98%) reductions in the samples because of its dependence on number of samples in 5 cm fish size bins, overall reductions were similar to the method 2 (55/60%; Figs. 2, S5).

#### 3.2. Performance in reproducing advisories

Seven sets of fish consumption advisories (regular plus six composite methods) were calculated for each sampling event (species/location/ year) as illustrated in Fig. S3, and compared as shown in Table S3. The resultant fish size ranges (minimum to maximum length) for the composite method 1 were lower than from the regular, individual measurements for many sampling events. In addition, method 1 produced one composite for each of 3681 sampling events with  $\leq$ 5 samples (Fig. S2), resulting in no power series regression for an advisory calculation. Therefore, about 35% of the advisories from method 1 were missing (Fig. 3, Table S3).

The advisories were calculated using power series regressions on fish size vs mercury concentrations for each sampling event (location/



**Fig. 2.** Overall reduction (%) in number of samples per sampling event (location/year/ species) analyzed in each of the six composite methods compared to the regular method of analyzing all individual fish samples for mercury.

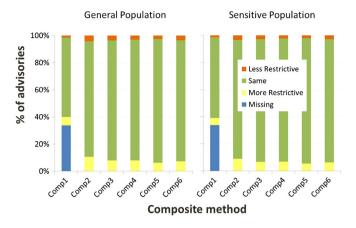



Fig. 3. Comparison on fish consumption advisories for mercury for the general and sensitive populations using composite methods compared to the current OMOECC method of analyzing individual fish samples.

year/species). The statistical significance of the regressions was evaluated on the basis of their p-values. Since the composites were aimed at reducing the sample size, which is generally positively related to a p-value of a regression, it was not surprising to observe lower statistical significance for regressions from a composite method that produced a greater reduction in sample sizes (Figs. 2, S6).

Overall, advisories for the general population from the methods 2 to 6 were largely (85–91%) similar to those from the regular, individual measurements (Fig. 3, Table S4a). About 6–11% of the advisories were more restrictive, mostly by only one advisory category (Fig. 3, Table S4a). Only 3–4% of the advisories were less restrictive, again mostly by only one advisory category (Fig. 3, Table S4a). The results for the sensitive population advisories were even better (similar: 88-93%; more restrictive: 5-9%; less restrictive: 2-3%; Fig. 3, Table S4b).

The increasingly fewer reductions in the number of samples from the composite methods 2 to 5 only marginally improved reproduction of the advisories (Fig. 3). The performance of the method 6 was similar to the method 4 and overall second best among the methods (Fig. 3, Table S4). Based on the reductions in the number of samples and performances in reproducing the advisories, we focus further analysis and the following discussions on results for the general population using the methods 2 and 6.

Next we examined if there was a pattern in the underestimation of mercury concentrations and thereby less restrictive advisories from the composite methods that could be linked to sample size, species, fish size class, and/or level of mercury. As shown in Tables S5-S8, individually these four factors had minimal impact on the performance of the composite methods 2 and 6. The only exception was that increasing fish size worsened the performance of method 2, with relatively more cases of less restrictive advisories for large size categories within individual species (Table S9). Nevertheless, there were only 3–4 combinations of species/size for which the total number of advisories were >100 and >10% of the advisories were less restrictive (Table S9). Similarly, there was no fish species-specific mercury concentration that substantially affected the performance of the composite methods 2 and 6 (Table S10).

#### 3.3. Performance in reproducing temporal trends

In this assessment, we examined if the nature of the mercury versus time slopes from the composite methods corresponded with the regular method. The composite methods resulted in the same temporal trends as observed for the individual samples in most (90–94%) cases (Fig. S7). The performances of the composite methods improved from

90–94% to 94–96% when cases with a minimum time span of 15 years and 5 sampling years were considered, and to 95–97% when cases with a minimum time span of 15 years and 10 sampling years were considered (Fig. S7).

For a majority (72–82%) of the cases, the rates of changes in fish mercury levels from the composite methods were within a factor of two of the corresponding rates from the regular method (Fig. S8). Approximately 81–88% of the rates were within a factor of three (Fig. S8). When cases with a minimum time span of 15 years and 5 sampling years were considered, the percentages of cases improved to 81–88% for within a factor of two and 88–92% for within a factor of three (Fig. S8). The corresponding results for cases with a minimum time span of 15 years and 10 sampling years were better at 83–90% and 89–93%, respectively (Fig. S8).

The performance of the composite methods in reproducing the rates of changes was also evaluated for each of the four selected fish species. All composite methods provided the same temporal trends for a majority (83–95%) of the cases for all species (Fig. S9). When cases with a minimum time span of 15 years and 10 sampling years were considered, the percentages of cases improved to 97-100% for Lake Trout, Northern Pike and Walleye, and 86–90% for Smallmouth Bass (Fig. S9). Likewise, performances of all methods in reproducing the rates within a factor of two were comparatively similar for all species (Fig. 4). When a more robust dataset (cases with a minimum time span of 15 years and 10 sampling years) was considered, all methods resulted in rates that were within a factor of three in 97-100% of the cases for Lake Trout, Northern Pike and Walleye (Fig. 4). The performance of the composite samples in reproducing the rates of change for Smallmouth Bass was less (86-90%) compared to the other three species (Fig. 4), indicating that Smallmouth Bass is the least preferred species for trend monitoring when a composite method is utilized.

As expected, the composite methods that resulted in fewer reductions in the number of fish mercury measurements provided better estimates of the rates of changes in the fish mercury levels (Figs. 2 and 4). Although reductions (55/60%) in number of measurements from method 6 were comparable to method 2 (54/64%), method 6 provided better estimates of the rates of change (Figs. 2 and 4). Furthermore, the performance of method 6 was comparable to the method 3, which consisted of relatively more mercury measurements (Figs. 2 and 4). The differences in the performance of the methods in reproducing the rates were minimal when cases with a minimum time span of 15 years and 10 sampling years were considered (Fig. 4).

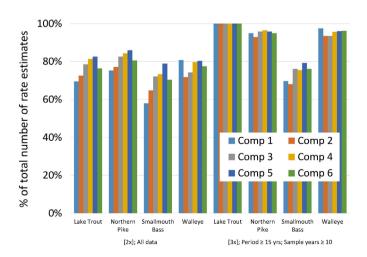



Fig. 4. Comparison of rates of change in fish mercury levels of the six composite methods with those from the current OMOECC method of analyzing individual fish samples for mercury. The results have been presented as percentage of the total number of rate estimates within 2 and 3 times the corresponding rates from the current OMOECC method.

#### 4. Discussion

Composite sampling combines environmental samples or subsamples to form a new sample on which chemical or biological analyses are performed. Compared to evaluating individuals, composite sampling is beneficial as it decreases analytical cost by analyzing fewer samples and reduces/simplifies the sample handling process (USEPA, 2002). Composite sampling is recommended when laboratory costs are substantially greater than field sampling costs (USEPA, 2002). The collection of a few more fish samples at a particular location may not substantially increase the field cost. However, the analytical savings associated with composite sampling in long-term fish mercury monitoring and for issuance of fish consumption advisories can be substantial, especially over time. For example, the approximately 60% reductions in sample analyses in the OMOECC dataset used in this study would have resulted in approximately 134,000 fewer fish mercury analyses over the 47 year period, which sums to about \$5,400,000 (or \$114,000 per year) at an average rate of \$40 per sample. Similarly, about \$1,000,000 could be saved for the dataset compiled by USGS from data collected by US states (Hearn et al., 2006). Further, the composite sampling would have resulted in substantial saving in other operational costs due to reduced number of samples to handle. Although the extent of cost saving would depend on nature of the program (e.g., how many individual samples of which fish species and sizes are presently analyzed for mercury) and analytical cost, which has been declining with advances in the analytical technology, the results presented in this study show that savings can be achieved without any major impact on the quality of the advisories or temporal trend assessments.

There are, however, some potential disadvantages of the composite sampling approach. For example, composite sampling can result in a loss of information on extreme contamination levels and variability. Although this is true in many cases, a composite method retaining one or two largest and smallest individual samples as suggested in this study can potentially capture extreme fish mercury levels due to the strong relationship of fish size and mercury concentration. Although method 6 considered in this study may not preserve individual samples, a power series relationship between fish length and mercury indicates that compositing within a 5 cm fish size bin would likely be able to provide values closer to the extreme levels. This could be a result of the pattern in fish mercury levels, where even though there is a strong relationship between fish length and mercury levels, it is not necessary that the biggest fish has the highest concentration and the smallest fish has the lowest concentration likely due to differences in mercury levels in spatially integrated fish samples. Compositing reduces sample size, and as such decreases statistical power; however, statistical formulas can be used to derive composite size that results in a sufficient power (Rohlf et al., 1996). The composite methods examined in this study also resulted in some loss of statistical significance (Fig. S6). Nevertheless, the methods performed reasonably well in reproducing the advisories and temporal trends (Figs. 3, 4, S7).

If contaminants other than mercury are also of interest, further evaluation of the compositing methods may be necessary. For North America, other major contaminants of concerns include persistent organic pollutants (POPs) for which compositing is often performed (Hites et al., 2004; Gewurtz et al., 2011a) for studies focused on the health of fish themselves and not on the generation of fish consumption advice. Gewurtz et al. (2011a) found compositing fish samples appropriate for temporal trend monitoring of polychlorinated biphenyls (PCBs) based on a limited evaluation of Lake Ontario Lake Trout measurements from different Canadian and U.S. monitoring programs. However, their evaluation did not consider the impact of compositing on the ability to detect outliers. It should be noted that the relationship between fish length and POPs, such as PCBs, is much weaker than is typically observed for mercury (e.g., Gewurtz et al., 2011b). As such, compositing fish samples based on size categories (e.g., method 6 in this study) may be less effective in capturing outliers for POPs. However, many agencies use the "75% rule" (i.e., the length of the smallest fish in a composite should be at least 75% of the length of the largest fish) for compositing fish samples for POP monitoring (e.g., Stahl et al., 2009). The method 6 considered in this study will composite samples within a 5 cm size range (Fig. 1a, g) and follow the 75% rule (except for fish smaller than 15 cm, which are generally not consumed anyway). Similarly, the method 2 (and probably the other methods considered) will also create composites (Fig. 1a, c) that have a high potential to follow the 75% rule (Tables S11–S12), depending on the extent of sample collection by a program. As such, the compositing methods and findings of this study may also be suitable for monitoring POPs in fish.

A reliable temporal trend analysis depends on within-year samples and duration of monitoring (Sokal and Rohlf, 1995). Based on an exploratory analysis performed on data collected by some Great Lakes biomonitoring programs and a comparison with the literature, it was concluded that >10 years of monitoring with 10–15 samples per year is optimal to achieve 80% statistical power, which is typically considered adequate (Gewurtz et al., 2011a). This is largely due to diminished sensitivity of a temporal trend analysis to start and end points when a reasonable length of monitoring data is available (Gewurtz et al., 2011a). In this study, the correspondence between the results from the regular and composite methods improved when a longer time span and increased number of sampling years were considered (Figs. 4, S7–S9). As such, compositing samples may not be advisable for a short term assessment; however, the accuracy of the regular method based on individual samples may also be poor.

In this study, we utilized skinless, boneless fillet mercury measurements to evaluate the compositing methods. However, some monitoring programs use muscle plug or whole fish measurements to track environmental conditions. Since fish fillet, muscle plug and whole fish mercury measurements can be linked to one another (Baker et al., 2004; Peterson et al., 2005), findings from this study should be applicable to muscle plug and whole fish mercury monitoring studies as well. Ontario's fish contaminant monitoring is conducted exclusively in temperate environments and thus the results from this study have broad applicability to other monitoring programs in temperate latitudes. Although the in-depth analyses conducted on an extensive dataset indicate that the findings should be applicable to tropical environment as well, further work to verify these results in tropical environment may be warranted.

In summary, we explored the suitability of six composite methods for fish mercury monitoring using an extensive dataset. The methods resulted in varying amount of reductions in number of samples to be analyzed. In general, all compositing methods performed well for both advisories on consumption of fish and temporal trend monitoring. The methods resulting in lower reductions in sample count performed marginally better. Overall, compositing samples would have resulted in a substantial cost savings for OMOECC (approximately \$5.4 M over 47 years assuming 60% sample reduction), and should be considered in fish mercury monitoring especially in long-term extensive monitoring programs or when study cost is a concern.

#### **Conflict of interest**

The authors declare no competing financial interest.

#### Acknowledgments

We thank the Ontario Ministry of the Environment and Climate Change, Canada, for the long-term fish mercury dataset.

#### Appendix A. Supplementary data

Additional 12 tables and 9 figures. This material is available free of charge via the Internet at http://dx.doi.org/10.1016/j.envint.2015.11. 013.

#### References

- Azim, M., Kumarappah, A., Bhavsar, S., Backus, S., Arhonditsis, G., 2011. Detection of the spatiotemporal trends of mercury in Lake Erie fish communities: a Bayesian approach. Environ. Sci. Technol. 45, 2217–2226.
- Baker, R.F., Blanchfield, P.J., Paterson, M.J., Flett, R.J., Wesson, L., 2004. Evaluation of nonlethal methods for the analysis of mercury in fish tissue. Trans. Am. Fish. Soc. 133, 568–576.
- Bhavsar, S.P., Gewurtz, S.B., McGoldrick, D.J., Keir, M.J., Backus, S.M., 2010. Changes in mercury levels in Great Lakes fish between 1970s and 2007. Environ. Sci. Technol. 44, 3273–3279.
- Blomqvist, P., 2001. A proposed standard method for composite sampling of water chemistry and plankton in small lakes. Environ. Ecol. Stat. 8, 121–134.
- Braune, B.M., Noble, D.G., 2009. Environmental contaminants in Canadian shorebirds. Environ. Monit. Assess. 148, 185–204.
- Carlson, D.L., Swackhamer, D.L., 2006. Results from the US Great Lakes fish monitoring program and effects of lake processes on bioaccumulative contaminant concentrations. J. Great Lakes Res. 32, 370–385.
- Depew, D.C., Burgess, N.M., Anderson, M.R., Baker, R., Bhavsar, S.P., Bodaly, R.A., Eckley, C.S., Evans, M.S., Gantner, N., Graydon, J.A., Jacobs, K., LeBlanc, J.E., St Louis, V.L., Campbell, L.M., 2013. An overview of mercury concentrations in freshwater fish species: a national fish mercury dataset for Canada. Can. J. Fish. Aquat. Sci. 70, 436–451.
- Evers, D.C., DiGangi, J., Petrlík, J., Buck, D.G., Šamánek, J., Beeler, B., Turnquist, M.A., Hatch, S.K., Regan, K., 2013. Global Mercury Hotspots: New Evidence Reveals Mercury Contamination Regularly Exceeds Health Advisory Levels in Humans and Fish Worldwide. Biodiversity Research Institute, Gorham, Maine; IPEN, Göteborg, Sweden, p. 20.
- French, T.D., Petro, S., Reiner, E.J., Bhavsar, S.P., Jackson, D.A., 2011. Thirty-year time series of PCB concentrations in a small invertivorous fish (*Notropis hudsonius*): an examination of post-1990 trajectory shifts in the lower Great Lakes. Ecosystems 14, 415–429.
- Gewurtz, S.B., Backus, S.M., Bhavsar, S.P., McGoldrick, D.J., de Solla, S.R., Murphy, E.W., 2011a. Contaminant biomonitoring programs in the Great Lakes region: review of approaches and critical factors. Environ. Rev. 19, 162–184.
- Gewurtz, S.B., Bhavsar, S.P., Fletcher, R., 2011b. Influence of fish size and sex on mercury/ PCB concentration: importance for fish consumption advisories. Environ. Int. 32, 425–434.
- Greenfield, B.K., Melwani, A.R., Allen, R.M., Slotton, D.G., Ayers, S.M., Harrold, K.H., Ridolfi, K., Jahn, A., Grenier, J.L., Sandheinrich, M.B., 2013. Seasonal and annual trends in forage fish mercury concentrations, San Francisco Bay. Sci. Total Environ. 444, 591–601.
- Hearn, P.P., Wente, S.P., Donato, D.I., Aguinaldo, J.J., 2006. EMMMA: a web-based system for environmental mercury mapping, modeling, and analysis. U.S. Geological Survey Open File Report 2006–1086 (13 pp.).

- Hites, R.A., Foran, J.A., Carpenter, D.O., Hamilton, M.C., Knuth, B.A., Schwager, S.J., 2004. Global assessment of organic contaminants in farmed salmon. Science 303, 226–229.
- OMOECC, 2015. 2015–2016 Guide to Eating Ontario Fish. Ontario Ministry of the Environment and Climate Change, Toronto, Ontario, Canada.Pantazopoulos, P., Sawyer, J.M., Turyk, M.E., Diamond, M., Bhavsar, S.P., Mergler, D.,
- Pantazopoulos, F., Sawyer, J.M., Huryk, M.E., Diamond, M., Bhavsar, S.P., Mergler, D., Schantz, S., Ratnayake, N., Carpenter, D.O., 2013. Fatty acids in Great Lakes lake trout and whitefish. J. Great Lakes Res. 39, 120–127.
- Peterson, S.A., Van Sickle, J., Hughes, R.M., Schacher, J.A., Echols, S.F., 2005. A biopsy procedure for determining filet and predicting whole-fish mercury concentration. Arch. Environ. Contam. Toxicol. 48, 99–107.
- R Core Development Team, 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
- Rajagopal, R., Williams, L.R., 1989. Economics of sample compositing as a screening tool in ground-water quality monitoring. Ground Water Monit. Rem. 9, 186–192.
- Rohlf, F.J., Akcakaya, H.R., Ferraro, S.P., 1996. Optimizing composite sampling protocols. Environ. Sci. Technol. 30, 2899–2905.
- Sokal, R.R., Rohlf, F.J., 1995. Biometry: The Principles and Practice of Statistics in Biological Research. 3rd Ed. W. H. Freeman and Co., New York, NY, USA.
- Stahl, L., Snyder, B., Olsen, A., Pitt, J., 2009. Contaminants in fish tissue from US lakes and reservoirs: a national probabilistic study. Environ. Monit. Assess. 150, 3–19.
- Stern, G.A., Macdonald, R.W., Outridge, P.M., Wilson, S., Chetelat, J., Cole, A., Hintelmann, H., Loseto, L.L., Steffen, A., Wang, F., Zdanowicz, C., 2012. How does climate change influence Arctic mercury? Sci. Total Environ. 414, 22–42.
- Turle, R., Collins, B., 1992. Validation of the use of pooled samples for monitoring of contaminants in wildlife. Chemosphere 25, 463–469.
- UNEP, 2013a. Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport. UNEP Chemical Branch, UNEP Chemical Branch, Geneva, Switzerland.
- UNEP, 2013b. Minamata convention on mercury. http://www.mercuryconvention.org. UNEP/WHO, 2008. Guidance for Identifying Populations at Risk from Mercury Exposure.
- Geneva, Switzerland, p. 176.
- USEPA, 2002. Guidance on Choosing a Sampling Design for Environmental Data Collection. US EPA, Washington, DC, p. 166.
- USEPA, 2013a. Fish Consumption Advisories. USEPA (http://www2.epa.gov/fish-tech).
- USEPA, 2013b. Guidance for Assessing Chemical Contaminant Data for Use In Fish Advisories. USEPA (EPA 823-B-00-007. http://water.epa.gov/scitech/swguidance/ fishshellfish/techguidance).

# **Supplementary Material**

# Is it appropriate to composite fish samples for mercury trend monitoring and consumption advisories?

Nilima Gandhi<sup>a</sup>, Satyendra P. Bhavsar<sup>a,b,c,\*</sup>, Sarah B. Gewurtz<sup>c</sup>, Ken G. Drouillard<sup>c</sup>, George B. Arhonditsis<sup>a</sup>, Steve Petro<sup>b</sup>

<sup>a</sup> University of Toronto, Toronto, Ontario, Canada M1C 1A4

<sup>b</sup> Ontario Ministry of the Environment and Climate Change, 125 Resources Road, Toronto, ON, Canada, M9P 3V6

<sup>c</sup> University of Windsor, 401 Sunset Avenue, Windsor, ON, Canada, N9B 3P4

\* Corresponding author Tel: 1-416-327-5863; fax: 1-416-327-6519. *E-mail addresses:* s.bhavsar@utoronto.ca <u>or</u> satyendra.bhavsar@ontario.ca (S.P. Bhavsar). **Table S1:** Fish species, individual mercury measurements (n) and summary statistics (minimum, mean, median and maximum) of the concentrations ( $\mu g/g ww$ ) available in the monitoring dataset from the Ontario Ministry of the Environment and Climate Change, Canada.

| Species                    | n     | min  | mean | median | max   |
|----------------------------|-------|------|------|--------|-------|
| Alewife                    | 39    | 0.02 | 0.07 | 0.05   | 0.40  |
| American Eel               | 405   | 0.01 | 0.31 | 0.28   | 1.43  |
| Atlantic Salmon            | 24    | 0.07 | 0.13 | 0.11   | 0.43  |
| Bigmouth Buffalo           | 13    | 0.01 | 0.09 | 0.03   | 0.29  |
| Black Crappie              | 2564  | 0.01 | 0.18 | 0.12   | 2.00  |
| Blackfin Cisco             | 20    | 0.13 | 0.20 | 0.21   | 0.29  |
| Bloater                    | 583   | 0.01 | 0.12 | 0.08   | 0.72  |
| Bluegill                   | 1765  | 0.01 | 0.10 | 0.08   | 0.88  |
| Bowfin                     | 149   | 0.06 | 0.31 | 0.23   | 1.60  |
| Brook Trout                | 2690  | 0.01 | 0.25 | 0.19   | 2.00  |
| Brown Bullhead             | 5506  | 0.01 | 0.13 | 0.09   | 1.47  |
| Brown Trout                | 1666  | 0.01 | 0.17 | 0.15   | 1.45  |
| Catfish species            | 13    | 0.02 | 0.10 | 0.09   | 0.30  |
| Channel Catfish            | 2730  | 0.01 | 0.32 | 0.23   | 2.50  |
| Chinook Salmon             | 2581  | 0.01 | 0.21 | 0.21   | 0.97  |
| Chub (not C. artedii)      | 296   | 0.02 | 0.11 | 0.09   | 0.43  |
| Cisco(Lake Herring)        | 3650  | 0.01 | 0.20 | 0.16   | 2.76  |
| Coho Salmon                | 1581  | 0.01 | 0.15 | 0.13   | 0.95  |
| Common Carp                | 5684  | 0.01 | 0.23 | 0.18   | 1.70  |
| Creek Chub                 | 7     | 0.13 | 0.25 | 0.18   | 0.53  |
| Freshwater Drum            | 2043  | 0.01 | 0.29 | 0.20   | 2.00  |
| Gizzard Shad               | 222   | 0.01 | 0.06 | 0.05   | 0.27  |
| Golden Redhorse Sucker     | 8     | 0.09 | 0.16 | 0.15   | 0.29  |
| Golden Shiner              | 2     | 0.01 | 0.01 | 0.01   | 0.01  |
| Goldeye                    | 124   | 0.05 | 0.32 | 0.30   | 0.74  |
| Goldfish                   | 34    | 0.01 | 0.06 | 0.05   | 0.33  |
| Greater Redhorse           | 51    | 0.11 | 0.33 | 0.34   | 0.73  |
| Humper (Banker) Lake Trout | 93    | 0.08 | 0.25 | 0.18   | 1.40  |
| Lake Chub                  | 12    | 0.08 | 0.21 | 0.18   | 0.41  |
| Lake Trout                 | 20144 | 0.01 | 0.40 | 0.26   | 10.00 |
| Lake Whitefish             | 11445 | 0.01 | 0.16 | 0.10   | 5.51  |
| Largemouth Bass            | 5423  | 0.01 | 0.34 | 0.27   | 3.40  |
| Ling (Burbot)              | 2078  | 0.03 | 0.48 | 0.39   | 3.55  |
| Longnose Gar               | 10    | 0.06 | 0.69 | 0.64   | 1.80  |
| Longnose Sucker            | 1310  | 0.01 | 0.29 | 0.17   | 2.60  |

| Species              | n     | min  | mean | median | max   |
|----------------------|-------|------|------|--------|-------|
| Mooneye              | 274   | 0.01 | 0.60 | 0.50   | 4.27  |
| Muskellunge          | 126   | 0.04 | 0.88 | 0.48   | 7.11  |
| Northern Hog Sucker  | 2     | 0.04 | 0.16 | 0.16   | 0.28  |
| Northern Pike        | 33005 | 0.01 | 0.66 | 0.46   | 13.00 |
| Pink Salmon          | 500   | 0.01 | 0.07 | 0.06   | 0.92  |
| Pumpkinseed          | 2827  | 0.01 | 0.15 | 0.11   | 1.20  |
| Quillback Carpsucker | 130   | 0.04 | 0.45 | 0.39   | 1.26  |
| Rainbow Smelt        | 154   | 0.02 | 0.17 | 0.10   | 1.30  |
| Rainbow Trout        | 3245  | 0.01 | 0.15 | 0.13   | 0.94  |
| Redhorse Sucker      | 694   | 0.02 | 0.41 | 0.27   | 6.00  |
| River Redhorse       | 2     | 0.17 | 0.38 | 0.38   | 0.59  |
| Rock Bass            | 4737  | 0.01 | 0.29 | 0.21   | 2.20  |
| Round Whitefish      | 522   | 0.01 | 0.08 | 0.05   | 0.89  |
| Salmon Hybrid        | 9     | 0.07 | 0.14 | 0.14   | 0.20  |
| Sauger               | 1719  | 0.04 | 0.84 | 0.59   | 6.39  |
| Shorthead Redhorse   | 130   | 0.04 | 0.19 | 0.14   | 0.79  |
| Silver Redhorse      | 47    | 0.04 | 0.27 | 0.21   | 0.98  |
| Siscowet             | 155   | 0.09 | 0.53 | 0.51   | 1.70  |
| Smallmouth Bass      | 17466 | 0.01 | 0.41 | 0.32   | 5.00  |
| Splake               | 429   | 0.01 | 0.17 | 0.16   | 1.30  |
| Spotted Sucker       | 6     | 0.02 | 0.09 | 0.09   | 0.17  |
| Sturgeon             | 551   | 0.03 | 0.40 | 0.26   | 4.70  |
| Sucker Family        | 21    | 0.03 | 0.08 | 0.07   | 0.15  |
| Walleye              | 50622 | 0.01 | 0.71 | 0.46   | 24.00 |
| White Bass           | 3732  | 0.01 | 0.25 | 0.17   | 2.80  |
| White Crappie        | 240   | 0.01 | 0.14 | 0.09   | 1.34  |
| White Perch          | 1595  | 0.01 | 0.15 | 0.10   | 2.10  |
| White Sucker         | 12036 | 0.01 | 0.21 | 0.13   | 5.30  |
| Whitefish hybrid     | 15    | 0.10 | 0.58 | 0.55   | 1.20  |
| Yellow Bullhead      | 5     | 0.11 | 0.21 | 0.25   | 0.28  |
| Yellow Perch         | 13357 | 0.01 | 0.19 | 0.14   | 2.86  |

### Table S1: continued

**Table S2:** Fish consumption advisory benchmarks for Hg ( $\mu$ g/g ww) used by Ontario Ministry of the Environment and Climate Change, Canada (OMOECC 2015). Separate benchmarks are used for the general population and sensitive population of children under 15 and women of child-bearing age.

| Meals per month | Sensitive | General  |
|-----------------|-----------|----------|
| 0 (do not eat)  | >0.5      | >1.8     |
| 2               |           | 1.2-1.8  |
| 4               | 0.25-0.5  | 0.6-1.2  |
| 8               | 0.16-0.25 | 0.4-0.6  |
| 12              | 0.12-0.16 | 0.3-0.4  |
| 16              | 0.06-0.12 | 0.15-0.3 |
| 32              | < 0.06    | < 0.15   |

**Table S3:** An example of an advisory comparison between the current method of analyzing individual samples and six methods considered for compositing samples. The comparisons were specific to a fish species and sampling event (location/year). The advisory values are in meals per month; fish sizes are in cm. Blue cells highlight missing advisories due to loss of smallest/largest fish size after compositing, yellow cells highlight more restrictive advisories and red cells highlight less restrictive advisories compared to the regular method.

| Size (cm) $ ightarrow$ | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 75+ |
|------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|
| Regular                |    | 4  | 4  | 4  | 2  | 2  | 2  | 2  | 2  | 2  | 0  | 0  | 0  |     |
| Comp 1                 |    |    | 4  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 0  | 0  |    |     |
| Comp 2                 |    | 4  | 4  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 0  | 0  | 0  |     |
| Comp 3                 |    | 4  | 4  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 0  | 0  | 0  |     |
| Comp 4                 |    | 4  | 4  | 4  | 4  | 2  | 2  | 2  | 2  | 2  | 0  | 0  | 0  |     |
| Comp 5                 |    | 4  | 4  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 0  | 0  | 0  |     |
| Comp 6                 |    | 4  | 4  | 4  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 0  | 0  |     |

**Table S4a(a):** Breakdown (numbers) of the <u>general</u> population advisories from the six composite methods compared to those used in the regular method of analyzing individual samples. The percentages of the advisories that were equal have been highlighted in bold fonts with yellow background, and the less restrictive and missing have been highlighted with a grey background.

|        |             | A                 | dviso             | ries fro     | m the r      | egula       | r metho      | bd           |       |        |             | A    | dviso             | ries fro     | m the I      | regula            | r metho | bd           |       |
|--------|-------------|-------------------|-------------------|--------------|--------------|-------------|--------------|--------------|-------|--------|-------------|------|-------------------|--------------|--------------|-------------------|---------|--------------|-------|
|        | Meals/month | 0                 | 2                 | 4            | 8            | 12          | 16           | 32           | Total |        | Meals/month | 0    | 2                 | 4            | 8            | 12                | 16      | 32           | Total |
|        | 0           | 1039              | 172               | 2            | 1            |             | 1            |              | 1215  |        | 0           | 2099 | 284               |              |              |                   |         |              | 2383  |
|        | 2           | 29                | 1664              | 387          | 11           |             |              |              | 2091  |        | 2           | 142  | 3166              | 567          | 1            |                   |         |              | 3876  |
|        | 4           | 9                 | 96                | 9017         | 1075         | 8           | 2            |              | 10207 |        | 4           | 1    | 268               | 14020        | 1315         | 7                 |         |              | 15611 |
|        | 8           | 2                 | 2                 | 216          | 7488         | 1214        | 34           | 1            | 8957  |        | 8           |      |                   | 516          | 10865        | 1517              | 38      |              | 12936 |
| Comp 1 | 12          | 1                 |                   | 15           | 270          | 5094        | 1188         | 4            | 6572  | Comp 4 | 12          |      |                   | 2            | 533          | 7380              | 1523    |              | 9438  |
|        | 16          | 10                | 1                 | 9            | 30           | 264         | 12203        | 885          | 13402 |        | 16          |      |                   |              | 19           | 535               | 17841   | 1162         | 19557 |
|        | 32          | 5                 | 1                 | 5            | 10           | 7           | 271          | <b>10413</b> | 10712 |        | 32          |      |                   |              |              | 1                 | 402     | <b>16126</b> | 16529 |
|        | Missing     | 1147              | 1782              | 5454         | 3848         |             | 6106         |              | 27175 |        | Missing     |      |                   |              |              |                   |         |              |       |
|        | Total       | 2242              | 3718              | 15105        | 12733        | 9440        | 19805        | 17288        | 80331 |        | Total       | 2242 | 3718              | 15105        | 12733        | 9440              | 19804   | 17288        | 80330 |
|        | 0           | 2063              | 377               | 6            | 1            |             |              |              | 2447  |        | 0           | 2122 | 214               |              |              |                   |         |              | 2336  |
|        | 2           | 178               | 2966              | 823          | 11           |             |              |              | 3978  |        | 2           | 120  | 3272              | 460          | 11           |                   |         |              | 3863  |
|        | 4           | 1                 | 374               | 13519        | 1727         | 31          | 2            |              | 15654 |        | 4           |      | 232               | 14183        | 1003         | 2                 |         |              | 15420 |
| Comp 2 | 8           |                   | 1                 | 747          | <b>10194</b> | 1999        | 86           |              | 13027 | Comp 5 | 8           |      |                   | 462          | <b>11286</b> | 1210              | 7       |              | 12965 |
| comp 2 | 12          |                   |                   | 10           | 770          | <b>6610</b> | 1961         | 4            | 9355  | comp 5 | 12          |      |                   |              | 423          | 7748              | 1176    |              | 9347  |
|        | 16          |                   |                   |              | 28           | 799         | <b>17201</b> | 1483         | 19511 |        | 16          |      |                   |              | 10           | 480               | 18294   | 887          | 19671 |
|        | 32          |                   |                   |              | 2            | 1           | 554          |              | 16358 |        | 32          |      |                   |              |              |                   | 328     |              | 16729 |
|        | Total       | 2242              | 3718              | 15105        | 12733        | 9440        | 19804        | 17288        | 80330 |        | Total       | 2242 | 3718              | 15105        | 12733        | 9440              | 19805   | 17288        | 80331 |
|        | 0           | <mark>2083</mark> | 286               |              |              |             |              |              | 2369  |        | 0           | 2074 | 254               | 5            | 2            |                   | 1       |              | 2336  |
|        | 2           | 158               | <mark>3114</mark> | 623          | 11           |             |              |              | 3906  |        | 2           | 132  | <mark>3149</mark> | 508          | 2            | _                 |         | 1            | 3793  |
|        | 4           | 1                 | 318               | <b>13828</b> | 1341         | 4           |              |              | 15492 |        | 4           | 4    | 301               | <b>13966</b> | 1175         | _                 | 6       | 2            | 15479 |
| Comp 3 | 8           |                   |                   | 653          | <b>10738</b> |             | 23           |              | 12951 | Comp 6 | 8           | 2    | 2                 | 582          | 10872        | 1407              | 52      | 2            | 12919 |
|        | 12          |                   |                   |              | 628          |             | 1501         |              | 9358  | comp 0 | 12          |      |                   | 10           | 603          | <mark>7367</mark> | 1364    | 2            |       |
|        | 16          |                   |                   | 1            | 15           | 669         | 17828        | 1133         |       |        | 16          | 8    | 1                 | 5            | 38           |                   |         | 1084         |       |
|        | 32          |                   |                   |              |              | 1           | 453          |              | 16609 |        | 32          | 5    | 1                 | 1            | 8            |                   | 485     | 16061        | 16568 |
|        | Total       | 2242              | 3718              | 15105        | 12733        | 9440        | 19805        | 17288        | 80331 |        | Total       | 2225 | 3708              | 15077        | 12700        | 9403              | 19711   | 17152        | 79976 |

**Table S4a(b):** Breakdown (percentage) of the <u>general</u> population advisories from the six composite methods compared to those used in the regular method of analyzing individual samples. The percentages of the advisories that were equal have been highlighted in bold fonts with yellow background, and the less restrictive and missing have been highlighted with a grey background.

|        |          |                    | Advisor            | ies froi           | m the r            | egular r     | nethod             | 1                  |       |        |             |              | Advisor            | ies fro            | n the r            | egular r           | nethod             |              |       |
|--------|----------|--------------------|--------------------|--------------------|--------------------|--------------|--------------------|--------------------|-------|--------|-------------|--------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------|-------|
| Mea    | ls/month | 0                  | 2                  | 4                  | 8                  | 12           | 16                 | 32                 | Total |        | Meals/month | 0            | 2                  | 4                  | 8                  | 12                 | 16                 | 32           | Total |
|        | 0        | <b>46.3%</b>       | 4.6%               | 0.0%               | 0.0%               |              | 0.0%               |                    | 1.5%  |        | 0           | 93.6%        | 7.6%               |                    |                    |                    |                    |              | 3.0%  |
|        | 2        | 1.3%               | <mark>44.8%</mark> | 2.6%               | 0.1%               |              |                    |                    | 2.6%  |        | 2           | 6.3%         | <b>85.2%</b>       | 3.8%               | 0.0%               |                    |                    |              | 4.8%  |
|        | 4        | 0.4%               | 2.6%               | <b>59.7%</b>       | 8.4%               | 0.1%         | 0.0%               |                    | 12.7% |        | 4           | 0.0%         | 7.2%               | <mark>92.8%</mark> | 10.3%              | 0.1%               |                    |              | 19.4% |
|        | 8        | 0.1%               | 0.1%               | 1.4%               | <b>58.8%</b>       | 12.9%        | 0.2%               | 0.0%               | 11.2% |        | 8           |              |                    | 3.4%               | <mark>85.3%</mark> | 16.1%              | 0.2%               |              | 16.1% |
| Comp 1 | 12       | 0.0%               | 0.0%               | 0.1%               | 2.1%               | <b>54.0%</b> | 6.0%               | 0.0%               | 8.2%  | Comp 4 | 12          |              |                    | 0.0%               | 4.2%               | <b>78.2%</b>       | 7.7%               |              | 11.7% |
|        | 16       | 0.4%               | 0.0%               | 0.1%               | 0.2%               | 2.8%         | <mark>61.6%</mark> | 5.1%               | 16.7% |        | 16          |              |                    |                    | 0.1%               | 5.7%               | 90.1%              | 6.7%         | 24.3% |
|        | 32       | 0.2%               | 0.0%               | 0.0%               | 0.1%               | 0.1%         | 1.4%               | 60.2%              | 13.3% |        | 32          |              |                    |                    |                    | 0.0%               | 2.0%               | <b>93.3%</b> | 20.6% |
|        | Missing  | 51.2%              | 47.9%              | 36.1%              | 30.2%              | 30.2%        | 30.8%              | 34.6%              | 33.8% |        | Missing     |              |                    |                    |                    |                    |                    |              |       |
|        | Total    | 100%               | 100%               | 100%               | 100%               | 100%         | 100%               | 100%               | 100%  |        | Total       | 100%         | 100%               | 100%               | 100%               | 100%               | 100%               | 100%         | 100%  |
|        | 0        | <mark>92.0%</mark> | 10.1%              | 0.0%               | 0.0%               |              |                    |                    | 3.0%  |        | 0           | <b>94.6%</b> | 5.8%               |                    |                    |                    |                    |              | 2.9%  |
|        | 2        | 7.9%               | 79.8%              | 5.4%               | 0.1%               |              |                    |                    | 5.0%  |        | 2           | 5.4%         | 88.0%              | 3.0%               | 0.1%               |                    |                    |              | 4.8%  |
|        | 4        | 0.0%               | 10.1%              | <mark>89.5%</mark> | 13.6%              | 0.3%         | 0.0%               |                    | 19.5% |        | 4           |              | 6.2%               | 93.9%              | 7.9%               | 0.0%               |                    |              | 19.2% |
| Comp 2 | 8        |                    | 0.0%               | 4.9%               | 80.1%              | 21.2%        | 0.4%               |                    | 16.2% | Comp 5 | 8           |              |                    | 3.1%               | 88.6%              | 12.8%              | 0.0%               |              | 16.1% |
| comp 2 | 12       |                    |                    | 0.1%               | 6.0%               | 70.0%        | 9.9%               | 0.0%               | 11.6% | comp 5 | 12          |              |                    |                    | 3.3%               | <mark>82.1%</mark> | 5.9%               |              | 11.6% |
|        | 16       |                    |                    |                    | 0.2%               | 8.5%         | 86.9%              | 8.6%               | 24.3% |        | 16          |              |                    |                    | 0.1%               | 5.1%               | <mark>92.4%</mark> | 5.1%         | 24.5% |
|        | 32       |                    |                    |                    | 0.0%               | 0.0%         | 2.8%               | 91.4%              | 20.4% |        | 32          |              |                    |                    |                    |                    | 1.7%               | 94.9%        | 20.8% |
|        | Total    | 100%               | 100%               | 100%               | 100%               | 100%         | 100%               | 100%               | 100%  |        | Total       | 100%         | 100%               | 100%               | 100%               | 100%               | 100%               | 100%         | 100%  |
|        | 0        | <mark>92.9%</mark> | 7.7%               |                    |                    |              |                    |                    | 2.9%  |        | 0           | 93.2%        | 6.9%               | 0.0%               | 0.0%               | 0.0%               | 0.0%               |              | 2.9%  |
|        | 2        | 7.0%               | <mark>83.8%</mark> | 4.1%               | 0.1%               |              |                    |                    | 4.9%  |        | 2           | 5.9%         | <mark>84.9%</mark> | 3.4%               | 0.0%               | 0.0%               |                    | 0.0%         | 4.7%  |
|        | 4        | 0.0%               | 8.6%               | <mark>91.5%</mark> | 10.5%              | 0.0%         |                    |                    | 19.3% |        | 4           | 0.2%         | 8.1%               | 92.6%              | 9.3%               | 0.3%               | 0.0%               | 0.0%         | 19.4% |
| Comp 3 | 8        |                    |                    | 4.3%               | <mark>84.3%</mark> | 16.3%        | 0.1%               |                    | 16.1% | Comp 6 | 8           | 0.1%         | 0.1%               | 3.9%               | <b>85.6%</b>       | 15.0%              | 0.3%               | 0.0%         | 16.2% |
| comp 3 | 12       |                    |                    |                    | 4.9%               | <b>76.6%</b> | 7.6%               |                    | 11.6% | comp o | 12          |              |                    | 0.1%               | 4.7%               | <b>78.3%</b>       | 6.9%               | 0.0%         | 11.7% |
|        | 16       |                    |                    | 0.0%               | 0.1%               | 7.1%         | <mark>90.0%</mark> | 6.6%               | 24.5% |        | 16          | 0.4%         | 0.0%               | 0.0%               | 0.3%               | 6.3%               | 90.3%              | 6.3%         | 24.4% |
|        | 32       |                    |                    |                    |                    | 0.0%         | 2.3%               | <mark>93.4%</mark> | 20.7% |        | 32          | 0.2%         | 0.0%               | 0.0%               | 0.1%               | 0.1%               | 2.5%               | <b>93.6%</b> | 20.7% |
|        | Total    | 100%               | 100%               | 100%               | 100%               | 100%         | 100%               | 100%               | 100%  |        | Total       | 100%         | 100%               | 100%               | 100%               | 100%               | 100%               | 100%         | 100%  |

**Table S4b(a):** Breakdown (numbers) of the <u>sensitive</u> population advisories from the six composite methods compared to those used in the regular method of analyzing individual samples. The percentages of the advisories that were equal have been highlighted in bold fonts with yellow background, and the less restrictive and missing have been highlighted with a grey background.

|        |          | Advis        | ories fr     | om the | regul | ar me | thod |       |        |       | Advis        | ories fr     | om the | regul       | ar me | thod        |       |
|--------|----------|--------------|--------------|--------|-------|-------|------|-------|--------|-------|--------------|--------------|--------|-------------|-------|-------------|-------|
| Mea    | ls/month | 0            | 4            | 8      | 12    | 16    | 32   | Total | Meals/ | month | 0            | 4            | 8      | 12          | 16    | 32          | Total |
|        | 0        | <b>16205</b> | 1180         | 4      |       |       |      | 17389 |        | 0     | 26064        | 1443         |        |             |       |             | 27507 |
|        | 4        | 239          | 14180        | 1190   | 8     | 2     | 1    | 15620 |        | 4     | 521          | 20446        | 1439   | 4           |       |             | 22410 |
|        | 8        | 15           | 297          | 7174   | 870   | 39    | 2    | 8397  |        | 8     |              | 495          | 10669  | 1181        | 45    | 1           | 12391 |
| Comp 1 | 12       | 7            | 17           | 262    | 3052  | 701   | 2    | 4041  | Comp 4 | 12    |              | 4            | 393    | <b>4643</b> | 955   | 2           | 5997  |
| Comp 1 | 16       | 6            | 10           | 25     | 199   | 5007  | 309  | 5556  | Comp 4 | 16    |              |              | 16     | 319         | 7674  | 455         | 8464  |
|        | 32       | 2            | 2            |        | 6     | 122   | 2021 | 2153  |        | 32    |              |              |        |             | 167   | 3394        | 3561  |
|        | Missing  | 10111        | 6702         | 3863   | 2012  | 2970  | 1517 | 27175 |        |       |              |              |        |             |       |             |       |
|        | Total    | 26585        | 22388        | 12518  | 6147  | 8841  | 3852 | 80331 |        | Total | 26585        | 22388        | 12517  | 6147        | 8841  | 3852        | 80330 |
|        | 0        | 25834        | 1957         | 5      |       |       |      | 27796 |        | 0     | <b>26130</b> | 1197         |        |             |       |             | 27327 |
|        | 4        | 751          | 19698        | 1885   | 15    | 3     |      | 22352 |        | 4     | 455          | 20755        | 1156   | 3           |       |             | 22369 |
|        | 8        |              | 729          | 10031  | 1496  | 73    | 2    | 12331 |        | 8     |              | 436          | 11014  | 912         | 14    |             | 12376 |
| Comp 2 | 12       |              | 4            | 572    | 4187  | 1197  | 2    | 5962  | Comp 5 | 12    |              |              | 340    | 4967        | 717   |             | 6024  |
|        | 16       |              |              | 24     | 448   | 7387  | 575  | 8434  |        | 16    |              |              | 8      | 265         | 7971  | 353         | 8597  |
|        | 32       |              |              |        | 1     | 181   | 3273 | 3455  |        | 32    |              |              |        |             | 139   | <b>3499</b> | 3638  |
|        | Total    | 26585        | 22388        | 12517  | 6147  | 8841  | 3852 | 80330 |        | Total | 26585        | 22388        | 12518  | 6147        | 8841  | 3852        | 80331 |
|        | 0        | <b>25944</b> | 1506         | 1      |       |       |      | 27451 |        | 0     | 25907        | 1362         | 5      |             | 3     |             | 27277 |
|        | 4        | 641          | <b>20243</b> | 1425   | 7     | 1     |      | 22317 |        | 4     | 592          | <b>20316</b> | 1351   | 17          | 7     | 1           | 22284 |
|        | 8        |              | 637          | 10606  | 1144  | 31    |      | 12418 |        | 8     | 9            | 607          | 10603  | 1072        | 52    |             | 12343 |
| Comp 3 | 12       |              | 2            | 477    | 4605  | 867   |      | 5951  | Comp 6 | 12    | 4            | 16           | 464    | <b>4631</b> | 829   | 7           | 5951  |
|        | 16       |              |              | 4      | 391   | 7754  | 423  | 8572  |        | 16    | 4            | 8            | 29     | 391         | 7662  | 418         | 8512  |
|        | 32       |              |              | 5      |       | 188   | 3429 | 3622  |        | 32    | 1            | 3            |        | 4           | 221   | 3380        | 3609  |
|        | Total    | 26585        | 22388        | 12518  | 6147  | 8841  | 3852 | 80331 |        | Total | 26517        | 22312        | 12452  | 6115        | 8774  | 3806        | 79976 |

**Table S4b(b):** Breakdown (percentage) of the <u>sensitive</u> population advisories from the six composite methods compared to those used in the regular method of analyzing individual samples. The percentages of the advisories that were equal have been highlighted in bold fonts with yellow background, and the less restrictive and missing have been highlighted with a grey background.

|        |          | Adv                | isories      | from th            | ne regu      | lar met      | hod                |       |        |       | Adv          | isories            | from th            | ne regu            | lar met      | hod          |       |
|--------|----------|--------------------|--------------|--------------------|--------------|--------------|--------------------|-------|--------|-------|--------------|--------------------|--------------------|--------------------|--------------|--------------|-------|
| Mea    | ls/month | 0                  | 4            | 8                  | 12           | 16           | 32                 | Total | Meals/ | month | 0            | 4                  | 8                  | 12                 | 16           | 32           | Total |
|        | 0        | <mark>61.0%</mark> | 5.3%         | 0.0%               |              |              |                    | 21.6% |        | 0     | <b>98.0%</b> | 6.4%               |                    |                    |              |              | 34.2% |
|        | 4        | 0.9%               | <b>63.3%</b> | 9.5%               | 0.1%         | 0.0%         | 0.0%               | 19.4% |        | 4     | 2.0%         | <mark>91.3%</mark> | 11.5%              | 0.1%               |              |              | 27.9% |
|        | 8        | 0.1%               | 1.3%         | <b>57.3%</b>       | 14.2%        | 0.4%         | 0.1%               | 10.5% |        | 8     |              | 2.2%               | <mark>85.2%</mark> | 19.2%              | 0.5%         | 0.0%         | 15.4% |
| Comp 1 | 12       | 0.0%               | 0.1%         | 2.1%               | <b>49.7%</b> | 7.9%         | 0.1%               | 5.0%  | Comp 4 | 12    |              | 0.0%               | 3.1%               | <b>75.5%</b>       | 10.8%        | 0.1%         | 7.5%  |
| comp 1 | 16       | 0.0%               | 0.0%         | 0.2%               | 3.2%         | <b>56.6%</b> | 8.0%               | 6.9%  | comp 4 | 16    |              |                    | 0.1%               | 5.2%               | 86.8%        | 11.8%        | 10.5% |
|        | 32       | 0.0%               | 0.0%         |                    | 0.1%         | 1.4%         | <mark>52.5%</mark> | 2.7%  |        | 32    |              |                    |                    |                    | 1.9%         | <b>88.1%</b> | 4.4%  |
|        | Missing  | 38.0%              | 29.9%        | 30.9%              | 32.7%        | 33.6%        | 39.4%              | 33.8% |        |       |              |                    |                    |                    |              |              |       |
|        | Total    | 100%               | 100%         | 100%               | 100%         | 100%         | 100%               | 100%  |        | Total | 100%         | 100%               | 100%               | 100%               | 100%         | 100%         | 100%  |
|        | 0        | <mark>97.2%</mark> | 8.7%         | 0.0%               |              |              |                    | 34.6% |        | 0     | 98.3%        | 5.3%               |                    |                    |              |              | 34.0% |
|        | 4        | 2.8%               | <b>88.0%</b> | 15.1%              | 0.2%         | 0.0%         |                    | 27.8% |        | 4     | 1.7%         | <mark>92.7%</mark> | 9.2%               | 0.0%               |              |              | 27.8% |
|        | 8        |                    | 3.3%         | <b>80.1%</b>       | 24.3%        | 0.8%         | 0.1%               | 15.4% |        | 8     |              | 1.9%               | 88.0%              | 14.8%              | 0.2%         |              | 15.4% |
| Comp 2 | 12       |                    | 0.0%         | 4.6%               | <b>68.1%</b> | 13.5%        | 0.1%               | 7.4%  | Comp 5 | 12    |              |                    | 2.7%               | <mark>80.8%</mark> | 8.1%         |              | 7.5%  |
|        | 16       |                    |              | 0.2%               | 7.3%         | <b>83.6%</b> | 14.9%              | 10.5% |        | 16    |              |                    | 0.1%               | 4.3%               | <b>90.2%</b> | 9.2%         | 10.7% |
|        | 32       |                    |              |                    | 0.0%         | 2.0%         | <b>85.0%</b>       | 4.3%  |        | 32    |              |                    |                    |                    | 1.6%         | 90.8%        | 4.5%  |
|        | Total    | 100%               | 100%         | 100%               | 100%         | 100%         | 100%               | 100%  |        | Total | 100%         | 100%               | 100%               | 100%               | 100%         | 100%         | 100%  |
|        | 0        | <b>97.6%</b>       | 6.7%         | 0.0%               |              |              |                    | 34.2% |        | 0     | 97.7%        | 6.1%               | 0.0%               | 0.0%               | 0.0%         |              | 34.1% |
|        | 4        | 2.4%               | <b>90.4%</b> | 11.4%              | 0.1%         | 0.0%         |                    | 27.8% |        | 4     | 2.2%         | <mark>91.1%</mark> | 10.8%              | 0.3%               | 0.1%         | 0.0%         | 27.9% |
|        | 8        |                    | 2.8%         | <mark>84.7%</mark> | 18.6%        | 0.4%         |                    | 15.5% |        | 8     | 0.0%         | 2.7%               | <b>85.2%</b>       | 17.5%              | 0.6%         |              | 15.4% |
| Comp 3 | 12       |                    | 0.0%         | 3.8%               | <b>74.9%</b> | 9.8%         |                    | 7.4%  | Comp 6 | 12    | 0.0%         | 0.1%               | 3.7%               | <b>75.7%</b>       | 9.4%         | 0.2%         | 7.4%  |
|        | 16       |                    |              | 0.0%               | 6.4%         | <b>87.7%</b> | 11.0%              | 10.7% |        | 16    | 0.0%         | 0.0%               | 0.2%               | 6.4%               | 87.3%        | 11.0%        | 10.6% |
|        | 32       |                    |              | 0.0%               |              | 2.1%         | <mark>89.0%</mark> | 4.5%  |        | 32    | 0.0%         | 0.0%               |                    | 0.1%               | 2.5%         | 88.8%        | 4.5%  |
|        | Total    | 100%               | 100%         | 100%               | 100%         | 100%         | 100%               | 100%  |        | Total | 100%         | 100%               | 100%               | 100%               | 100%         | 100%         | 100%  |

**Table S5:** Classification (equal, more restrictive and less restrictive) of the general population advisories from composite methods 2 and 6 compared to those from the regular method of analyzing individual samples broken down by sample sizes for the individual measurements.

|    |       | Comp m | ethod 2 ad | visories o | compared t | o Regular |       |       | Comp me | ethod 6 adv | /isories c | ompared | to Regula | r     |
|----|-------|--------|------------|------------|------------|-----------|-------|-------|---------|-------------|------------|---------|-----------|-------|
|    |       | Less   | More       |            |            | Less      | More  |       | Less    | More        |            |         | Less      | More  |
| Ν  | EQUAL | Res    | Res        | Total      | EQUAL      | Res       | Res   | EQUAL | Res     | Res         | Total      | EQUAL   | Res       | Res   |
| 1  | 590   |        |            | 590        | 100.0%     | 0.0%      | 0.0%  | 590   |         |             | 590        | 100.0%  | 0.0%      | 0.0%  |
| 2  | 1710  | 1      |            | 1711       | 99.9%      | 0.1%      | 0.0%  | 1627  | 80      | 2           | 1709       | 95.2%   | 4.7%      | 0.1%  |
| 3  | 1994  |        |            | 1994       | 100.0%     | 0.0%      | 0.0%  | 1889  | 53      | 43          | 1985       | 95.2%   | 2.7%      | 2.2%  |
| 4  | 2195  | 84     | 167        | 2446       | 89.7%      | 3.4%      | 6.8%  | 2300  | 64      | 79          | 2443       | 94.1%   | 2.6%      | 3.2%  |
| 5  | 2625  | 165    | 281        | 3071       | 85.5%      | 5.4%      | 9.2%  | 2789  | 110     | 150         | 3049       | 91.5%   | 3.6%      | 4.9%  |
| 6  | 2397  | 151    | 346        | 2894       | 82.8%      | 5.2%      | 12.0% | 2624  | 100     | 157         | 2881       | 91.1%   | 3.5%      | 5.4%  |
| 7  | 2363  | 176    | 362        | 2901       | 81.5%      | 6.1%      | 12.5% | 2633  | 97      | 154         | 2884       | 91.3%   | 3.4%      | 5.3%  |
| 8  | 2711  | 186    | 328        | 3225       | 84.1%      | 5.8%      | 10.2% | 2947  | 105     | 164         | 3216       | 91.6%   | 3.3%      | 5.1%  |
| 9  | 2600  | 183    | 300        | 3083       | 84.3%      | 5.9%      | 9.7%  | 2762  | 120     | 195         | 3077       | 89.8%   | 3.9%      | 6.3%  |
| 10 | 5750  | 350    | 803        | 6903       | 83.3%      | 5.1%      | 11.6% | 6172  | 278     | 421         | 6871       | 89.8%   | 4.0%      | 6.1%  |
| 11 | 1842  | 133    | 274        | 2249       | 81.9%      | 5.9%      | 12.2% | 1991  | 85      | 165         | 2241       | 88.8%   | 3.8%      | 7.4%  |
| 12 | 1834  | 107    | 259        | 2200       | 83.4%      | 4.9%      | 11.8% | 1994  | 57      | 140         | 2191       | 91.0%   | 2.6%      | 6.4%  |
| 13 | 1622  | 124    | 261        | 2007       | 80.8%      | 6.2%      | 13.0% | 1771  | 68      | 164         | 2003       | 88.4%   | 3.4%      | 8.2%  |
| 14 | 2025  | 119    | 251        | 2395       | 84.6%      | 5.0%      | 10.5% | 2123  | 94      | 168         | 2385       | 89.0%   | 3.9%      | 7.0%  |
| 15 | 4653  | 253    | 638        | 5544       | 83.9%      | 4.6%      | 11.5% | 4934  | 166     | 427         | 5527       | 89.3%   | 3.0%      | 7.7%  |
| 16 | 1940  | 115    | 292        | 2347       | 82.7%      | 4.9%      | 12.4% | 2023  | 80      | 230         | 2333       | 86.7%   | 3.4%      | 9.9%  |
| 17 | 1605  | 68     | 228        | 1901       | 84.4%      | 3.6%      | 12.0% | 1655  | 72      | 166         | 1893       | 87.4%   | 3.8%      | 8.8%  |
| 18 | 1791  | 81     | 235        | 2107       | 85.0%      | 3.8%      | 11.2% | 1847  | 67      | 185         | 2099       | 88.0%   | 3.2%      | 8.8%  |
| 19 | 2215  | 109    | 312        | 2636       | 84.0%      | 4.1%      | 11.8% | 2300  | 99      | 228         | 2627       | 87.6%   | 3.8%      | 8.7%  |
| 20 | 15056 | 736    | 1965       | 17757      | 84.8%      | 4.1%      | 11.1% | 15450 | 639     | 1560        | 17649      | 87.5%   | 3.6%      | 8.8%  |
| 21 | 1129  | 43     | 177        | 1349       | 83.7%      | 3.2%      | 13.1% | 1178  | 41      | 125         | 1344       | 87.6%   | 3.1%      | 9.3%  |
| 22 | 916   | 43     | 122        | 1081       | 84.7%      | 4.0%      | 11.3% | 938   | 42      | 96          | 1076       | 87.2%   | 3.9%      | 8.9%  |
| 23 | 579   | 31     | 83         | 693        | 83.5%      | 4.5%      | 12.0% | 602   | 20      | 69          | 691        | 87.1%   | 2.9%      | 10.0% |

|    |       | Comp m | ethod 2 ad | visories o | compared t | o Regular |       |       | Comp me | ethod 6 adv | visories c | ompared | to Regula | r     |
|----|-------|--------|------------|------------|------------|-----------|-------|-------|---------|-------------|------------|---------|-----------|-------|
|    |       | Less   | More       |            |            | Less      | More  |       | Less    | More        |            |         | Less      | More  |
| Ν  | EQUAL | Res    | Res        | Total      | EQUAL      | Res       | Res   | EQUAL | Res     | Res         | Total      | EQUAL   | Res       | Res   |
| 24 | 489   | 15     | 76         | 580        | 84.3%      | 2.6%      | 13.1% | 501   | 19      | 59          | 579        | 86.5%   | 3.3%      | 10.2% |
| 25 | 880   | 39     | 99         | 1018       | 86.4%      | 3.8%      | 9.7%  | 862   | 54      | 100         | 1016       | 84.8%   | 5.3%      | 9.8%  |
| 26 | 359   | 10     | 52         | 421        | 85.3%      | 2.4%      | 12.4% | 366   | 12      | 38          | 416        | 88.0%   | 2.9%      | 9.1%  |
| 27 | 323   | 23     | 36         | 382        | 84.6%      | 6.0%      | 9.4%  | 325   | 16      | 37          | 378        | 86.0%   | 4.2%      | 9.8%  |
| 28 | 354   | 14     | 40         | 408        | 86.8%      | 3.4%      | 9.8%  | 362   | 14      | 30          | 406        | 89.2%   | 3.4%      | 7.4%  |
| 29 | 246   | 5      | 32         | 283        | 86.9%      | 1.8%      | 11.3% | 248   | 10      | 23          | 281        | 88.3%   | 3.6%      | 8.2%  |
| 30 | 1491  | 47     | 215        | 1753       | 85.1%      | 2.7%      | 12.3% | 1466  | 53      | 225         | 1744       | 84.1%   | 3.0%      | 12.9% |
| 31 | 152   | 7      | 18         | 177        | 85.9%      | 4.0%      | 10.2% | 155   | 6       | 16          | 177        | 87.6%   | 3.4%      | 9.0%  |
| 32 | 89    | 8      | 22         | 119        | 74.8%      | 6.7%      | 18.5% | 91    | 7       | 21          | 119        | 76.5%   | 5.9%      | 17.6% |
| 33 | 74    |        | 13         | 87         | 85.1%      | 0.0%      | 14.9% | 74    | 1       | 12          | 87         | 85.1%   | 1.1%      | 13.8% |
| 34 | 91    | 6      | 30         | 127        | 71.7%      | 4.7%      | 23.6% | 102   | 3       | 21          | 126        | 81.0%   | 2.4%      | 16.7% |
| 35 | 58    | 1      | 5          | 64         | 90.6%      | 1.6%      | 7.8%  | 54    |         | 10          | 64         | 84.4%   | 0.0%      | 15.6% |
| 36 | 87    | 8      | 16         | 111        | 78.4%      | 7.2%      | 14.4% | 92    | 7       | 11          | 110        | 83.6%   | 6.4%      | 10.0% |
| 37 | 38    | 3      | 3          | 44         | 86.4%      | 6.8%      | 6.8%  | 40    |         | 4           | 44         | 90.9%   | 0.0%      | 9.1%  |
| 38 | 88    | 1      | 10         | 99         | 88.9%      | 1.0%      | 10.1% | 88    |         | 10          | 98         | 89.8%   | 0.0%      | 10.2% |
| 39 | 74    | 4      | 9          | 87         | 85.1%      | 4.6%      | 10.3% | 77    | 3       | 7           | 87         | 88.5%   | 3.4%      | 8.0%  |
| 40 | 113   |        | 13         | 126        | 89.7%      | 0.0%      | 10.3% | 108   | 2       | 16          | 126        | 85.7%   | 1.6%      | 12.7% |
| 41 | 59    |        | 6          | 65         | 90.8%      | 0.0%      | 9.2%  | 56    | 2       | 6           | 64         | 87.5%   | 3.1%      | 9.4%  |
| 42 | 42    |        | 4          | 46         | 91.3%      | 0.0%      | 8.7%  | 41    | 2       | 3           | 46         | 89.1%   | 4.3%      | 6.5%  |
| 43 | 40    |        | 3          | 43         | 93.0%      | 0.0%      | 7.0%  | 32    | 6       | 3           | 41         | 78.0%   | 14.6%     | 7.3%  |
| 44 | 46    |        | 7          | 53         | 86.8%      | 0.0%      | 13.2% | 41    | 3       | 8           | 52         | 78.8%   | 5.8%      | 15.4% |
| 45 | 32    |        | 4          | 36         | 88.9%      | 0.0%      | 11.1% | 29    |         | 7           | 36         | 80.6%   | 0.0%      | 19.4% |
| 46 | 18    |        |            | 18         | 100.0%     | 0.0%      | 0.0%  | 18    |         |             | 18         | 100.0%  | 0.0%      | 0.0%  |
| 47 | 22    |        | 10         | 32         | 68.8%      | 0.0%      | 31.3% | 24    |         | 8           | 32         | 75.0%   | 0.0%      | 25.0% |
| 48 | 102   | 2      | 17         | 121        | 84.3%      | 1.7%      | 14.0% | 99    | 4       | 18          | 121        | 81.8%   | 3.3%      | 14.9% |
| 49 | 63    |        | 7          | 70         | 90.0%      | 0.0%      | 10.0% | 60    | 2       | 8           | 70         | 85.7%   | 2.9%      | 11.4% |
| 50 | 163   | 4      | 17         | 184        | 88.6%      | 2.2%      | 9.2%  | 159   | 10      | 14          | 183        | 86.9%   | 5.5%      | 7.7%  |

|    |       | Comp m | ethod 2 ad | visories o | compared t | o Regular |       |       | Comp me | ethod 6 adv | visories c | ompared | to Regula | r     |
|----|-------|--------|------------|------------|------------|-----------|-------|-------|---------|-------------|------------|---------|-----------|-------|
|    |       | Less   | More       |            |            | Less      | More  |       | Less    | More        |            |         | Less      | More  |
| Ν  | EQUAL | Res    | Res        | Total      | EQUAL      | Res       | Res   | EQUAL | Res     | Res         | Total      | EQUAL   | Res       | Res   |
| 51 | 88    | 2      | 3          | 93         | 94.6%      | 2.2%      | 3.2%  | 90    |         | 3           | 93         | 96.8%   | 0.0%      | 3.2%  |
| 52 | 42    |        | 2          | 44         | 95.5%      | 0.0%      | 4.5%  | 42    | 1       | 1           | 44         | 95.5%   | 2.3%      | 2.3%  |
| 53 | 7     |        |            | 7          | 100.0%     | 0.0%      | 0.0%  | 6     | 1       |             | 7          | 85.7%   | 14.3%     | 0.0%  |
| 54 | 33    | 1      | 1          | 35         | 94.3%      | 2.9%      | 2.9%  | 29    | 1       | 5           | 35         | 82.9%   | 2.9%      | 14.3% |
| 55 | 34    | 1      | 1          | 36         | 94.4%      | 2.8%      | 2.8%  | 32    | 2       | 2           | 36         | 88.9%   | 5.6%      | 5.6%  |
| 56 | 37    | 1      | 6          | 44         | 84.1%      | 2.3%      | 13.6% | 35    | 1       | 8           | 44         | 79.5%   | 2.3%      | 18.2% |
| 57 | 3     |        |            | 3          | 100.0%     | 0.0%      | 0.0%  | 3     |         |             | 3          | 100.0%  | 0.0%      | 0.0%  |
| 58 | 14    |        | 5          | 19         | 73.7%      | 0.0%      | 26.3% | 15    |         | 4           | 19         | 78.9%   | 0.0%      | 21.1% |
| 59 | 18    |        | 1          | 19         | 94.7%      | 0.0%      | 5.3%  | 17    |         | 2           | 19         | 89.5%   | 0.0%      | 10.5% |
| 60 | 26    | 2      | 7          | 35         | 74.3%      | 5.7%      | 20.0% | 24    | 1       | 10          | 35         | 68.6%   | 2.9%      | 28.6% |
| 61 | 5     |        |            | 5          | 100.0%     | 0.0%      | 0.0%  | 5     |         |             | 5          | 100.0%  | 0.0%      | 0.0%  |
| 62 | 32    |        | 2          | 34         | 94.1%      | 0.0%      | 5.9%  | 30    | 1       | 3           | 34         | 88.2%   | 2.9%      | 8.8%  |
| 64 | 15    |        | 1          | 16         | 93.8%      | 0.0%      | 6.3%  | 15    |         | 1           | 16         | 93.8%   | 0.0%      | 6.3%  |
| 66 | 6     | 1      |            | 7          | 85.7%      | 14.3%     | 0.0%  | 5     | 2       |             | 7          | 71.4%   | 28.6%     | 0.0%  |
| 67 | 7     |        |            | 7          | 100.0%     | 0.0%      | 0.0%  | 4     | 3       |             | 7          | 57.1%   | 42.9%     | 0.0%  |
| 68 | 5     |        | 1          | 6          | 83.3%      | 0.0%      | 16.7% | 6     |         |             | 6          | 100.0%  | 0.0%      | 0.0%  |
| 69 | 3     |        |            | 3          | 100.0%     | 0.0%      | 0.0%  | 3     |         |             | 3          | 100.0%  | 0.0%      | 0.0%  |
| 70 | 2     |        | 2          | 4          | 50.0%      | 0.0%      | 50.0% | 2     |         | 2           | 4          | 50.0%   | 0.0%      | 50.0% |
| 71 | 15    |        | 3          | 18         | 83.3%      | 0.0%      | 16.7% | 14    |         | 4           | 18         | 77.8%   | 0.0%      | 22.2% |
| 73 | 7     |        | 1          | 8          | 87.5%      | 0.0%      | 12.5% | 6     |         | 2           | 8          | 75.0%   | 0.0%      | 25.0% |
| 74 | 3     |        | 3          | 6          | 50.0%      | 0.0%      | 50.0% | 3     |         | 3           | 6          | 50.0%   | 0.0%      | 50.0% |
| 75 | 3     |        |            | 3          | 100.0%     | 0.0%      | 0.0%  | 2     |         | 1           | 3          | 66.7%   | 0.0%      | 33.3% |
| 76 | 9     |        | 2          | 11         | 81.8%      | 0.0%      | 18.2% | 9     |         | 2           | 11         | 81.8%   | 0.0%      | 18.2% |
| 78 | 8     |        | 1          | 9          | 88.9%      | 0.0%      | 11.1% | 9     |         |             | 9          | 100.0%  | 0.0%      | 0.0%  |
| 79 | 3     |        |            | 3          | 100.0%     | 0.0%      | 0.0%  | 2     | 1       |             | 3          | 66.7%   | 33.3%     | 0.0%  |
| 80 | 29    |        | 1          | 30         | 96.7%      | 0.0%      | 3.3%  | 26    | 1       | 2           | 29         | 89.7%   | 3.4%      | 6.9%  |
| 89 | 17    | 1      |            | 18         | 94.4%      | 5.6%      | 0.0%  | 15    | 1       | 2           | 18         | 83.3%   | 5.6%      | 11.1% |

|       |       | Comp m | ethod 2 ad | visories o | compared t | o Regular |       |       | Comp me | ethod 6 adv | visories c | ompared | to Regula | r     |
|-------|-------|--------|------------|------------|------------|-----------|-------|-------|---------|-------------|------------|---------|-----------|-------|
|       |       | Less   | More       |            |            | Less      | More  |       | Less    | More        |            |         | Less      | More  |
| Ν     | EQUAL | Res    | Res        | Total      | EQUAL      | Res       | Res   | EQUAL | Res     | Res         | Total      | EQUAL   | Res       | Res   |
| 90    | 8     |        | 1          | 9          | 88.9%      | 0.0%      | 11.1% | 7     |         | 2           | 9          | 77.8%   | 0.0%      | 22.2% |
| 91    | 6     |        | 4          | 10         | 60.0%      | 0.0%      | 40.0% | 5     |         | 5           | 10         | 50.0%   | 0.0%      | 50.0% |
| 97    | 6     |        |            | 6          | 100.0%     | 0.0%      | 0.0%  | 6     |         |             | 6          | 100.0%  | 0.0%      | 0.0%  |
| 99    | 2     |        |            | 2          | 100.0%     | 0.0%      | 0.0%  | 2     |         |             | 2          | 100.0%  | 0.0%      | 0.0%  |
| 101   | 6     |        | 1          | 7          | 85.7%      | 0.0%      | 14.3% | 6     |         | 1           | 7          | 85.7%   | 0.0%      | 14.3% |
| 104   | 10    |        |            | 10         | 100.0%     | 0.0%      | 0.0%  | 7     | 1       | 2           | 10         | 70.0%   | 10.0%     | 20.0% |
| 106   | 8     |        |            | 8          | 100.0%     | 0.0%      | 0.0%  | 5     |         | 3           | 8          | 62.5%   | 0.0%      | 37.5% |
| 107   | 9     |        | 2          | 11         | 81.8%      | 0.0%      | 18.2% | 9     |         | 2           | 11         | 81.8%   | 0.0%      | 18.2% |
| 108   | 11    |        | 1          | 12         | 91.7%      | 0.0%      | 8.3%  | 11    |         | 1           | 12         | 91.7%   | 0.0%      | 8.3%  |
| 111   | 12    |        | 1          | 13         | 92.3%      | 0.0%      | 7.7%  | 13    |         |             | 13         | 100.0%  | 0.0%      | 0.0%  |
| 113   | 6     |        | 2          | 8          | 75.0%      | 0.0%      | 25.0% | 5     |         | 3           | 8          | 62.5%   | 0.0%      | 37.5% |
| 115   | 7     |        |            | 7          | 100.0%     | 0.0%      | 0.0%  | 4     |         | 3           | 7          | 57.1%   | 0.0%      | 42.9% |
| 147   | 9     |        |            | 9          | 100.0%     | 0.0%      | 0.0%  | 8     |         | 1           | 9          | 88.9%   | 0.0%      | 11.1% |
| 157   | 3     |        |            | 3          | 100.0%     | 0.0%      | 0.0%  | 3     |         |             | 3          | 100.0%  | 0.0%      | 0.0%  |
| 165   | 4     | 1      | 3          | 8          | 50.0%      | 12.5%     | 37.5% | 4     | 1       | 3           | 8          | 50.0%   | 12.5%     | 37.5% |
| 167   | 4     |        |            | 4          | 100.0%     | 0.0%      | 0.0%  | 4     |         |             | 4          | 100.0%  | 0.0%      | 0.0%  |
| 171   | 6     |        |            | 6          | 100.0%     | 0.0%      | 0.0%  | 6     |         |             | 6          | 100.0%  | 0.0%      | 0.0%  |
| 181   | 8     |        | 2          | 10         | 80.0%      | 0.0%      | 20.0% | 8     |         | 2           | 10         | 80.0%   | 0.0%      | 20.0% |
| 195   | 8     |        | 1          | 9          | 88.9%      | 0.0%      | 11.1% | 6     |         | 3           | 9          | 66.7%   | 0.0%      | 33.3% |
| 274   | 15    |        | 2          | 17         | 88.2%      | 0.0%      | 11.8% | 15    |         | 2           | 17         | 88.2%   | 0.0%      | 11.8% |
| Total | 68354 | 3465   | 8511       | 80330      | 85.1%      | 4.3%      | 10.6% | 71292 | 2791    | 5893        | 79976      | 89.1%   | 3.5%      | 7.4%  |

**Table S6a:** Classification (equal, more restrictive and less restrictive) of the general population advisories **from composite method 2** compared to those from the regular method of analyzing individual samples broken down by species.

|                        |       | Comp     | method 2 ad | visories | compared | to Regular |          |
|------------------------|-------|----------|-------------|----------|----------|------------|----------|
| Species                | EQUAL | Less Res | More Res    | Total    | EQUAL    | Less Res   | More Res |
| Alewife                | 10    |          |             | 10       | 100.0%   | 0.0%       | 0.0%     |
| American Eel           | 104   | 15       | 15          | 134      | 77.6%    | 11.2%      | 11.2%    |
| Atlantic Salmon        | 12    | 2        |             | 14       | 85.7%    | 14.3%      | 0.0%     |
| Bigmouth Buffalo       | 6     |          |             | 6        | 100.0%   | 0.0%       | 0.0%     |
| Black Crappie          | 526   | 18       | 55          | 599      | 87.8%    | 3.0%       | 9.2%     |
| Blackfin Cisco         | 4     |          |             | 4        | 100.0%   | 0.0%       | 0.0%     |
| Bloater                | 74    | 3        | 5           | 82       | 90.2%    | 3.7%       | 6.1%     |
| Bluegill               | 206   | 10       | 28          | 244      | 84.4%    | 4.1%       | 11.5%    |
| Bowfin                 | 50    | 9        | 11          | 70       | 71.4%    | 12.9%      | 15.7%    |
| Brook Trout            | 776   | 39       | 93          | 908      | 85.5%    | 4.3%       | 10.2%    |
| Brown Bullhead         | 1177  | 37       | 83          | 1297     | 90.7%    | 2.9%       | 6.4%     |
| Brown Trout            | 749   | 27       | 58          | 834      | 89.8%    | 3.2%       | 7.0%     |
| Catfish species        | 2     |          |             | 2        | 100.0%   | 0.0%       | 0.0%     |
| Channel Catfish        | 886   | 44       | 189         | 1119     | 79.2%    | 3.9%       | 16.9%    |
| Chinook Salmon         | 969   | 26       | 38          | 1033     | 93.8%    | 2.5%       | 3.7%     |
| Chub                   | 39    |          |             | 39       | 100.0%   | 0.0%       | 0.0%     |
| Cisco (Lake Herring)   | 709   | 42       | 44          | 795      | 89.2%    | 5.3%       | 5.5%     |
| Coho Salmon            | 613   | 17       | 21          | 651      | 94.2%    | 2.6%       | 3.2%     |
| Common Carp            | 2445  | 182      | 217         | 2844     | 86.0%    | 6.4%       | 7.6%     |
| Creek Chub             | 4     |          |             | 4        | 100.0%   | 0.0%       | 0.0%     |
| Freshwater Drum        | 545   | 66       | 112         | 723      | 75.4%    | 9.1%       | 15.5%    |
| Gizzard Shad           | 70    | 1        |             | 71       | 98.6%    | 1.4%       | 0.0%     |
| Golden Redhorse Sucker | 7     |          |             | 7        | 100.0%   | 0.0%       | 0.0%     |
| Goldeye                | 21    | 4        | 3           | 28       | 75.0%    | 14.3%      | 10.7%    |
| Goldfish               | 12    |          |             | 12       | 100.0%   | 0.0%       | 0.0%     |
| Greater Redhorse       | 8     | 1        |             | 9        | 88.9%    | 11.1%      | 0.0%     |
| Humper Lake Trout      | 14    |          | 3           | 17       | 82.4%    | 0.0%       | 17.6%    |
| Lake Chub              | 4     |          |             | 4        | 100.0%   | 0.0%       | 0.0%     |
| Lake Trout             | 7336  | 346      | 1063        | 8745     | 83.9%    | 4.0%       | 12.2%    |
| Lake Whitefish         | 2949  | 106      | 235         | 3290     | 89.6%    | 3.2%       | 7.1%     |
| Largemouth Bass        | 1906  | 59       | 290         | 2255     | 84.5%    | 2.6%       | 12.9%    |
| Ling (Burbot)          | 828   | 89       | 68          | 985      | 84.1%    | 9.0%       | 6.9%     |
| Longnose Gar           | 4     |          |             | 4        | 100.0%   | 0.0%       | 0.0%     |
| Longnose Sucker        | 318   | 19       | 34          | 371      | 85.7%    | 5.1%       | 9.2%     |
| Mooneye                | 54    | 3        | 7           | 64       | 84.4%    | 4.7%       | 10.9%    |

|                      |       | Comp     | method 2 ad | lvisories | compared | l to Regular |          |
|----------------------|-------|----------|-------------|-----------|----------|--------------|----------|
| Species              | EQUAL | Less Res | More Res    | Total     | EQUAL    | Less Res     | More Res |
| Muskellunge          | 92    | 3        | 17          | 112       | 82.1%    | 2.7%         | 15.2%    |
| Northern Hog Sucker  | 2     |          |             | 2         | 100.0%   | 0.0%         | 0.0%     |
| Northern Pike        | 13920 | 935      | 1601        | 16456     | 84.6%    | 5.7%         | 9.7%     |
| Pink Salmon          | 106   |          | 1           | 107       | 99.1%    | 0.0%         | 0.9%     |
| Pumpkinseed          | 281   | 13       | 49          | 343       | 81.9%    | 3.8%         | 14.3%    |
| Quillback Carpsucker | 30    | 1        | 5           | 36        | 83.3%    | 2.8%         | 13.9%    |
| Rainbow Smelt        | 23    | 2        | 2           | 27        | 85.2%    | 7.4%         | 7.4%     |
| Rainbow Trout        | 1508  | 57       | 104         | 1669      | 90.4%    | 3.4%         | 6.2%     |
| Redhorse Sucker      | 271   | 22       | 30          | 323       | 83.9%    | 6.8%         | 9.3%     |
| River Redhorse       | 2     |          |             | 2         | 100.0%   | 0.0%         | 0.0%     |
| Rock Bass            | 655   | 49       | 105         | 809       | 81.0%    | 6.1%         | 13.0%    |
| Round Whitefish      | 128   | 1        | 6           | 135       | 94.8%    | 0.7%         | 4.4%     |
| Salmon Hybrid        | 2     | 1        |             | 3         | 66.7%    | 33.3%        | 0.0%     |
| Sauger               | 363   | 26       | 33          | 422       | 86.0%    | 6.2%         | 7.8%     |
| Shorthead Redhorse   | 62    | 4        | 7           | 73        | 84.9%    | 5.5%         | 9.6%     |
| Silver Redhorse      | 30    |          | 1           | 31        | 96.8%    | 0.0%         | 3.2%     |
| Siscowet             | 31    | 3        | 3           | 37        | 83.8%    | 8.1%         | 8.1%     |
| Smallmouth Bass      | 5478  | 177      | 847         | 6502      | 84.3%    | 2.7%         | 13.0%    |
| Splake               | 158   | 4        | 6           | 168       | 94.0%    | 2.4%         | 3.6%     |
| Spotted Sucker       | 5     |          |             | 5         | 100.0%   | 0.0%         | 0.0%     |
| Sturgeon             | 120   | 16       | 7           | 143       | 83.9%    | 11.2%        | 4.9%     |
| Sucker Family        | 1     |          | 1           | 2         | 50.0%    | 0.0%         | 50.0%    |
| Walleye              | 15671 | 682      | 2407        | 18760     | 83.5%    | 3.6%         | 12.8%    |
| White Bass           | 523   | 31       | 61          | 615       | 85.0%    | 5.0%         | 9.9%     |
| White Crappie        | 61    | 7        | 3           | 71        | 85.9%    | 9.9%         | 4.2%     |
| White Perch          | 252   | 15       | 25          | 292       | 86.3%    | 5.1%         | 8.6%     |
| White Sucker         | 3197  | 128      | 271         | 3596      | 88.9%    | 3.6%         | 7.5%     |
| Whitefish hybrid     | 8     |          |             | 8         | 100.0%   | 0.0%         | 0.0%     |
| Yellow Bullhead      | 4     |          |             | 4         | 100.0%   | 0.0%         | 0.0%     |
| Yellow Perch         | 1933  | 123      | 247         | 2303      | 83.9%    | 5.3%         | 10.7%    |
| Grand Total          | 68354 | 3465     | 8511        | 80330     | 85.1%    | 4.3%         | 10.6%    |

**Table S6b:** Classification (equal, more restrictive and less restrictive) of the general population advisories **from composite method 6** compared to those from the regular method of analyzing individual samples broken down by species.

|                        |       | Comp r   | method 6 adv | visories c | ompared | to Regular |          |
|------------------------|-------|----------|--------------|------------|---------|------------|----------|
| Species                | EQUAL | Less Res | More Res     | Total      | EQUAL   | Less Res   | More Res |
| Alewife                | 10    |          |              | 10         | 100.0%  | 0.0%       | 0.0%     |
| American Eel           | 114   | 7        | 13           | 134        | 85.1%   | 5.2%       | 9.7%     |
| Atlantic Salmon        | 13    | 1        |              | 14         | 92.9%   | 7.1%       | 0.0%     |
| Bigmouth Buffalo       | 6     |          |              | 6          | 100.0%  | 0.0%       | 0.0%     |
| Black Crappie          | 524   | 21       | 42           | 587        | 89.3%   | 3.6%       | 7.2%     |
| Blackfin Cisco         | 4     |          |              | 4          | 100.0%  | 0.0%       | 0.0%     |
| Bloater                | 71    | 6        | 3            | 80         | 88.8%   | 7.5%       | 3.8%     |
| Bluegill               | 195   | 21       | 24           | 240        | 81.3%   | 8.8%       | 10.0%    |
| Bowfin                 | 55    | 7        | 8            | 70         | 78.6%   | 10.0%      | 11.4%    |
| Brook Trout            | 793   | 32       | 80           | 905        | 87.6%   | 3.5%       | 8.8%     |
| Brown Bullhead         | 1154  | 48       | 82           | 1284       | 89.9%   | 3.7%       | 6.4%     |
| Brown Trout            | 777   | 21       | 34           | 832        | 93.4%   | 2.5%       | 4.1%     |
| Catfish species        | 2     |          |              | 2          | 100.0%  | 0.0%       | 0.0%     |
| Channel Catfish        | 928   | 49       | 140          | 1117       | 83.1%   | 4.4%       | 12.5%    |
| Chinook Salmon         | 983   | 19       | 30           | 1032       | 95.3%   | 1.8%       | 2.9%     |
| Chub                   | 38    |          |              | 38         | 100.0%  | 0.0%       | 0.0%     |
| Cisco(Lake Herring)    | 693   | 48       | 45           | 786        | 88.2%   | 6.1%       | 5.7%     |
| Coho Salmon            | 624   | 9        | 14           | 647        | 96.4%   | 1.4%       | 2.2%     |
| Common Carp            | 2578  | 127      | 132          | 2837       | 90.9%   | 4.5%       | 4.7%     |
| Creek Chub             | 2     | 2        |              | 4          | 50.0%   | 50.0%      | 0.0%     |
| Freshwater Drum        | 602   | 44       | 71           | 717        | 84.0%   | 6.1%       | 9.9%     |
| Gizzard Shad           | 70    | 1        |              | 71         | 98.6%   | 1.4%       | 0.0%     |
| Golden Redhorse Sucker | 7     |          |              | 7          | 100.0%  | 0.0%       | 0.0%     |
| Goldeye                | 22    | 3        | 3            | 28         | 78.6%   | 10.7%      | 10.7%    |
| Goldfish               | 11    |          |              | 11         | 100.0%  | 0.0%       | 0.0%     |
| Greater Redhorse       | 7     | 2        |              | 9          | 77.8%   | 22.2%      | 0.0%     |
| Humper Lake Trout      | 14    |          | 3            | 17         | 82.4%   | 0.0%       | 17.6%    |
| Lake Chub              | 4     |          |              | 4          | 100.0%  | 0.0%       | 0.0%     |
| Lake Trout             | 7796  | 263      | 663          | 8722       | 89.4%   | 3.0%       | 7.6%     |
| Lake Whitefish         | 2977  | 109      | 190          | 3276       | 90.9%   | 3.3%       | 5.8%     |
| Largemouth Bass        | 2015  | 57       | 176          | 2248       | 89.6%   | 2.5%       | 7.8%     |
| Ling (Burbot)          | 880   | 54       | 50           | 984        | 89.4%   | 5.5%       | 5.1%     |
| Longnose Gar           | 3     | 1        |              | 4          | 75.0%   | 25.0%      | 0.0%     |
| Longnose Sucker        | 328   | 13       | 27           | 368        | 89.1%   | 3.5%       | 7.3%     |
| Mooneye                | 55    | 3        | 5            | 63         | 87.3%   | 4.8%       | 7.9%     |

|                      |       | Comp r   | nethod 6 adv | visories c | ompared | to Regular |          |
|----------------------|-------|----------|--------------|------------|---------|------------|----------|
| Species              | EQUAL | Less Res | More Res     | Total      | EQUAL   | Less Res   | More Res |
| Muskellunge          | 101   | 5        | 6            | 112        | 90.2%   | 4.5%       | 5.4%     |
| Northern Hog Sucker  | 2     |          |              | 2          | 100.0%  | 0.0%       | 0.0%     |
| Northern Pike        | 14848 | 552      | 1018         | 16418      | 90.4%   | 3.4%       | 6.2%     |
| Pink Salmon          | 106   |          | 1            | 107        | 99.1%   | 0.0%       | 0.9%     |
| Pumpkinseed          | 253   | 31       | 44           | 328        | 77.1%   | 9.5%       | 13.4%    |
| Quillback Carpsucker | 29    | 4        | 3            | 36         | 80.6%   | 11.1%      | 8.3%     |
| Rainbow Smelt        | 22    | 3        | 2            | 27         | 81.5%   | 11.1%      | 7.4%     |
| Rainbow Trout        | 1547  | 45       | 73           | 1665       | 92.9%   | 2.7%       | 4.4%     |
| Redhorse Sucker      | 250   | 40       | 33           | 323        | 77.4%   | 12.4%      | 10.2%    |
| River Redhorse       | 2     |          |              | 2          | 100.0%  | 0.0%       | 0.0%     |
| Rock Bass            | 639   | 60       | 106          | 805        | 79.4%   | 7.5%       | 13.2%    |
| Round Whitefish      | 127   | 1        | 5            | 133        | 95.5%   | 0.8%       | 3.8%     |
| Salmon Hybrid        | 3     |          |              | 3          | 100.0%  | 0.0%       | 0.0%     |
| Sauger               | 367   | 27       | 26           | 420        | 87.4%   | 6.4%       | 6.2%     |
| Shorthead Redhorse   | 65    | 2        | 5            | 72         | 90.3%   | 2.8%       | 6.9%     |
| Silver Redhorse      | 29    | 1        |              | 30         | 96.7%   | 3.3%       | 0.0%     |
| Siscowet             | 34    |          | 3            | 37         | 91.9%   | 0.0%       | 8.1%     |
| Smallmouth Bass      | 5769  | 170      | 534          | 6473       | 89.1%   | 2.6%       | 8.2%     |
| Splake               | 160   | 3        | 4            | 167        | 95.8%   | 1.8%       | 2.4%     |
| Spotted Sucker       | 4     | 1        |              | 5          | 80.0%   | 20.0%      | 0.0%     |
| Sturgeon             | 112   | 18       | 13           | 143        | 78.3%   | 12.6%      | 9.1%     |
| Sucker Family        | 1     |          | 1            | 2          | 50.0%   | 0.0%       | 50.0%    |
| Walleye              | 16550 | 542      | 1599         | 18691      | 88.5%   | 2.9%       | 8.6%     |
| White Bass           | 494   | 30       | 75           | 599        | 82.5%   | 5.0%       | 12.5%    |
| White Crappie        | 60    | 8        | 2            | 70         | 85.7%   | 11.4%      | 2.9%     |
| White Perch          | 235   | 16       | 34           | 285        | 82.5%   | 5.6%       | 11.9%    |
| White Sucker         | 3225  | 133      | 221          | 3579       | 90.1%   | 3.7%       | 6.2%     |
| Whitefish hybrid     | 8     |          |              | 8          | 100.0%  | 0.0%       | 0.0%     |
| Yellow Bullhead      | 4     |          |              | 4          | 100.0%  | 0.0%       | 0.0%     |
| Yellow Perch         | 1891  | 131      | 250          | 2272       | 83.2%   | 5.8%       | 11.0%    |
| Grand Total          | 71292 | 2791     | 5893         | 79976      | 89.1%   | 3.5%       | 7.4%     |

|            | Comp  | method   | 2 advisorie | s comp | ared to l | Regular  |          |            | Comp  | method   | 6 advisorie | s comp | ared to | Regular  |          |
|------------|-------|----------|-------------|--------|-----------|----------|----------|------------|-------|----------|-------------|--------|---------|----------|----------|
| Size class | EQUAL | Less Res | More Res    | Total  | EQUAL     | Less Res | More Res | Size class | EQUAL | Less Res | More Res    | Total  | EQUAL   | Less Res | More Res |
| 15-20cm    | 2789  | 73       | 232         | 3094   | 90.1%     | 2.4%     | 7.5%     | 15-20cm    | 2715  | 120      | 192         | 3027   | 89.7%   | 4.0%     | 6.3%     |
| 20-25cm    | 4477  | 140      | 496         | 5113   | 87.6%     | 2.7%     | 9.7%     | 20-25cm    | 4494  | 162      | 394         | 5050   | 89.0%   | 3.2%     | 7.8%     |
| 25-30cm    | 5691  | 185      | 626         | 6502   | 87.5%     | 2.8%     | 9.6%     | 25-30cm    | 5762  | 203      | 497         | 6462   | 89.2%   | 3.1%     | 7.7%     |
| 30-35cm    | 6677  | 225      | 826         | 7728   | 86.4%     | 2.9%     | 10.7%    | 30-35cm    | 6889  | 230      | 572         | 7691   | 89.6%   | 3.0%     | 7.4%     |
| 35-40cm    | 7371  | 303      | 958         | 8632   | 85.4%     | 3.5%     | 11.1%    | 35-40cm    | 7709  | 249      | 634         | 8592   | 89.7%   | 2.9%     | 7.4%     |
| 40-45cm    | 7756  | 336      | 1000        | 9092   | 85.3%     | 3.7%     | 11.0%    | 40-45cm    | 8109  | 271      | 694         | 9074   | 89.4%   | 3.0%     | 7.6%     |
| 45-50cm    | 7483  | 407      | 983         | 8873   | 84.3%     | 4.6%     | 11.1%    | 45-50cm    | 7864  | 313      | 676         | 8853   | 88.8%   | 3.5%     | 7.6%     |
| 50-55cm    | 6681  | 385      | 855         | 7921   | 84.3%     | 4.9%     | 10.8%    | 50-55cm    | 7026  | 278      | 596         | 7900   | 88.9%   | 3.5%     | 7.5%     |
| 55-60cm    | 5843  | 363      | 752         | 6958   | 84.0%     | 5.2%     | 10.8%    | 55-60cm    | 6245  | 250      | 457         | 6952   | 89.8%   | 3.6%     | 6.6%     |
| 60-65cm    | 4907  | 303      | 624         | 5834   | 84.1%     | 5.2%     | 10.7%    | 60-65cm    | 5206  | 205      | 415         | 5826   | 89.4%   | 3.5%     | 7.1%     |
| 65-70cm    | 3841  | 285      | 503         | 4629   | 83.0%     | 6.2%     | 10.9%    | 65-70cm    | 4108  | 182      | 333         | 4623   | 88.9%   | 3.9%     | 7.2%     |
| 70-75cm    | 2831  | 221      | 372         | 3424   | 82.7%     | 6.5%     | 10.9%    | 70-75cm    | 3011  | 164      | 244         | 3419   | 88.1%   | 4.8%     | 7.1%     |
| >75cm      | 2007  | 239      | 284         | 2530   | 79.3%     | 9.4%     | 11.2%    | >75cm      | 2154  | 164      | 189         | 2507   | 85.9%   | 6.5%     | 7.5%     |
| Total      | 68354 | 3465     | 8511        | 80330  | 85.1%     | 4.3%     | 10.6%    | Total      | 71292 | 2791     | 5893        | 79976  | 89.1%   | 3.5%     | 7.4%     |

**Table S7:** Classification (equal, more restrictive and less restrictive) of the general population advisories from composite methods 2 and 6 compared to those from the regular method of analyzing individual samples broken down by fish size class.

**Table S8:** Classification (equal, more restrictive and less restrictive) of the general population advisories from composite methods 2 and 6 compared to those from the regular method of analyzing individual samples broken down by mercury concentration class (mean concentration - in  $\mu g/g$  ww - for a species-, location-, year-specific sampling event was classified into one of the mentioned classes).

|            | Comp  | method   | 2 advisorie | s comp | ared to | Regular  |          |            | Comp  | method   | 6 advisorie | s comp | ared to | Regular  |          |
|------------|-------|----------|-------------|--------|---------|----------|----------|------------|-------|----------|-------------|--------|---------|----------|----------|
| Conc class | EQUAL | Less Res | More Res    | Total  | EQUAL   | Less Res | More Res | Conc class | EQUAL | Less Res | More Res    | Total  | EQUAL   | Less Res | More Res |
| 0-0.1      | 7789  | 106      | 168         | 8064   | 96.6%   | 1.3%     | 2.1%     | 0-0.1      | 7509  | 93       | 124         | 8081   | 92.9%   | 1.2%     | 1.5%     |
| 0.1-0.2    | 13208 | 616      | 1185        | 15009  | 88.0%   | 4.1%     | 7.9%     | 0.1-0.2    | 13442 | 493      | 908         | 14843  | 90.6%   | 3.3%     | 6.1%     |
| 0.2-0.3    | 10354 | 770      | 1540        | 12664  | 81.8%   | 6.1%     | 12.2%    | 0.2-0.3    | 10758 | 602      | 1021        | 12381  | 86.9%   | 4.9%     | 8.2%     |
| 0.3-0.5    | 15085 | 997      | 2628        | 18710  | 80.6%   | 5.3%     | 14.0%    | 0.3-0.5    | 15917 | 771      | 1900        | 18588  | 85.6%   | 4.1%     | 10.2%    |
| 0.5-0.75   | 11347 | 550      | 1668        | 13565  | 83.6%   | 4.1%     | 12.3%    | 0.5-0.75   | 11844 | 449      | 1031        | 13324  | 88.9%   | 3.4%     | 7.7%     |
| 0.75-1     | 5710  | 256      | 737         | 6703   | 85.2%   | 3.8%     | 11.0%    | 0.75-1     | 6300  | 229      | 508         | 7037   | 89.5%   | 3.3%     | 7.2%     |
| 1-1.5      | 3321  | 141      | 433         | 3895   | 85.3%   | 3.6%     | 11.1%    | 1-1.5      | 3764  | 125      | 296         | 4185   | 89.9%   | 3.0%     | 7.1%     |
| 1.5-2      | 757   | 14       | 94          | 865    | 87.5%   | 1.6%     | 10.9%    | 1.5-2      | 912   | 20       | 64          | 996    | 91.6%   | 2.0%     | 6.4%     |
| 2-3        | 599   | 12       | 53          | 664    | 90.2%   | 1.8%     | 8.0%     | 2-3        | 570   | 7        | 35          | 612    | 93.1%   | 1.1%     | 5.7%     |
| 3-5        | 136   | 3        | 5           | 144    | 94.4%   | 2.1%     | 3.5%     | 3-5        | 228   | 2        | 6           | 236    | 96.6%   | 0.8%     | 2.5%     |
| 5-10       | 41    |          |             | 41     | 100.0%  | 0.0%     | 0.0%     | 5-10       | 41    |          |             | 41     | 100.0%  | 0.0%     | 0.0%     |
| 10-20      | 7     |          |             | 7      | 100.0%  | 0.0%     | 0.0%     | 10-20      | 7     |          |             | 7      | 100.0%  | 0.0%     | 0.0%     |
| Total      | 68354 | 3465     | 8511        | 80331  | 85.1%   | 4.3%     | 10.6%    | Total      | 71292 | 2791     | 5893        | 80331  | 88.7%   | 3.5%     | 7.3%     |

**Table S9a:** Fish species- and size category-specific number of advisories and percentage of advisories from the <u>composite method 2</u> that are less restrictive compared to those from the regular method. The cases where the number of advisories were >100 have been highlighted in bold; cases where >10% of the advisories were less restrictive have been highlighted in red; and cases where the number of total advisories were >100 and >10% of the advisories were less restrictive have been highlighted with a black border.

|                                    |            |           |         |         |         | # of adv | isories for ea | ach size cate | gory |         |         |         |       |             |         |          |          |     | % of advisori | ies that are l | ess restrictive | e compared | to the regula | ar method |         |         |       |          |
|------------------------------------|------------|-----------|---------|---------|---------|----------|----------------|---------------|------|---------|---------|---------|-------|-------------|---------|----------|----------|-----|---------------|----------------|-----------------|------------|---------------|-----------|---------|---------|-------|----------|
| Species                            | 15-20cm    | 20-25cm   | 25-30cm | 30-35cm | 35-40cm |          | 45-50cm        |               |      | 60-65cm | 65-70cm | 70-75cm | >75cm | Total       | 15-20cm | 20-25cm  | 25-30cm  |     |               |                | 45-50cm         | 50-55cm    | 55-60cm       | 60-65cm   | 65-70cm | 70-75cm | >75cm | Total    |
| Sturgeon                           |            |           |         | 1       | 1       | 2        | 8              | 11            | 17   | 18      | 18      | 21      | 46    | 143         |         |          |          | 0%  | 0%            | 0%             | 13%             | 18%        | 12%           | 6%        | 6%      | 14%     | 13%   | 11%      |
| Longnose Gar                       |            |           |         |         |         |          |                | 1             |      |         |         |         | 3     | 4           |         |          |          |     |               |                |                 | 0%         |               |           |         |         | 0%    | 0%       |
| Bowfin                             |            |           | 1       | 2       | 6       | 9        | 10             | 12            | 14   | 8       | 6       | 2       |       | 70          |         |          | 0%       | 0%  | 17%           | 11%            | 20%             | 8%         | 7%            | 25%       | 17%     | 0%      |       | 13%      |
| Alewife                            | 7          | 3         |         |         |         |          |                |               |      |         |         |         |       | 10          | 0%      | 0%       |          |     |               |                |                 |            |               |           |         |         |       | 0%       |
| Gizzard Shad                       | 4          | ٤         | 11      | 17      | 17      | 10       | 4              |               |      |         |         |         |       | 71          | 0%      | 0%       | 0%       | 0%  | 0%            | 10%            | 0%              |            |               |           |         |         |       | 1%       |
| Pink Salmon                        |            |           |         | 8       | 22      | 25       | 24             | 19            | 9    |         |         |         |       | 107         |         |          |          | 0%  | 0%            | 0%             | 0%              | 0%         | 0%            |           |         |         |       | 0%       |
| Coho Salmon                        |            | 2         | 8       | 20      | 45      | 58       | 70             | 82            | 88   | 86      | 79      | 65      | 48    | 651         |         | 0%       | 0%       | 0%  | 0%            | 3%             | 1%              | 5%         | 3%            | 3%        | 0%      | 2%      | 6%    | 3%       |
| Chinook Salmon                     | 2          | 3         | 11      | 20      | 50      | 69       | 79             | 89            | 129  | 132     | 141     | 146     | 162   | 1033        | 0%      | 0%       | 0%       | 0%  | 0%            | 0%             | 0%              | 1%         | 2%            | 2%        | 3%      | 3%      | 8%    | 3%       |
| Rainbow Trout                      | 5          | 16        | 21      | 66      | 115     | 170      | 195            | 206           | 220  | 211     | 188     | 152     | 104   | 1669        | 0%      | 0%       | 0%       | 0%  | 1%            | 1%             | 2%              | 2%         | 2%            | 3%        | 5%      | 4%      | 17%   | 3%       |
| Atlantic Salmon                    |            |           |         |         |         |          | 2              | 3             | 3    | 3       | 1       | 1       | 1     | 14          |         |          |          |     |               |                | 0%              | 33%        | 33%           | 0%        | 0%      | 0%      | 0%    | 14%      |
| Brown Trout                        | 12         | 33        | 42      | 55      | 67      | 81       | 104            | 115           | 112  | 97      | 70      | 35      | 11    | 834         | 0%      | 3%       | 0%       | 4%  | 4%            | 6%             | 3%              | 1%         | 1%            | 2%        | 7%      | 3%      | 27%   | 3%       |
| Brook Trout                        | 80         | 128       | 164     | 172     | 161     | 117      | 59             | 24            | 3    |         |         |         |       | 908         | 4%      | 3%       | 4%       | 2%  | 7%            | 5%             | 2%              | 8%         | 0%            |           |         |         |       | 4%       |
| Lake Trout                         | 90         | 207       | 401     | 602     | 755     | 896      | 1005           | 1046          | 1050 | 972     | 786     | 563     | 372   | 8745        | 0%      | 2%       | 2%       | 3%  | 3%            | 3%             | 4%              | 3%         | 5%            | 4%        | 6%      | 7%      | 8%    | 4%       |
| Splake                             | 2          | ٤         | 11      | 17      | 21      | 23       | 24             | 20            | 17   | 11      | 7       | 4       | 3     | 168         | 0%      | 0%       | 0%       | 0%  | 0%            | 9%             | 4%              | 5%         | 0%            | 0%        | 0%      | 0%      | 0%    | 2%       |
| Siscowet                           |            | 1         | 2       | 2       | 2       | 4        | 4              | 4             | 4    | 4       | 4       | 3       | 3     | 37          |         | 0%       | 0%       | 0%  | 0%            | 0%             | 0%              | 0%         | 0%            | 25%       | 25%     | 0%      | 33%   | 8%       |
| Humper (Banker) Lake Trout         |            | 1         | 2       | 2       | 2       | 2        | 2              | 2             | 2    | 2       |         |         |       | 17          |         | 0%       | 0%       | 0%  | 0%            | 0%             | 0%              | 0%         | 0%            | 0%        |         |         |       | 0%       |
| Lake Whitefish                     | 24         | 82        | 194     | 326     | 461     | 566      | 608            | 506           | 321  | 138     | 51      | 11      | 3     | 3291        | 0%      | 2%       | 3%       | 2%  | 2%            | 2%             | 4%              | 4%         | 3%            | 6%        | 6%      | 0%      | 0%    | 3%       |
| Cisco(Lake Herring)                | 66         | 122       | 152     | 171     | 149     | 93       | 30             | 10            | 2    |         |         |         |       | 795         | 3%      | 2%       | 5%       | 5%  | 5%            | 12%            | 7%              | 0%         | 50%           |           |         |         |       | 5%       |
| Bloater                            | 3          | 22        |         |         |         | 1        |                |               |      |         |         |         |       | 82          | 0%      | 0%       | 4%       | 0%  | 22%           | 0%             |                 |            |               |           |         |         |       | 4%       |
| Blackfin Cisco                     |            |           | 1       |         | 1       | 1        |                |               |      |         |         |         |       | 4           |         |          | 0%       | 0%  | 0%            | 0%             |                 |            |               |           |         |         |       | 0%       |
| Round Whitefish                    | 1          | 3         | 8       | 25      | 34      | 34       | 23             | 6             | 1    |         |         |         |       | 135         | 0%      | 0%       | 0%       | 0%  | 3%            | 0%             | 0%              | 0%         | 0%            |           |         |         |       | 1%       |
| Chub (not C. artedii)              | 6          | 12        | 13      |         | 2       | 1        |                |               |      |         |         |         |       | 39          | 0%      | 0%       | 0%       | 0%  | 0%            | 0%             |                 |            |               |           |         |         |       | 0%       |
| Rainbow Smelt                      | 18         | ٤         | 1       |         |         |          |                |               |      |         |         |         |       | 27          | 6%      | 13%      | 0%       |     |               |                |                 |            |               |           |         |         |       | 7%       |
| Northern Pike                      | 37         | 68        | 182     | 469     | 888     | 1431     | 1914           | 2190          | 2268 | 2152    | 1921    | 1611    | 1325  | 16456       | 0%      | 0%       | 1%       | 2%  | 3%            | 4%             | 5%              | 5%         | 6%            | 5%        | 7%      | 7%      | 10%   | 6%       |
| Muskellunge                        |            |           | 2       | 3       | 3       | 6        | 7              | 9             | 9    | 12      | 16      | 14      | 31    | 112         |         |          | 0%       | 0%  | 0%            | 0%             | 14%             | 0%         | 0%            | 0%        | 6%      | 0%      | 3%    | 3%       |
| Goldeye                            |            |           | 5       | 10      | 8       | 2        |                |               |      |         |         |         |       | 28          |         | 0%       | 20%      | 10% | 25%           | 0%             |                 |            |               |           |         |         |       | 14%      |
| Mooneye                            |            | e         | 12      |         | 20      | 3        | 1              | 1             | 1    |         |         |         |       | 64          |         | 0%       | 8%       | 10% | 0%            | 0%             | 0%              | 0%         | 0%            |           |         |         |       | 5%       |
| Sucker Family                      |            |           |         |         |         | 1        | 1              |               |      |         |         |         |       | 2           |         |          |          |     |               | 0%             | 0%              |            |               |           |         |         |       | 0%       |
| Quillback Carpsucker               | 2          |           | 3       | 3       | 4       | 6        | 6              | 6             | 4    |         |         |         |       | 36          | 0%      | 0%       | 0%       | 0%  | 0%            | 0%             | 0%              | 0%         | 25%           |           |         |         |       | 3%       |
| Longnose Sucker                    |            | 14        | 28      | 56      | 81      | 92       | 70             | 26            | 3    | 1       |         |         |       | 371         | •,-     | 0%       | 0%       | 0%  | 1%            | 4%             | 9%              | 19%        | 67%           | 100%      |         |         |       | 5%       |
| White Sucker                       | 70         |           |         |         |         | 712      | 595            | 323           | 77   | 9       |         |         |       | 3596        | 0%      | 0%       | 1%       | 1%  | 2%            | 4%             | 5%              | 9%         | 17%           | 22%       |         |         |       | 4%       |
| Northern Hog Sucker                |            |           | 1       | 1       |         |          |                |               |      | -       |         |         |       | 2           |         |          | 0%       | 0%  |               | .,-            | <b>U</b> /1     |            |               |           |         |         |       | 0%       |
| Bigmouth Buffalo                   |            |           |         |         | 1       | 1        | 1              |               | 1    | 1       | 1       |         |       | - 6         |         |          |          |     | 0%            | 0%             | 0%              |            | 0%            | 0%        | 0%      |         |       | 0%       |
| Spotted Sucker                     |            |           |         |         | 2       | 2        | 1              |               | -    | -       | -       |         |       | 5           |         |          |          |     | 0%            | 0%             | 0%              |            | 0,0           | 0/0       | 0/0     |         |       | 0%       |
| Silver Redhorse                    | 1          |           | 4       | 4       | 5       | 5        | 5              | 3             | 2    |         |         |         |       | 31          | 0%      | 0%       | 0%       | 0%  | 0%            | 0%             | 0%              | 0%         | 0%            |           |         |         |       | 0%       |
| Golden Redhorse Sucker             | -          |           | 1       | 2       | 3       | 1        | 5              | 3             | ~    |         |         |         |       | 7           | 0/0     | 0/0      | 0%       | 0%  | 0%            | 0%             | 0/0             | 0/0        | 0/0           |           |         |         |       | 0%       |
| Shorthead Redhorse                 | 3          | 4         | 8       | 12      |         | 15       | 11             | 3             | 2    |         |         |         |       | 73          | 0%      | 0%       | 0%       | 0%  | 0%            | 13%            | 18%             | 0%         | 0%            |           |         |         |       | 5%       |
| Greater Redhorse                   |            |           |         |         | 1       | 2        | 3              | 2             | 1    |         |         |         |       | 0           | 0/0     | 0/0      | 070      | 0/0 | 0%            | 50%            | 0%              | 0%         | 0%            |           |         |         |       | 11%      |
| River Redhorse                     |            |           |         |         | -       | ~        | 5              | 1             | 1    |         |         |         |       | 2           |         |          |          |     | 0/0           | 3070           | 0/0             | 0%         | 0%            |           |         |         | _     | 0%       |
| Redhorse Sucker                    |            | 6         | 20      | 37      | 53      | 63       | 59             | 44            | 23   | 10      | 6       | 2       |       | 323         |         | 17%      | 10%      | 8%  | 6%            | 8%             | 7%              | 7%         | 0%            | 10%       | 0%      | 0%      |       | 7%       |
| Goldfish                           | 1          |           |         |         | 2       | 05       | 35             |               | 20   | 10      | 0       | -       |       | 12          | 0%      | 0%       | 0%       | 0%  | 0%            | 0/0            | 775             | 770        | 0%            | 10/0      | 0/0     | 070     |       | 0%       |
| Lake Chub                          | 1          | 1         | -       | 1       | -       |          |                |               | -    |         |         |         |       | 4           | 0%      | 0%       | 0%       | 0%  | 0/0           |                |                 |            | 0,0           |           |         |         |       | 0%       |
| Common Carp                        | 6          | 19        | 47      | 94      | 149     | 211      | 302            | 366           | 392  | 390     | 361     | 288     | 219   | 2844        | 0%      | 0%       | 2%       | 2%  | 5%            | 4%             | 7%              | 6%         | 5%            | 8%        | 9%      | 7%      | 9%    | 6%       |
| Creek Chub                         | 2          | 15        |         |         | 149     | 211      | 502            | 200           | 592  | 590     | 100     | 208     | 213   | 2044        | 0%      | 0%       | 2%       | ∠%  | 3%            | 476            | 176             | 0%         | 3%            | 0%        | 5%      | 1%      | 3%    | 0%       |
| Yellow Bullhead                    | 2          |           | 3       |         |         |          |                |               |      |         |         |         |       | 4           | 0%      | 0%       | 0%       |     |               |                |                 |            |               |           |         |         |       | 0%       |
| Brown Bullhead                     | 107        | 356       |         | 304     | 101     | 4        |                |               |      |         |         |         |       | 1297        | 2%      | 1%       | 2%       | 5%  | 10%           | 0%             |                 |            |               |           |         |         |       | 3%       |
| Channel Catfish                    | 107        | 19        |         |         |         | 4<br>147 | 155            | 149           | 133  | 106     | 77      | 46      | 24    | 1297        | 2%      | 5%       | 6%       | 3%  | 2%            | 5%             | 2%              | 4%         | 5%            | 4%        | 6%      | 7%      | 0%    |          |
| Catfish species (not I. punctatus) | 0          | 15        |         | 1       | 110     | 14/      | 100            | 143           | 1.55 | 100     |         | 40      | 24    | 1119        | 076     |          | 0%       | 0%  | £70           | 376            | £/0             |            | 5/6           |           | 0%      | / 76    | 076   | 4%       |
| American Eel                       |            | 1         | 1       | 1       | 2       | 2        | 4              | 11            | 13   | 16      | 26      | 28      | 29    | 134         |         | 0%       | 0%       | 0%  | 0%            | 0%             | 25%             | 18%        | 15%           | 6%        | 8%      | 11%     | 14%   | 11%      |
| Ling (Burbot)                      | 4          | 13        | -       | 60      | -       | 127      | 139            | 146           | 134  | 10      | 69      | 36      | 29    | 985         | 25%     | 0%       | 3%       | 8%  | 5%            | 6%             | 9%              | 6%         | 8%            | 14%       | 16%     | 11%     | 14%   | 9%       |
| White Perch                        | 4          |           |         |         |         | 12/      | 123            | 140           | 154  | 106     | 69      | 50      | 24    | 985         | 25%     | 4%       | 3%       | 8%  | 5%            | 0%             | 3%              | 0%         | 0%            | 14%       | 10%     | 19%     | 17%   | 9%<br>5% |
| White Bass                         | 20         | 97        |         |         |         | 16       |                |               |      |         |         |         |       | 292<br>615  | 1%      | 4%       | 8%<br>2% | 4%  | 12%           | 0%             |                 |            |               |           |         |         |       | 5%       |
| Rock Bass                          | 412        | 313       |         |         | 129     | 16       |                |               |      |         |         |         |       | 809         | 2%      | 3%<br>9% | 12%      | 4%  | 1270          | 0%             |                 |            |               |           |         |         |       | 5%       |
|                                    | 412        |           |         | 1       |         |          |                |               |      |         |         |         |       | 343         | 2%      | 9%<br>5% | 12%      | 0%  |               |                |                 |            |               |           |         |         |       | 6%<br>4% |
| Pumpkinseed                        |            | 81        |         |         |         |          |                |               |      |         |         |         |       | 343<br>244  | 3%      | 5%<br>4% | 100%     |     |               |                |                 |            |               |           |         |         |       | 4%       |
| Bluegill<br>Smallmouth Bass        | 170<br>350 | /:<br>842 |         | 1295    | 1236    | 1011     | 515            | 88            | 6    |         |         |         |       | 244<br>6502 | 4%      | 4%<br>1% | 0%<br>3% | 2%  | 3%            | 3%             | 5%              | 7%         | 170/          |           |         |         |       | 4%       |
|                                    |            |           |         |         |         |          |                |               | 6    |         |         |         |       |             |         |          |          |     | 3%<br>4%      |                | 5%<br>4%        |            | 17%           |           |         |         |       |          |
| Largemouth Bass                    | 126        | 334       |         |         |         | 295      | 125            | 13            | 1    |         |         |         |       | 2255        | 1%      | 1%       | 1%       | 2%  |               | 4%             | 4%              | 0%         | 0%            |           |         |         |       | 3%       |
| White Crappie                      | 16         | 23        |         | 10      |         |          |                |               |      |         |         |         |       | /1          | 6%      | 9%       | 6%       | 20% | 25%           |                |                 |            |               |           |         |         |       | 10%      |
| Black Crappie                      | 147        | 211       |         |         |         |          |                |               |      |         |         |         |       | 599         | 2%      | 2%       | 2%       | 9%  | 0%            |                |                 |            |               |           |         |         |       | 3%       |
| Yellow Perch                       | 708        | 821       |         | 187     |         |          |                |               |      |         |         |         |       | 2303        | 3%      | 5%       | 7%       | 10% | 22%           |                |                 |            |               |           |         |         |       | 5%       |
| Sauger                             | 13         | 70        |         |         |         | 24       | 6              | 1             | 1    | 1       |         |         |       | 422         | 0%      | 3%       | 4%       | 6%  | 8%            | 8%             | 33%             | 100%       | 0%            | 100%      |         |         |       | 6%       |
| Walleye                            | 221        | 692       |         |         |         | 2630     | 2601           | 2311          | 1854 | 1336    | 797     | 394     | 121   | 18760       | 1%      | 1%       | 2%       | 2%  | 3%            | 3%             | 4%              | 5%         | 5%            | 5%        | 4%      | 5%      | 5%    | 4%       |
| Freshwater Drum                    | 13         | 36        | 75      | 124     | 132     | 119      | 99             | 71            | 36   | 11      | 4       | 2       | 1     | 723         | 0%      | 6%       | 3%       | 5%  | 11%           | 9%             | 13%             | 10%        | 19%           | 27%       | 0%      | 0%      | 100%  | 9%       |
| Salmon Hybrid                      |            |           |         |         |         |          |                |               | 1    | 1       | 1       |         |       | 3           |         |          |          |     |               |                |                 |            | 0%            | 0%        | 100%    |         |       | 33%      |
| Whitefish hybrid                   |            |           |         | 1       | 1       | 2        | 2              | 1             | 1    |         |         |         |       | 8           |         |          |          | 0%  | 0%            | 0%             | 0%              | 0%         | 0%            |           |         |         |       | 0%       |
| Total                              | 3094       | 5113      | 6502    | 7728    | 8632    | 9092     | 8873           | 7921          | 6958 | 5834    | 4630    | 3424    | 2530  | 80331       | 2%      | 3%       | 3%       | 3%  | 4%            | 4%             | 5%              | 5%         | 5%            | 5%        | 6%      | 6%      | 9%    | 4%       |

**Table S9b:** Fish species- and size category-specific number of advisories, and percentage of advisories from the <u>composite method 6</u> that are less restrictive compared to those from the regular method. The cases where the number of advisories were >100 have been highlighted in bold; cases where >10% of the advisories were less restrictive have been highlighted in red; and cases where the number of total advisories were >100 and >10% of the advisories were less restrictive have been highlighted with a black border.

|                                    |         |         |         |         |         | # of adv | visories for e | ach size cat | tegory |         |         |         |       |            |            |         |         | 9   | % of advisories | s that are le | ss restrictiv | e compared | to the regula | ar method |            |             |           |      |
|------------------------------------|---------|---------|---------|---------|---------|----------|----------------|--------------|--------|---------|---------|---------|-------|------------|------------|---------|---------|-----|-----------------|---------------|---------------|------------|---------------|-----------|------------|-------------|-----------|------|
| Species                            | 15-20cm | 20-25cm | 25-30cm | 30-35cm | 35-40cm | 40-45cm  |                | 50-55cm      |        | 60-65cm | 65-70cm | 70-75cm | >75cm | Total      | 15-20cm    | 20-25cm | 25-30cm |     |                 | 40-45cm       | 45-50cm       | 50-55cm    | 55-60cm       | 60-65cm   | 65-70cm    | 70-75cm     | >75cm     | Tota |
| Sturgeon                           |         |         |         | 1       | 1       | 2        | 8              | 11           | 17     | 18      | 18      | 21      | 46    | 143        |            |         |         | 0%  | 0%              | 0%            | 0%            | 9%         | 12%           | 11%       | 11%        | 19%         | 15%       | 13%  |
| Longnose Gar                       |         |         |         | -       | -       | ~        | 0              | 1            |        | 10      | 10      |         | 3     | 4          |            |         |         | 070 | 0,0             | 0/0           | 0/0           | 100%       | 12/0          | 11/0      | 11/0       | 1370        | 0%        | 25%  |
| Bowfin                             |         |         | 1       | 2       | 6       | 9        | 10             | 12           | 14     | 8       | 6       | 2       | 2     | 70         |            |         | 0%      | 0%  | 17%             | 11%           | 10%           | 8%         | 7%            | 13%       | 17%        | 0%          | 0/0       | 109  |
| Alewife                            | 7       | 2       | -       | -       | 0       | 5        | 10             |              | 14     | 0       | 0       | ~       |       | 10         | 0%         | 0%      | 0/0     | 070 | 1770            | 11/0          | 10/0          | 0/0        |               | 1370      | 1770       | 0/0         |           | 02   |
| Gizzard Shad                       | 4       | 8       | 11      | 17      | 17      | 10       | 4              |              |        |         |         |         |       | 71         | 0%         | 0%      | 0%      | 0%  | 0%              | 10%           | 0%            |            |               |           |            |             |           | 19   |
| Pink Salmon                        | 4       | 6       |         | 8       | 22      | 25       | 24             | 19           | 9      |         |         |         |       | 107        | 078        | 0/8     | 076     | 0%  | 0%              | 0%            | 0%            | 0%         | 0%            |           |            |             |           | 02   |
| Coho Salmon                        |         | ,       | 8       | 20      | 45      | 58       | 70             | 82           | 88     | 86      | 79      | 65      | 48    | 651        |            | 0%      | 0%      | 0%  | 0%              | 2%            | 0%            | 2%         | 1%            | 2%        | 0%         | 2%          | 4%        | 19   |
| Chinook Salmon                     | 2       | 2       | °<br>11 | 20      | 43      | 69       | 70             | 89           | 129    | 132     | 141     | 146     | 162   | 1033       | 0%         | 0%      | 0%      | 0%  | 0%              | 2%            | 0%            | 0%         | 2%            | 1%        | 2%         | 1%          | 476<br>6% | 17   |
|                                    | 5       | 3       |         |         | 115     | 170      | 195            | 206          | 220    | 211     | 141     | 140     | 102   | 1055       | 0%         | 0%      | 0%      | 0%  | 2%              | 1%            | 3%            | 2%         | 1%            | 2%        | 4%         | 4%          | 11%       | 27   |
| Rainbow Trout                      | 5       | 16      | 21      | 66      | 115     | 1/0      | 195            | 206          | 220    | 211     | 188     | 152     | 104   | 1009       | 0%         | 0%      | 0%      | 0%  | 2%              | 1%            |               | 2%         |               |           |            |             |           | 37   |
| Atlantic Salmon                    |         |         | 42      |         | 67      |          | -              | -            | -      | -       | 1       | 1       | 1     | 14         | <b>m</b> / | 00/     | 00/     | 20/ | 401             | 4%            | 0%            | 33%        | 0%            | 0%        | 0%         | 0%          | 0%        | 77   |
| Brown Trout                        | 12      | 33      |         | 55      |         | 81       | 104            | 115          | 112    | 97      | 70      | 35      | 11    | 834<br>908 | 0%<br>5%   | 0%      | 0%      | 2%  | 1%<br>7%        |               | 5%            | 0%         | 3%            | 2%        | 4%         | 3%          | 18%       | 39   |
| Brook Trout                        | 80      | 128     |         | 172     | 161     | 117      | 59             | 24           | 2      |         |         |         |       |            |            |         | 3%      | 2%  |                 | 4%            | 3%            | 0%         | 0%            |           |            |             |           | 4%   |
| Lake Trout                         | 90      | 207     |         | 602     | 755     | 896      | 1005           | 1046         | 1050   | 972     | 786     | 563     | 372   | 8745       | 0%         | 2%      | 1%      | 3%  | 2%              | 2%            | 2%            | 4%         | 3%            | 3%        | 4%         | 5%          | 5%        | 39   |
| Splake                             | 2       | 8       |         | 17      | 21      | 23       | 24             | 20           | 17     | 11      | 7       | 4       | 3     | 168        | 0%         | 0%      | 0%      | 0%  | 0%              | 4%            | 0%            | 0%         | 0%            | 9%        | 0%         | 0%          | 33%       | 29   |
| Siscowet                           |         | 1       | 2       | 2       | 2       | 4        | 4              | 4            | 4      | 4       | 4       | 3       | 3     | 37         |            | 0%      | 0%      | 0%  | 0%              | 0%            | 0%            | 0%         | 0%            | 0%        | 0%         | 0%          | 0%        | 09   |
| Humper (Banker) Lake Trout         |         | 1       | 2       | 2       | 2       | 2        | 2              | 2            | 2      | 2       |         |         |       | 17         |            | 0%      | 0%      | 0%  | 0%              | 0%            | 0%            | 0%         | 0%            | 0%        |            |             |           | 09   |
| Lake Whitefish                     | 24      | 82      |         | 326     | 461     | 566      | 608            | 506          | 321    | 138     | 51      | 11      | 3     | 3291       | 0%         | 4%      | 3%      | 3%  | 2%              | 2%            | 4%            | 5%         | 3%            | 7%        | 4%         | 0%          | 0%        | 39   |
| Cisco(Lake Herring)                | 66      | 122     |         | 171     | 149     | 93       | 30             | 10           | 2      |         |         |         |       | 795        | 3%         | 4%      | 4%      | 7%  | 5%              | 12%           | 7%            | 10%        | 50%           |           |            |             |           | 69   |
| Bloater                            | 3       | 22      |         | 20      | 9       | 1        |                |              |        |         |         |         |       | 82         | 0%         | 0%      | 7%      | 10% | 22%             | 0%            |               |            |               |           |            |             |           | 79   |
| Blackfin Cisco                     |         |         | 1       | 1       | 1       | 1        |                |              |        |         |         |         |       | 4          |            |         | 0%      | 0%  | 0%              | 0%            |               |            |               |           |            |             |           | 09   |
| Round Whitefish                    | 1       | з       | 8       | 25      | 34      | 34       | 23             | 6            | 1      |         |         |         |       | 135        | 0%         | 0%      | 0%      | 4%  | 0%              | 0%            | 0%            | 0%         | 0%            |           |            |             |           | 19   |
| Chub (not C. artedii)              | 6       | 12      | 13      | 5       | 2       | 1        |                |              |        |         |         |         |       | 39         | 0%         | 0%      | 0%      | 0%  | 0%              | 0%            |               |            |               |           |            |             |           | 09   |
| Rainbow Smelt                      | 18      | 8       | 1       |         |         |          |                |              |        |         |         |         |       | 27         | 6%         | 25%     | 0%      |     |                 |               |               |            |               |           |            |             |           | 119  |
| Northern Pike                      | 37      | 68      | 182     | 469     | 888     | 1431     | 1914           | 2190         | 2268   | 2152    | 1921    | 1611    | 1325  | 16456      | 3%         | 0%      | 2%      | 2%  | 2%              | 2%            | 3%            | 3%         | 3%            | 3%        | 3%         | 5%          | 6%        | 39   |
| Muskellunge                        |         |         | 2       | 3       | 3       | 6        | 7              | 9            | 9      | 12      | 16      | 14      | 31    | 112        |            |         | 0%      | 0%  | 0%              | 0%            | 14%           | 0%         | 0%            | 0%        | 0%         | 14%         | 6%        | 49   |
| Goldeye                            |         | 3       | 5       | 10      | 8       | 2        |                |              |        |         |         |         |       | 28         |            | 0%      | 20%     | 10% | 13%             | 0%            |               |            |               |           |            |             |           | 119  |
| Mooneye                            |         | 6       | 12      | 20      | 20      | 3        | 1              | 1            | 1      |         |         |         |       | 64         |            | 0%      | 0%      | 0%  | 15%             | 0%            | 0%            | 0%         | 0%            |           |            |             |           | 5%   |
| Sucker Family                      |         |         |         |         |         | 1        | 1              |              |        |         |         |         |       | 2          |            |         |         |     |                 | 0%            | 0%            |            |               |           |            |             |           | 09   |
| Quillback Carpsucker               | 2       | 2       | 3       | 3       | 4       | 6        | 6              | 6            | 4      |         |         |         |       | 36         | 0%         | 0%      | 0%      | 0%  | 0%              | 17%           | 50%           | 0%         | 0%            |           |            |             |           | 119  |
| Longnose Sucker                    |         | 14      | 28      | 56      | 81      | 92       | 70             | 26           | 3      | 1       |         |         |       | 371        |            | 0%      | 0%      | 2%  | 0%              | 3%            | 9%            | 12%        | 0%            | 0%        |            |             |           | 49   |
| White Sucker                       | 70      | 229     | 379     | 538     | 664     | 712      | 595            | 323          | 77     | 9       |         |         |       | 3596       | 1%         | 0%      | 2%      | 2%  | 2%              | 4%            | 6%            | 9%         | 10%           | 22%       |            |             |           | 49   |
| Northern Hog Sucker                |         |         | 1       | 1       |         |          |                |              |        |         |         |         |       | 2          |            |         | 0%      | 0%  |                 |               |               |            |               |           |            |             |           | 09   |
| Bigmouth Buffalo                   |         |         |         |         | 1       | 1        | 1              |              | 1      | 1       | 1       |         |       | 6          |            |         |         |     | 0%              | 0%            | 0%            |            | 0%            | 0%        | 0%         |             |           | 02   |
| Spotted Sucker                     |         |         |         |         | 2       | 2        | 1              |              | _      | -       |         |         |       | 5          |            |         |         |     | 50%             | 0%            | 0%            |            | 4,12          |           |            |             |           | 209  |
| Silver Redhorse                    | 1       | 2       | 4       | 4       | 5       | 5        | 5              | 3            | 2      |         |         |         |       | 31         | 0%         | 0%      | 0%      | 0%  | 0%              | 0%            | 20%           | 0%         | 0%            |           |            |             |           | 39   |
| Golden Redhorse Sucker             |         | -       | 1       | 2       | 3       | 1        | 5              | 3            | -      |         |         |         |       | 7          | 0/0        | 0,0     | 0%      | 0%  | 0%              | 0%            | 2070          | 0/0        | 0/0           |           |            |             |           | 02   |
| Shorthead Redhorse                 | 3       | 4       | 8       | 12      | 15      | 15       | 11             | 3            | 2      |         |         |         |       | 73         | 0%         | 0%      | 0%      | 8%  | 0%              | 7%            | 0%            | 0%         | 0%            |           |            |             |           | 39   |
| Greater Redhorse                   | 3       |         | 0       |         | 1       | 2        | 3              | 2            | 1      |         |         |         |       |            | 0/0        | 0,0     | 0/0     | 0,0 | 0%              | 50%           | 0%            | 0%         | 100%          |           |            |             |           | 229  |
| River Redhorse                     |         |         |         |         | 1       | 2        | 5              | 1            | 1      |         |         |         |       | 2          |            |         |         |     | 0/6             | 5076          | 076           | 0%         | 0%            |           |            |             |           | 02   |
| Redhorse Sucker                    |         | 6       | 20      | 37      | 53      | 63       | 59             | 44           | 23     | 10      | 6       | 2       |       | 323        |            | 17%     | 10%     | 8%  | 8%              | 14%           | 14%           | 18%        | 9%            | 10%       | 33%        | 0%          |           | 129  |
| Goldfish                           | 1       | 3       | 20      | 3/      | 2       | 05       | 55             | -4-4         | 23     | 10      | 0       | 2       |       | 12         | 0%         | 0%      | 0%      | 0%  | 0%              | 7470          | 1470          | 10/0       | 0%            | 1076      | 3376       | 0/6         |           | 12/  |
| Lake Chub                          | 1       | 1       | 1       | 1       | 2       |          |                |              | 2      |         |         |         |       | 12         | 0%         | 0%      | 0%      | 0%  | 0/6             |               |               |            | 0/8           |           |            |             |           | 09   |
|                                    | -       | 19      | -       | -       | 140     | 211      | 202            | 200          | 202    | 200     | 261     | 200     | 210   | 2044       |            |         |         |     | 49/             | 49/           | 40/           | 29/        | 29/           | F9/       | <b>CP/</b> | <b>C</b> 9/ | 09/       | 49   |
| Common Carp                        | 6       |         | 47      | 94      | 149     | 211      | 302            | 366          | 392    | 390     | 361     | 288     | 219   | 2844       | 0%         | 0%      | 2%      | 1%  | 4%              | 4%            | 4%            | 3%         | 3%            | 5%        | 6%         | 6%          | 9%        |      |
| Creek Chub                         | 2       | 1       | 1       |         |         |          |                |              |        |         |         |         |       | 4          | 50%        | 100%    | 0%      |     |                 |               |               |            |               |           |            |             |           | 509  |
| Yellow Bullhead                    |         | 1       | 3       |         |         | 4        |                |              |        |         |         |         |       | 4          | 9-1        | 0%      | 0%      |     | 4001            | 00/           |               |            |               |           |            |             |           | 09   |
| Brown Bullhead                     | 107     | 356     |         | 304     | 101     | - 4      | 45-            |              | 433    | 465     |         | 46      | 2.    | 1297       | 2%         | 2%      | 4%      | 5%  | 10%             | 0%            | 201           | 201        | 50'           | 70.1      | 051        | 4451        | or (      | 49   |
| Channel Catfish                    | 6       | 19      | 53      | 86      | 118     | 147      | 155            | 149          | 133    | 106     | 77      | 46      | 24    | 1119       | 0%         | 5%      | 2%      | 2%  | 3%              | 4%            | 3%            | 3%         | 5%            | 7%        | 8%         | 11%         | 8%        | 49   |
| Catfish species (not I. punctatus) |         |         | 1       | 1       |         |          |                |              |        |         |         |         |       | 2          |            |         | 0%      | 0%  |                 |               |               |            |               |           |            |             |           | 09   |
| American Eel                       |         | 1       | 1       | 1       | 2       | 2        | 4              | 11           | 13     | 16      | 26      | 28      | 29    | 134        |            | 0%      | 0%      | 0%  | 0%              | 0%            | 0%            | 9%         | 0%            | 6%        | 4%         | 7%          | 7%        | 5%   |
| Ling (Burbot)                      | 4       | 13      |         | 60      | 96      | 127      | 139            | 146          | 134    | 106     | 69      | 36      | 24    | 985        | 0%         | 0%      | 3%      | 3%  | 4%              | 5%            | 4%            | 4%         | 7%            | 6%        | 9%         | 17%         | 13%       | 5%   |
| White Perch                        | 77      | 113     |         | 21      | 1       |          |                |              |        |         |         |         |       | 292        | 1%         | 5%      | 8%      | 14% | 0%              |               |               |            |               |           |            |             |           | 59   |
| White Bass                         | 20      | 97      |         | 188     | 129     | 16       |                |              |        |         |         |         |       | 615        | 0%         | 2%      | 2%      | 4%  | 10%             | 19%           |               |            |               |           |            |             |           | 5%   |
| Rock Bass                          | 412     | 313     |         | 1       |         |          |                |              |        |         |         |         |       | 809        | 6%         | 9%      | 11%     | 0%  |                 |               |               |            |               |           |            |             |           | 79   |
| Pumpkinseed                        | 261     | 81      | 1       |         |         |          |                |              |        |         |         |         |       | 343        | 9%         | 9%      | 100%    |     |                 |               |               |            |               |           |            |             |           | 99   |
| Bluegill                           | 170     | 73      |         |         |         |          |                |              |        |         |         |         |       | 244        | 8%         | 10%     | 0%      |     |                 |               |               |            |               |           |            |             |           | 99   |
| Smallmouth Bass                    | 350     | 842     |         | 1295    | 1236    | 1011     | 515            | 88           | 6      |         |         |         |       | 6502       | 4%         | 2%      | 2%      | 2%  | 3%              | 2%            | 4%            | 6%         | 0%            |           |            |             |           | 39   |
| Largemouth Bass                    | 126     | 334     | 459     | 482     | 420     | 295      | 125            | 13           | 1      |         |         |         |       | 2255       | 1%         | 1%      | 2%      | 2%  | 4%              | 5%            | 2%            | 0%         | 0%            |           |            |             |           | 39   |
| White Crappie                      | 16      | 23      | 18      | 10      | 4       |          |                |              |        |         |         |         |       | 71         | 6%         | 9%      | 11%     | 20% | 25%             |               |               |            |               |           |            |             |           | 119  |
| Black Crappie                      | 147     | 211     |         | 68      | 8       |          |                |              |        |         |         |         |       | 599        | 1%         | 3%      | 5%      | 9%  | 0%              |               |               |            |               |           |            |             |           | 49   |
| Yellow Perch                       | 708     | 821     | 569     | 187     | 18      |          |                |              |        |         |         |         |       | 2303       | 4%         | 5%      | 7%      | 11% | 22%             |               |               |            |               |           |            |             |           | 69   |
| Sauger                             | 13      | 70      | 103     | 118     | 85      | 24       | 6              | 1            | 1      | 1       |         |         |       | 422        | 0%         | 1%      | 4%      | 6%  | 13%             | 4%            | 33%           | 0%         | 0%            | 100%      |            |             |           | 69   |
| Walleye                            | 221     | 692     |         | 1997    | 2462    | 2630     | 2601           | 2311         | 1854   | 1336    | 797     | 394     | 121   | 18760      | 2%         | 2%      | 3%      | 3%  | 2%              | 3%            | 3%            | 3%         | 5%            | 3%        | 3%         | 5%          | 4%        | 39   |
| Freshwater Drum                    | 13      | 36      |         | 124     | 132     | 119      | 99             | 71           | 36     | 11      | 4       | 2       | 1     | 723        | 0%         | 3%      | 4%      | 3%  | 5%              | 6%            | 6%            | 10%        | 14%           | 27%       | 25%        | 0%          | 100%      | 69   |
| Salmon Hybrid                      | 1.0     |         | 15      |         |         |          |                |              | 1      | 1       | 1       | -       | -     | 3          | 576        | 2.0     | .,,,    | 270 |                 | -, -          | 2.0           |            | 0%            | 0%        | 0%         | 270         |           | 09   |
|                                    |         |         |         |         | 1       | 2        | 2              | 1            | -      | -       | -       |         |       |            |            |         |         | 0%  | 0%              | 0%            | 0%            | 0%         |               | 2.0       | - / 0      |             |           | 09   |
| Whitefish hybrid                   |         |         |         |         |         |          |                |              |        |         |         |         |       |            |            |         |         |     |                 |               |               |            | 0%            |           |            |             |           |      |

**Table S10a:** Fish species- and conc (ug/g) category-specific number of advisories and percentage of advisories from the <u>composite</u> <u>method 2</u> that are less restrictive compared to those from the regular method. The cases where the number of advisories were >100 have been highlighted in bold; cases where >10% of the advisories were less restrictive have been highlighted in red; and cases where the number of total advisories were >100 and >10% of the advisories were less restrictive have been highlighted with a black border.

|                                    |            |            |         |         | dvisories for e |         |       |       |     |     |      |       |       |       |          |          | dvisories that |          |          |       |       |     |     |      |       |     |
|------------------------------------|------------|------------|---------|---------|-----------------|---------|-------|-------|-----|-----|------|-------|-------|-------|----------|----------|----------------|----------|----------|-------|-------|-----|-----|------|-------|-----|
| Species                            | 0-0.1      | 0.1-0.2    | 0.2-0.3 | 0.3-0.5 | 0.5-0.75        | 0.75-1  | 1-1.5 | 1.5-2 | 2-3 | 3-5 | 5-10 | 10-20 | Total | 0-0.1 | 0.1-0.2  | 0.2-0.3  | 0.3-0.5        | 0.5-0.75 | 0.75-1   | 1-1.5 | 1.5-2 | 2-3 | 3-5 | 5-10 | 10-20 |     |
| Sturgeon                           | 2          | 47         | 29      | 41      | 15              | 4       | 3     | 2     |     |     |      |       | 143   | 0%    | 13%      | 24%      | 2%             | 7%       | 0%       | 33%   | 0%    |     |     |      |       | 119 |
| Longnose Gar                       |            |            |         | 1       | 1               | 1       |       | 1     |     |     |      |       | 4     |       |          |          | 0%             | 0%       | 0%       |       | 0%    |     |     |      |       | 09  |
| Bowfin                             |            | 18         | 22      | 11      | 15              | 4       |       |       |     |     |      |       | 70    |       | 11%      | 27%      | 9%             | 0%       | 0%       |       |       |     |     |      |       | 139 |
| Alewife                            | 9          | 1          |         |         |                 |         |       |       |     |     |      |       | 10    | 0%    | 0%       |          |                |          |          |       |       |     |     |      |       | 09  |
| Gizzard Shad                       | 65         | 4          | 2       |         |                 |         |       |       |     |     |      |       | 71    | 2%    | 0%       | 0%       |                |          |          |       |       |     |     |      |       | 19  |
| Pink Salmon                        | 104        | 3          |         |         |                 |         |       |       |     |     |      |       | 107   | 0%    | 0%       |          |                |          |          |       |       |     |     |      |       | 09  |
| Coho Salmon                        | 212        | 317        | 103     | 19      |                 |         |       |       |     |     |      |       | 651   | 0%    | 4%       | 2%       | 0%             |          |          |       |       |     |     |      |       | 39  |
| Chinook Salmon                     | 137        | 472        | 356     | 68      |                 |         |       |       |     |     |      |       | 1033  | 1%    | 3%       | 2%       | 4%             |          |          |       |       |     |     |      |       | 39  |
| Rainbow Trout                      | 400        | 985        | 236     | 47      | 1               |         |       |       |     |     |      |       | 1669  | 1%    | 3%       | 9%       | 0%             | 0%       |          |       |       |     |     |      |       | 39  |
| Atlantic Salmon                    | 4          | 10         |         |         |                 |         |       |       |     |     |      |       | 14    | 0%    | 20%      |          |                |          |          |       |       |     |     |      |       | 149 |
| Brown Trout                        | 162        | 441        | 192     | 39      |                 |         |       |       |     |     |      |       | 834   | 2%    | 3%       | 4%       | 5%             |          |          |       |       |     |     |      |       | 39  |
| Brook Trout                        | 77         | 310        | 235     | 194     | 73              | 14      | 5     |       |     |     |      |       | 908   | 3%    | 3%       | 8%       | 5%             | 1%       | 7%       | 0%    |       |     |     |      |       | 49  |
| Lake Trout                         | 504        | 1764       | 1484    | 2223    | 1421            | 766     | 419   | 81    | 61  | 22  |      |       | 8745  | 1%    | 3%       | 5%       | 5%             | 4%       | 5%       | 5%    | 0%    | 0%  | 9%  |      |       | 49  |
| Splake                             | 39         | 95         | 23      | 8       | 2               |         | 1     |       |     |     |      |       | 168   | 3%    | 2%       | 0%       | 13%            | 0%       |          | 0%    |       |     |     |      |       | 29  |
| Siscowet                           |            |            |         | 20      | 17              |         |       |       |     |     |      |       | 37    |       |          |          | 5%             | 12%      |          |       |       |     |     |      |       | 89  |
| Humper (Banker) Lake Trout         |            |            | 8       |         | 9               |         |       |       |     |     |      |       | 17    |       |          | 0%       |                | 0%       |          |       |       |     |     |      |       | 09  |
| Lake Whitefish                     | 1432       | 1091       | 460     | 165     | 94              | 32      | 3     | 14    |     |     |      |       | 3291  | 1%    | 4%       | 8%       | 4%             | 1%       | 3%       | 67%   | 0%    |     |     |      |       | 39  |
| Cisco(Lake Herring)                | 169        | 297        | 189     | 95      | 35              | 7       | 2     | 11    | 1   |     |      |       | 795   | 1%    | 6%       | 7%       | 8%             | 3%       | 0%       | 0%    | 0,0   | 0%  |     |      |       | 59  |
| Bloater                            | 63         | 257        | 185     |         |                 |         | 2     |       | -   |     |      |       | 82    | 3%    | 14%      | 0%       | 070            | 570      | 076      | 070   |       | 0/6 |     |      |       | 49  |
| Blackfin Cisco                     | 05         |            | 4       |         |                 |         |       |       |     |     |      |       | 02    | 570   | 14/0     | 0%       |                |          |          |       |       |     |     |      |       | -47 |
| Round Whitefish                    | 105        | 16         | 4       | 2       |                 |         |       |       |     |     |      |       | 135   | 0%    | 6%       | 0%       | 0%             |          |          |       |       |     |     |      |       | 19  |
|                                    |            |            |         |         |                 |         |       |       |     |     |      |       | 135   |       | 0%       |          |                |          |          |       |       |     |     |      |       |     |
| Chub (not C. artedii)              | 19         | 16         | 3       | 1       |                 |         |       |       |     |     |      |       |       | 0%    |          | 0%       | 0%             |          |          |       |       |     |     |      |       | 09  |
| Rainbow Smelt                      | 9          | 11         | 1       | 6       |                 | 20.45   |       |       | 246 |     | 6    |       | 27    | 0%    | 18%      | 0%       | 0%             |          |          | -     |       |     | 451 |      |       | 79  |
| Northern Pike                      | 211        | 1021       | 2116    | 4736    | 4269            | 2043    | 1341  | 322   | 310 | 81  | 6    |       | 16456 | 2%    | 5%       | 7%       | 8%             | 6%       | 4%       | 3%    | 1%    |     |     |      |       | 69  |
| Muskellunge                        | 1          |            | 12      | 62      | 8               | 13      | 8     | 1     | 4   | 2   | 1    |       | 112   | 0%    |          | 0%       | 5%             | 0%       | 0%       | 0%    | 0%    | 0%  | 0%  | 0%   |       | 39  |
| Goldeye                            |            | 9          | 4       | 15      |                 |         |       |       |     |     |      |       | 28    |       | 22%      | 25%      | 7%             |          |          |       |       |     |     |      |       | 149 |
| Mooneye                            | 6          | 6          | 15      | 11      | 10              | 10      | 6     |       |     |     |      |       | 64    | 0%    | 0%       | 0%       | 0%             | 20%      | 10%      | 0%    |       |     |     |      |       | 59  |
| Sucker Family                      | 2          |            |         |         |                 |         |       |       |     |     |      |       | 2     | 0%    |          |          |                |          |          |       |       |     |     |      |       | 09  |
| Quillback Carpsucker               |            |            | 3       | 15      | 18              |         |       |       |     |     |      |       | 36    |       |          | 0%       | 7%             | 0%       |          |       |       |     |     |      |       | 39  |
| Longnose Sucker                    | 77         | 111        | 88      | 49      | 21              | 17      | 8     |       |     |     |      |       | 371   | 1%    | 8%       | 5%       | 8%             | 5%       | 0%       | 0%    |       |     |     |      |       | 59  |
| White Sucker                       | 1195       | 1406       | 495     | 343     | 97              | 43      | 17    |       |     |     |      |       | 3596  | 1%    | 4%       | 7%       | 6%             | 7%       | 5%       | 0%    |       |     |     |      |       | 49  |
| Northern Hog Sucker                | 1          |            | 1       |         |                 |         |       |       |     |     |      |       | 2     | 0%    |          | 0%       |                |          |          |       |       |     |     |      |       | 09  |
| Bigmouth Buffalo                   | 3          | 3          |         |         |                 |         |       |       |     |     |      |       | 6     | 0%    | 0%       |          |                |          |          |       |       |     |     |      |       | 09  |
| Spotted Sucker                     | 4          | 1          |         |         |                 |         |       |       |     |     |      |       | 5     | 0%    | 0%       |          |                |          |          |       |       |     |     |      |       | 09  |
| Silver Redhorse                    |            | 17         | 7       | 7       |                 |         |       |       |     |     |      |       | 31    |       | 0%       | 0%       | 0%             |          |          |       |       |     |     |      |       | 09  |
| Golden Redhorse Sucker             |            | 7          |         |         |                 |         |       |       |     |     |      |       | 7     |       | 0%       |          |                |          |          |       |       |     |     |      |       | 09  |
| Shorthead Redhorse                 |            | 41         | 29      | 3       |                 |         |       |       |     |     |      |       | 73    |       | 2%       | 7%       | 33%            |          |          |       |       |     |     |      |       | 59  |
| Greater Redhorse                   |            |            | 5       | 4       |                 |         |       |       |     |     |      |       | 9     |       |          | 0%       | 25%            |          |          |       |       |     |     |      |       | 119 |
| River Redhorse                     |            |            |         | 2       |                 |         |       |       |     |     |      |       | 2     |       |          |          | 0%             |          |          |       |       |     |     |      |       | 09  |
| Redhorse Sucker                    | 21         | 77         | 108     | 59      | 37              | 6       | 4     | 9     |     | 2   |      |       | 323   | 5%    | 4%       | 13%      | 2%             | 5%       | 17%      | 0%    | 0%    |     | 0%  |      |       | 79  |
| Goldfish                           | 11         |            |         | 1       |                 |         |       |       |     |     |      |       | 12    | 0%    |          |          | 0%             |          |          |       |       |     |     |      |       | 09  |
| Lake Chub                          |            | 2          |         | 2       |                 |         |       |       |     |     |      |       | 4     |       | 0%       |          | 0%             |          |          |       |       |     |     |      |       | 09  |
| Common Carp                        | 626        | 1163       | 662     | 312     | 64              | 17      |       |       |     |     |      |       | 2844  | 2%    | 6%       | 10%      | 10%            | 9%       | 0%       |       |       |     |     |      |       | 69  |
| Creek Chub                         | 0L0        | 2          | 002     | 2       | 01              |         |       |       |     |     |      |       | 2011  | 2/0   | 0%       | 10/1     | 0%             | 570      | 0,0      |       |       |     |     |      |       | 09  |
|                                    |            | 2          | 2       | 2       |                 |         |       |       |     |     |      |       | 4     |       |          | 09/      | 0/0            |          |          |       |       |     |     |      |       | 09  |
| Yellow Bullhead<br>Brown Bullhead  | 688        | 462        | 2       | 36      | 7               | 8       |       |       |     |     |      |       | 1297  | 1%    | 0%<br>5% | 0%<br>4% | 3%             | 0%       | 0%       |       |       |     |     |      |       | 39  |
| Channel Catfish                    | 688<br>104 | 462<br>281 | 230     | 35      | 125             | 8<br>26 | 20    |       |     |     |      |       | 1297  | 1%    | 5%<br>4% | 4%<br>3% | 3%<br>5%       | 3%       | 8%       | 0%    |       |     |     |      |       | 37  |
|                                    |            | 201        | 230     | 335     | 125             | 20      | 20    |       |     |     |      |       | 1113  |       | 470      | 3%       | 3%             | 3%       | 8%       | 0%    |       |     |     |      |       | 49  |
| Catfish species (not I. punctatus) | 2          |            | ~       | ~ *     |                 | -       |       |       |     |     |      |       | 2     | 0%    |          |          | 4501           |          | ~ ~ ~    |       |       |     |     |      |       |     |
| American Eel                       | 17         | 17         | 36      | 61      |                 | 3       |       |       |     |     |      |       | 134   | 0%    | 0%       | 17%      | 15%            |          | 0%       |       |       |     |     |      |       | 119 |
| Ling (Burbot)                      | 4          | 124        | 145     | 385     | 157             | 99      | 56    | 15    |     |     |      |       | 985   | 0%    | 5%       | 19%      | 9%             | 11%      | 3%       | 2%    | 7%    |     |     |      |       | 99  |
| White Perch                        | 94         | 128        | 40      | 19      | 9               |         | 2     |       |     |     |      |       | 292   | 3%    | 5%       | 8%       | 16%            | 0%       |          | 0%    |       |     |     |      |       | 59  |
| White Bass                         | 60         | 258        | 141     | 119     | 22              | 15      |       |       |     |     |      |       | 615   | 5%    | 5%       | 8%       | 3%             | 0%       | 0%       |       |       |     |     |      |       | 59  |
| Rock Bass                          | 39         | 317        | 213     | 178     | 31              | 22      | 8     | 1     |     |     |      |       | 809   | 3%    | 5%       | 9%       | 6%             | 3%       | 0%       | 0%    | 0%    |     |     |      |       | 69  |
| Pumpkinseed                        | 163        | 118        | 43      | 11      | 7               |         | 1     |       |     |     |      |       | 343   | 2%    | 6%       | 7%       | 0%             | 0%       |          | 0%    |       |     |     |      |       | 49  |
| Bluegill                           | 151        | 73         | 14      | 3       | 3               |         |       |       |     |     |      |       | 244   | 5%    | 3%       | 0%       | 0%             | 33%      |          |       |       |     |     |      |       | 49  |
| Smallmouth Bass                    | 96         | 686        | 1316    | 2316    | 1384            | 525     | 149   | 13    | 16  | 1   |      |       | 6502  | 2%    | 5%       | 3%       | 2%             | 2%       | 3%       | 5%    | 0%    | 0%  | 0%  |      |       | 39  |
| Largemouth Bass                    | 70         | 442        | 531     | 819     | 327             | 47      | 19    |       |     |     |      |       | 2255  | 0%    | 2%       | 4%       | 3%             | 1%       | 2%       | 5%    |       |     |     |      |       | 39  |
| White Crappie                      | 26         | 29         | 9       | 3       | 4               |         |       |       |     |     |      |       | 71    | 0%    | 0%       | 22%      | 100%           | 50%      |          |       |       |     |     |      |       | 109 |
| Black Crappie                      | 230        | 200        | 95      | 50      | 23              |         |       | 1     |     |     |      |       | 599   | 1%    | 4%       | 3%       | 8%             | 4%       |          |       | 0%    |     |     |      |       | 39  |
| Yellow Perch                       | 440        | 999        | 466     | 293     | 67              | 20      | 18    |       |     |     |      |       | 2303  | 2%    | 5%       | 8%       | 8%             | 6%       | 0%       | 6%    |       |     |     |      |       | 55  |
| Sauger                             |            | 17         | 57      | 87      | 121             | 57      | 32    | 13    | 37  | 1   |      |       | 422   |       | 0%       | 14%      | 3%             | 8%       | 7%       | 0%    | 8%    | 0%  | 0%  |      |       | 65  |
| Walleye                            | 166        | 879        | 2189    | 5180    | 4980            | 2891    | 1773  | 391   | 235 | 35  | 34   | 7     | 18760 | 0%    | 2%       | 5%       | 4%             | 3%       | 4%       | 4%    | 2%    |     |     | 0%   | 0%    | 45  |
| Freshwater Drum                    | 44         | 199        | 125     | 254     | 87              | 13      | 2773  | 1     |     | 33  | 5.4  |       | 723   | 9%    | 6%       | 11%      | 11%            | 8%       | 4%<br>0% |       | 0%    | 1/0 | 570 | 073  | 576   |     |
|                                    |            | 3          | 165     | 2.54    | 07              | 15      |       | -     |     |     |      |       | 25    | 570   | 33%      | 11/0     | 11/0           | 0/0      | 070      |       | 0/0   |     |     |      |       | 339 |
| Salmon Hybrid                      |            |            |         |         |                 |         |       |       |     |     |      |       | 2     |       | 3378     |          |                |          |          |       |       |     |     |      |       | 337 |
| Salmon Hybrid<br>Whitefish hybrid  |            | 4          |         |         | 4               |         |       |       |     |     |      |       | 0     |       | 0%       |          |                | 0%       |          |       |       |     |     |      |       | 09  |

**Table S10b:** Fish species- and conc (ug/g) category-specific number of advisories, and percentage of advisories from the <u>composite</u> <u>method 6</u> that are less restrictive compared to those from the regular method. The cases where the number of advisories were >100 have been highlighted in bold; cases where >10% of the advisories were less restrictive have been highlighted in red; and cases where the number of total advisories were >100 and >10% of the advisories were less restrictive have been highlighted with a black border.

|                                    |       |         |         | #ofa      | dvisories for e | ach conc | category |       |     |     |      |       |       |       |          |         |         | t are less rest |        |       |       |     |     |      |       |        |
|------------------------------------|-------|---------|---------|-----------|-----------------|----------|----------|-------|-----|-----|------|-------|-------|-------|----------|---------|---------|-----------------|--------|-------|-------|-----|-----|------|-------|--------|
| Species                            | 0-0.1 | 0.1-0.2 | 0.2-0.3 | 0.3-0.5   | 0.5-0.75        | 0.75-1   | 1-1.5    | 1.5-2 | 2-3 | 3-5 | 5-10 | 10-20 | Total | 0-0.1 | 0.1-0.2  | 0.2-0.3 | 0.3-0.5 | 0.5-0.75        | 0.75-1 | 1-1.5 | 1.5-2 |     |     | 5-10 | 10-20 | ) Tota |
| Sturgeon                           | 2     | 46      | 30      | 43        | 11              | 7        | 2        | 1     | 1   |     |      |       | 143   | 0%    | 13%      | 33%     | 0%      | 9%              | 14%    | 0%    | 0%    |     |     |      |       | 139    |
| Longnose Gar                       |       |         |         | 1         | 1               | 1        |          | - 1   |     |     |      |       | 4     |       |          |         | 100%    | 0%              | 0%     |       | 0%    |     |     |      |       | 255    |
| Bowfin                             |       | 12      | 28      | 16        | 10              | 4        |          | -     |     |     |      |       | 70    |       | 0%       | 25%     | 0%      | 0%              | 0%     |       |       |     |     |      |       | 109    |
| Alewife                            | 9     | 1       |         |           |                 |          |          |       |     |     |      |       | 10    | 0%    | 0%       |         |         |                 |        |       |       |     |     |      |       | 09     |
| Gizzard Shad                       | 65    | 4       | 2       |           |                 |          |          |       |     |     |      |       | 71    | 2%    | 0%       | 0%      |         |                 |        |       |       |     |     |      |       | 19     |
| Pink Salmon                        | 100   | 7       | -       |           |                 |          |          |       |     |     |      |       | 107   | 0%    | 0%       | 0,0     |         |                 |        |       |       |     |     |      |       | 09     |
| Coho Salmon                        | 100   | 331     | 109     | 19        |                 |          |          |       |     |     |      |       | 651   | 0%    | 2%       | 2%      | 0%      |                 |        |       |       |     |     |      |       | 19     |
|                                    | 192   | 511     | 351     | 64        |                 |          |          |       |     |     |      |       | 1033  | 0%    | 2%       | 2%      | 3%      |                 |        |       |       |     |     |      |       | 29     |
| Chinook Salmon                     |       |         |         |           |                 |          |          |       |     |     |      |       |       |       |          |         |         |                 |        |       |       |     |     |      |       |        |
| Rainbow Trout                      | 360   | 1022    | 229     | 57        | 1               |          |          |       |     |     |      |       | 1669  | 1%    | 2%       | 8%      | 2%      | 0%              |        |       |       |     |     |      |       | 39     |
| Atlantic Salmon                    | 4     | 10      |         |           |                 |          |          |       |     |     |      |       | 14    | 0%    | 10%      |         |         |                 |        |       |       |     |     |      |       | 79     |
| Brown Trout                        | 154   | 451     | 183     | 46        |                 |          |          |       |     |     |      |       | 834   | 1%    | 3%       | 2%      | 4%      |                 |        |       |       |     |     |      |       | 39     |
| Brook Trout                        | 66    | 326     | 206     | 219       | 72              | 19       |          |       |     |     |      |       | 908   | 2%    | 1%       | 9%      | 4%      | 1%              | 0%     |       |       |     |     |      |       | 49     |
| Lake Trout                         | 472   | 1706    | 1594    | 2204      | 1445            | 691      | 470      | 80    | 61  | 22  |      |       | 8745  | 0%    | 2%       | 3%      | 4%      | 4%              | 3%     | 4%    | 4%    | 0%  | 0%  |      |       | 39     |
| Splake                             | 34    | 99      | 24      | 8         | 2               |          | 1        |       |     |     |      |       | 168   | 0%    | 2%       | 0%      | 0%      | 0%              |        | 100%  |       |     |     |      |       | 29     |
| Siscowet                           |       |         |         | 12        | 25              |          |          |       |     |     |      |       | 37    |       |          |         | 0%      | 0%              |        |       |       |     |     |      |       | 09     |
| Humper (Banker) Lake Trout         |       |         | 8       | 9         |                 |          |          |       |     |     |      |       | 17    |       |          | 0%      | 0%      |                 |        |       |       |     |     |      |       | 09     |
| Lake Whitefish                     | 1415  | 1116    | 433     | 181       | 92              | 29       | 15       | 10    |     |     |      |       | 3291  | 1%    | 4%       | 11%     | 2%      | 3%              | 0%     | 13%   | 0%    |     |     |      |       | 39     |
| Cisco(Lake Herring)                | 192   | 297     | 150     | 113       | 33              | 7        | 2        | 1     |     |     |      |       | 795   | 2%    | 6%       | 11%     | 8%      | 9%              | 0%     | 0%    | 0%    |     |     |      |       | 69     |
| Bloater                            | 58    | 12      | 12      |           |                 |          |          |       |     |     |      |       | 82    | 3%    | 8%       | 25%     |         |                 |        |       |       |     |     |      |       | 79     |
| Blackfin Cisco                     | 50    |         | 4       |           |                 |          |          |       |     |     |      |       | 32    | 5,5   | 0,0      | 0%      |         |                 |        |       |       |     |     |      |       | 09     |
| Round Whitefish                    | 105   | 13      | 15      |           | 1               |          |          |       |     |     |      |       | 135   | 0%    | 0%       | 0%      | 100%    | 0%              |        |       |       |     |     |      |       | 19     |
|                                    |       |         |         | 1         | 1               |          |          |       |     |     |      |       |       | 0%    | 0%       |         |         | U%              |        |       |       |     |     |      |       |        |
| Chub (not C. artedii)              | 22    | 13      | 3       | 1         |                 |          |          |       |     |     |      |       | 39    | 0%    | 0%       | 0%      | 0%      |                 |        |       |       |     |     |      |       | 09     |
| Rainbow Smelt                      | 9     | 11      | 1       | 6         |                 |          |          |       |     |     |      |       | 27    | 0%    | 27%      | 0%      | 0%      |                 |        |       |       |     |     |      |       | 119    |
| Northern Pike                      | 234   | 989     | 1880    | 4763      | 4199            | 2182     | 1427     | 380   | 244 | 152 | 6    |       | 16456 | 0%    | 3%       | 4%      | 4%      | 4%              | 3%     | 2%    | 2%    |     | 1%  | 0%   |       | 39     |
| Muskellunge                        | 1     |         | 31      | 43        | 12              | 9        | 8        | 1     | 1   | 5   | 1    |       | 112   | 0%    |          | 3%      | 5%      | 8%              | 11%    | 0%    | 0%    | 0%  | 0%  | 0%   |       | 49     |
| Goldeye                            |       | 9       | 2       | 14        | 3               |          |          |       |     |     |      |       | 28    |       | 11%      | 0%      | 14%     | 0%              |        |       |       |     |     |      |       | 119    |
| Mooneye                            | 7     | 5       | 14      | 12        | 10              | 10       | 6        |       |     |     |      |       | 64    | 0%    | 0%       | 7%      | 8%      | 10%             | 0%     | 0%    |       |     |     |      |       | 59     |
| Sucker Family                      | 2     |         |         |           |                 |          |          |       |     |     |      |       | 2     | 0%    |          |         |         |                 |        |       |       |     |     |      |       | 09     |
| Quillback Carpsucker               |       |         | 7       | 29        |                 |          |          |       |     |     |      |       | 36    |       |          | 0%      | 14%     |                 |        |       |       |     |     |      |       | 119    |
| Longnose Sucker                    | 86    | 107     | 89      | 46        | 18              | 12       | 13       |       |     |     |      |       | 371   | 0%    | 7%       | 6%      | 2%      | 0%              | 0%     | 0%    |       |     |     |      |       | 49     |
| White Sucker                       | 1247  | 1349    | 540     | 298       | 107             | 43       | 12       |       |     |     |      |       | 3596  | 1%    | 3%       | 7%      | 8%      | 4%              | 12%    | 0%    |       |     |     |      |       | 49     |
| Northern Hog Sucker                | 1     | 1010    | 1       | 250       | 107             | -13      |          |       |     |     |      |       | 3350  | 0%    | 570      | 0%      | 0,0     | 476             | 12/0   | 0/0   |       |     |     |      |       | 09     |
|                                    |       | 3       | 1       |           |                 |          |          |       |     |     |      |       | 2     |       | 0%       | 0%      |         |                 |        |       |       |     |     |      |       |        |
| Bigmouth Buffalo                   | 3     |         |         |           |                 |          |          |       |     |     |      |       | 6     | 0%    |          |         |         |                 |        |       |       |     |     |      |       | 09     |
| Spotted Sucker                     | 4     | 1       |         |           |                 |          |          |       |     |     |      |       | 5     | 0%    | 100%     |         |         |                 |        |       |       |     |     |      |       | 209    |
| Silver Redhorse                    | 1     | 16      | 7       | 7         |                 |          |          |       |     |     |      |       | 31    | 0%    | 6%       | 0%      | 0%      |                 |        |       |       |     |     |      |       | 39     |
| Golden Redhorse Sucker             |       | 7       |         |           |                 |          |          |       |     |     |      |       | 7     |       | 0%       |         |         |                 |        |       |       |     |     |      |       | 09     |
| Shorthead Redhorse                 | 1     | 53      | 14      | 5         |                 |          |          |       |     |     |      |       | 73    | 0%    | 4%       | 0%      | 0%      |                 |        |       |       |     |     |      |       | 39     |
| Greater Redhorse                   |       |         | 1       | 8         |                 |          |          |       |     |     |      |       | 9     |       |          | 0%      | 25%     |                 |        |       |       |     |     |      |       | 229    |
| River Redhorse                     |       |         |         | 2         |                 |          |          |       |     |     |      |       | 2     |       |          |         | 0%      |                 |        |       |       |     |     |      |       | 09     |
| Redhorse Sucker                    | 26    | 85      | 83      | 67        | 41              | 6        |          | 13    |     | 2   |      |       | 323   | 4%    | 7%       | 16%     | 27%     | 5%              | 0%     |       | 0%    |     | 0%  |      |       | 129    |
| Goldfish                           | 11    |         |         | 1         |                 |          |          |       |     |     |      |       | 12    | 0%    |          |         | 0%      |                 |        |       |       |     |     |      |       | 09     |
| Lake Chub                          |       | 2       |         | 2         |                 |          |          |       |     |     |      |       | 4     |       | 0%       |         | 0%      |                 |        |       |       |     |     |      |       | 09     |
| Common Carp                        | 621   | 1124    | 730     | 301       | 51              | 17       |          |       |     |     |      |       | 2844  | 1%    | 4%       | 6%      | 9%      | 18%             | 6%     |       |       |     |     |      |       | 49     |
| Creek Chub                         |       | 2       |         | 2         | 51              |          |          |       |     |     |      |       | 1     | 2/3   | 0%       | 0,0     | 100%    | 10/0            | 570    |       |       |     |     |      |       | 509    |
| Yellow Bullhead                    |       | 2       | 2       | -         |                 |          |          |       |     |     |      |       | -+    |       | 0%       | 0%      | 10070   |                 |        |       |       |     |     |      |       | 09     |
| Brown Bullhead                     | 681   | 453     | 113     | 33        | 7               | 10       |          |       |     |     |      |       | 4     | 1%    | 5%       | 7%      | 21%     | 29%             | 0%     |       |       |     |     |      |       | 49     |
|                                    |       |         | 230     | 33<br>324 | 130             |          | 2        |       |     |     |      |       |       | 1%    |          | 3%      |         |                 |        | 0%    |       |     |     |      |       |        |
| Channel Catfish                    | 90    | 294     | 230     | 324       | 130             | 49       | 2        |       |     |     |      |       | 1119  |       | 5%       | 5%      | 6%      | 5%              | 0%     | 0%    |       |     |     |      |       | 49     |
| Catfish species (not I. punctatus) | 2     |         |         | -         |                 |          |          |       |     |     |      |       | 2     | 0%    |          |         |         |                 |        |       |       |     |     |      |       | 09     |
| American Eel                       | 17    | 17      | 36      | 61        |                 | 3        |          |       |     |     |      |       | 134   | 0%    | 0%       | 14%     | 3%      |                 | 0%     |       |       |     |     |      |       | 59     |
| Ling (Burbot)                      | 1     | 105     | 179     | 324       | 186             | 115      | 53       | 22    |     |     |      |       | 985   | 0%    | 0%       | 9%      | 7%      | 4%              | 3%     | 6%    | 5%    |     |     |      |       | 59     |
| White Perch                        | 102   | 110     | 42      | 29        | 4               | 3        | 2        |       |     |     |      |       | 292   | 0%    | 5%       | 14%     | 14%     | 0%              | 0%     | 0%    |       |     |     |      |       | 59     |
| White Bass                         | 66    | 236     | 173     | 98        | 24              | 15       | 3        |       |     |     |      |       | 615   | 2%    | 3%       | 8%      | 5%      | 13%             | 7%     | 0%    |       |     |     |      |       | 59     |
| Rock Bass                          | 45    | 298     | 189     | 210       | 40              | 20       | 6        | 1     |     |     |      |       | 809   | 9%    | 7%       | 10%     | 5%      | 13%             | 0%     | 17%   | 0%    |     |     |      |       | 79     |
| Pumpkinseed                        | 164   | 126     | 27      | 18        | 6               | 1        | 1        |       |     |     |      |       | 343   | 6%    | 12%      | 19%     | 0%      | 17%             | 0%     | 0%    |       |     |     |      |       | 99     |
| Bluegill                           | 147   | 80      | 9       | 5         | 3               |          |          |       |     |     |      |       | 244   | 7%    | 11%      | 22%     | 0%      | 0%              |        |       |       |     |     |      |       | 99     |
| Smallmouth Bass                    | 121   | 660     | 1342    | 2324      | 1414            | 443      | 161      | 22    | 14  | 1   |      |       | 6502  | 1%    | 2%       | 2%      | 3%      | 2%              | 4%     | 5%    | 0%    | 0%  | 0%  |      |       | 39     |
| Largemouth Bass                    | 96    | 409     | 520     | 789       | 345             | 77       | 19       |       |     | -   |      |       | 2255  | 0%    | 2%       | 3%      | 3%      | 2%              | 1%     | 0%    | 570   | 0,0 | 0,0 |      |       | 39     |
| White Crappie                      | 26    | 29      | 9       | 3         | 345             | 11       | 19       |       |     |     |      |       | 2255  | 0%    | 3%       | 22%     | 100%    | 50%             | 1/0    | 0/6   |       |     |     |      |       | 119    |
|                                    |       |         |         |           |                 |          |          |       |     |     |      |       |       | 0%    | 3%<br>5% |         | 100%    |                 |        |       | 001   |     |     |      |       |        |
| Black Crappie                      | 239   | 191     | 92      | 51        | 25              |          |          | 1     |     |     |      |       | 599   |       |          | 7%      |         | 0%              |        |       | 0%    |     |     |      |       | 49     |
| Yellow Perch                       | 421   | 965     | 475     | 320       | 81              | 18       | 16       | 7     |     |     |      |       | 2303  | 3%    | 5%       | 9%      | 7%      | 6%              | 6%     | 0%    | 0%    |     |     |      |       | 69     |
| Sauger                             | 2     | 20      | 49      | 97        | 109             | 65       | 22       | 20    | 37  | 1   |      |       | 422   | 0%    | 0%       | 10%     | 4%      | 8%              | 9%     | 14%   | 0%    |     | 0%  |      |       | 65     |
| Walleye                            | 216   | 904     | 1964    | 5087      | 4692            | 3170     | 1944     | 435   | 254 | 53  | 34   | 7     | 18760 | 0%    | 1%       | 3%      | 4%      | 3%              | 3%     | 3%    | 2%    |     | 2%  | 0%   | 0%    |        |
| Freshwater Drum                    | 34    | 197     | 149     | 215       | 120             | 7        |          | 1     |     |     |      |       | 723   | 0%    | 4%       | 7%      | 8%      | 8%              | 0%     |       | 0%    |     |     |      |       | 69     |
| Salmon Hybrid                      |       | 3       |         |           |                 |          |          |       |     |     |      |       | 3     |       | 0%       |         |         |                 |        |       |       |     |     |      |       | 09     |
| Whitefish hybrid                   |       | 4       |         |           |                 | 4        |          |       |     |     |      |       | 8     |       | 0%       |         |         |                 | 0%     |       |       |     |     |      |       | 09     |
|                                    |       | 14843   | 12381   | 18588     | 13324           | 7037     | 4185     | 996   | 612 | 236 | 41   | 7     | 80331 | 1%    | 3%       | 5%      | 4%      | 3%              | 3%     | 3%    | 2%    | 1%  | 1%  | 0%   | 0%    |        |

**Table S11:** Frequency distribution of the relative size (in percentage, %) of the smallest fish compared to the largest individual fish in the (total 30833) composites (of 5 individuals) derived using the composite method 2. *For example, if the smallest and largest sized fish in a composite of 5 individuals were of 79 and 100 cm, respectively, the relative size of the smallest fish would be 79% (i.e., 79/100) and would fall under the 75-80% bin in the following table.* 

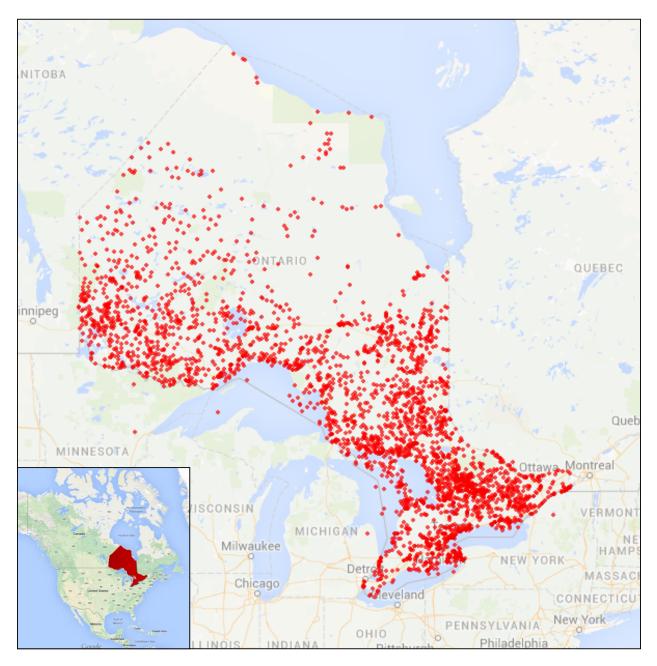
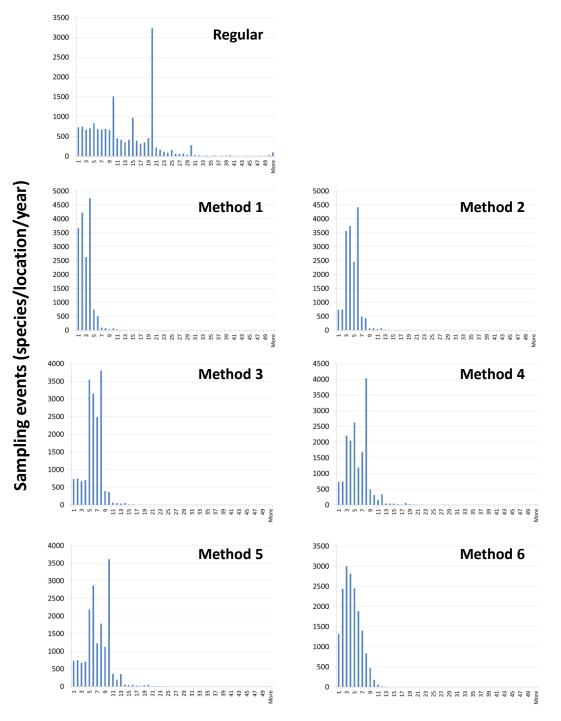
| %      | Frequency | Cumulative % |
|--------|-----------|--------------|
| 0-5    | 0         | 0%           |
| 5-10   | 0         | 0%           |
| 10-15  | 0         | 0%           |
| 15-20  | 0         | 0%           |
| 20-25  | 0         | 0%           |
| 25-30  | 0         | 0%           |
| 30-35  | 2         | 0%           |
| 35-40  | 8         | 0%           |
| 40-45  | 18        | 0%           |
| 45-50  | 41        | 0%           |
| 50-55  | 60        | 0%           |
| 55-60  | 152       | 1%           |
| 60-65  | 283       | 2%           |
| 65-70  | 519       | 4%           |
| 70-75  | 988       | 7%           |
| 75-80  | 1765      | 12%          |
| 80-85  | 3135      | 23%          |
| 85-90  | 5608      | 41%          |
| 90-95  | 9790      | 73%          |
| 95-100 | 8464      | 100%         |
| Total  | 30833     |              |

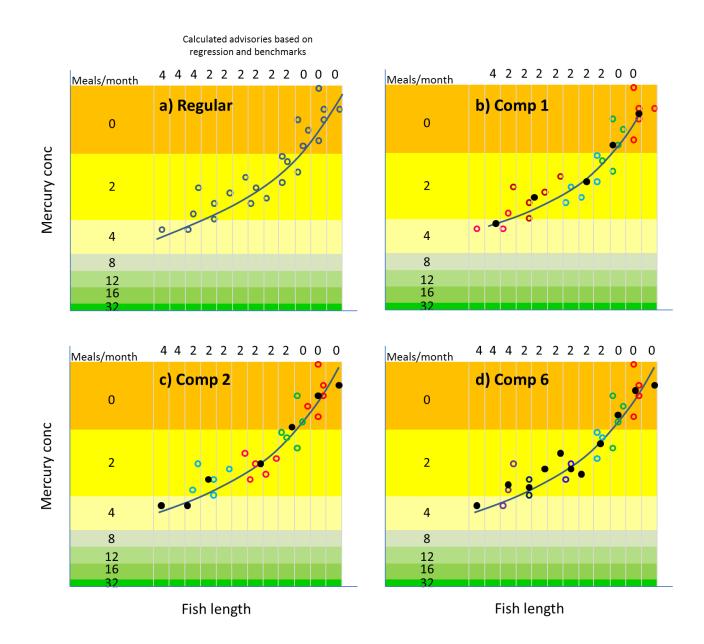
**Table S12:** Breakdown by species of total number of composites (of 5 individual fish) derived using the composite method 2, and number and percentage of those composite that met the 75% rule (i.e., the length of the smallest fish in a composite should be at least 75% of the length of the largest fish).

| Species                    | # of composites | Composites met 75% rule | % met 75% rule |
|----------------------------|-----------------|-------------------------|----------------|
| Alewife                    | 3               | 3                       | 100            |
| American Eel               | 55              | 55                      | 100            |
| Atlantic Salmon            | 3               | 2                       | 67             |
| Bigmouth Buffalo           | 1               | 1                       | 100            |
| Black Crappie              | 323             | 314                     | 97             |
| Blackfin Cisco             | 3               | 3                       | 100            |
| Bloater                    | 88              | 88                      | 100            |
| Bluegill                   | 208             | 208                     | 100            |
| Bowfin                     | 17              | 15                      | 88             |
| Brook Trout                | 352             | 314                     | 89             |
| Brown Bullhead             | 686             | 671                     | 98             |
| Brown Trout                | 213             | 189                     | 89             |
| Catfish species            | 2               | 2                       | 100            |
| Channel Catfish            | 383             | 369                     | 96             |
| Chinook Salmon             | 359             | 325                     | 91             |
| Chub                       | 44              | 44                      | 100            |
| Cisco(Lake Herring)        | 522             | 498                     | 95             |
| Coho Salmon                | 219             | 204                     | 93             |
| Common Carp                | 726             | 687                     | 95             |
| Freshwater Drum            | 272             | 257                     | 94             |
| Gizzard Shad               | 28              | 27                      | 96             |
| Goldeye                    | 16              | 16                      | 100            |
| Goldfish                   | 3               | 3                       | 100            |
| Greater Redhorse           | 8               | 8                       | 100            |
| Humper (Banker) Lake Trout | 17              | 17                      | 100            |
| Lake Chub                  | 1               | 1                       | 100            |
| Lake Trout                 | 2893            | 2636                    | 91             |
| Lake Whitefish             | 1632            | 1599                    | 98             |
| Largemouth Bass            | 649             | 539                     | 83             |
| Ling (Burbot)              | 267             | 251                     | 94             |
| Longnose Sucker            | 177             | 173                     | 98             |
| Mooneye                    | 36              | 35                      | 97             |

| Species              | # of composites | Composites met 75% rule | % met 75% rule |  |
|----------------------|-----------------|-------------------------|----------------|--|
| Muskellunge          | 6               | 5                       | 83             |  |
| Northern Pike        | 4457            | 4104                    | 92             |  |
| Pink Salmon          | 76              | 76                      | 100            |  |
| Pumpkinseed          | 328             | 324                     | 99             |  |
| Quillback Carpsucker | 21              | 20                      | 95             |  |
| Rainbow Smelt        | 17              | 17                      | 100            |  |
| Rainbow Trout        | 432             | 396                     | 92             |  |
| Redhorse Sucker      | 74              | 71                      | 96             |  |
| Rock Bass            | 583             | 568                     | 97             |  |
| Round Whitefish      | 68              | 68                      | 100            |  |
| Salmon Hybrid        | 1               | 1                       | 100            |  |
| Sauger               | 240             | 230                     | 96             |  |
| Shorthead Redhorse   | 12              | 12                      | 100            |  |
| Silver Redhorse      | 5               | 5                       | 100            |  |
| Siscowet             | 28              | 25                      | 89             |  |
| Smallmouth Bass      | 2267            | 2008                    | 89             |  |
| Splake               | 57              | 51                      | 89             |  |
| Sturgeon             | 72              | 66                      | 92             |  |
| Sucker Family        | 3               | 3                       | 100            |  |
| Walleye              | 7571            | 6996                    | 92             |  |
| White Bass           | 558             | 552                     | 99             |  |
| White Crappie        | 28              | 24                      | 86             |  |
| White Perch          | 213             | 209                     | 98             |  |
| White Sucker         | 1666            | 1601                    | 96             |  |
| Whitefish hybrid     | 1               | 1                       | 100            |  |
| Yellow Perch         | 1843            | 1772                    | 96             |  |
| Total                | 30833           | 28759                   | 93             |  |

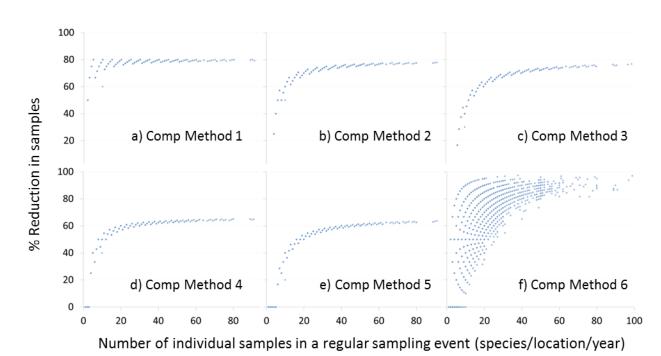
Table S12: Continued....



Figure S1: Map of sampling locations for the OMOECC fish mercury dataset used in this study.

**Figure S2:** Histogram of number of individual samples collected in each sampling event (species/location/year) of the OMOECC fish Hg dataset used in this study (regular method) as well as in the datasets prepared by applying the six composite methods on the OMOECC dataset.

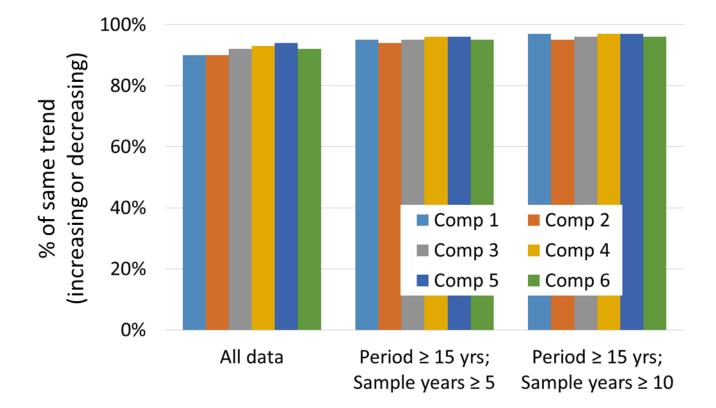



Number of measurements

**Figure S3:** Illustration of calculating fish consumption advisories for regular individual Hg measurements (a) as well as composites using methods 1 (b), 2 (c) and 6 (d). The advisory benchmarks used for the calculations are shown in Table S2. Grey colour circles are for individual measurements; same coloured individuals belonged to the same composite; filled black circle is for a composite value calculated as an average of the individuals in the group. Regression analysis was performed on individual measurements for the "regular method" scenario, and on composites and retained individuals for the composite method scenarios.

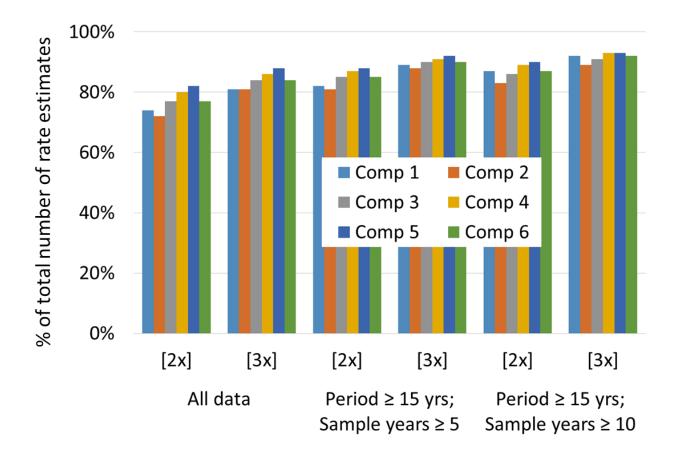


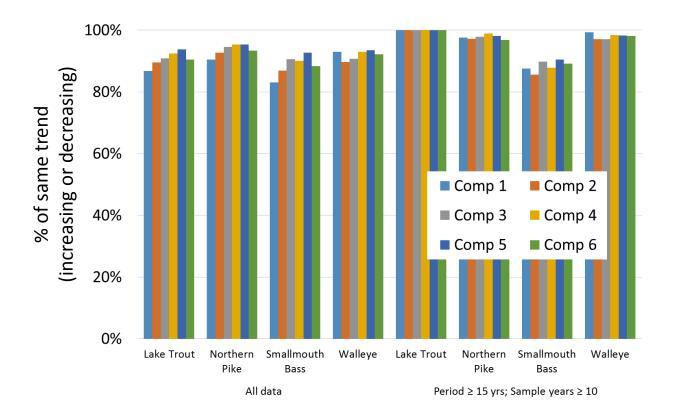
**Figure S4:** Illustration of the number of temporal trends conducted for a species at a location where sampling was conducted 8 times between 1981 and 2011. A rate of change in fish mercury levels was calculated for each grey coloured cell. The number combination (e.g., *13, 4*) represents the time period (13 years) with (4) sampling years during the period. In this example, 28 rates of changes were calculated for each of the regular and six composite methods (total 196).


|      | 1981  | 1983  | 1988         | 1994  | 1995  | 2001  | 2007 | 2011 |
|------|-------|-------|--------------|-------|-------|-------|------|------|
| 1981 |       |       |              |       |       |       |      |      |
| 1983 | 2, 2  |       |              |       |       |       |      |      |
| 1988 | 7, 3  | 5, 2  |              |       |       |       |      |      |
| 1994 | 13, 4 | 11, 3 | 6, 2         |       |       |       |      |      |
| 1995 | 14, 5 | 12, 4 | 7, 3         | 1, 2  |       |       |      |      |
| 2001 | 20, 6 | 18, 5 | 13, 4        | 7, 3  | 6, 2  |       |      |      |
| 2007 | 26, 7 | 24, 6 | <i>19,</i> 5 | 13, 4 | 12, 3 | 6, 2  |      |      |
| 2011 | 30, 8 | 28, 7 | 23, 6        | 17, 5 | 16, 4 | 10, 3 | 4, 2 |      |



**Figure S5:** Reductions in number of samples to be analyzed for Hg after employing the six compositing methods as a function of number of samples in regular, individual measurements at each sampling event (species/location/year) of the OMOECC fish Hg dataset used in this study.


**Figure S6: Distribution of ranking on p-value for power series regressions.** Seven power series regressions on fish length versus Hg concentration were conducted for each sampling event (species/location/event; one for each of the regular and six composite methods). For each sampling event, ranking for seven p-values was assigned from 1 (lowest p-value) to 7 (highest p-value). The sampling events that resulted in 1 or 2 sample sizes after applying a compositing method were excluded from this analysis. If more than one method had the same rank, the average rank was assigned. The distribution of the rankings for the eligible sampling events are presented in this figure.






**Figure S7:** Comparison of temporal trends (increasing or decreasing) in fish mercury levels from six composite methods with those from the regular method of individual fish samples for mercury analysis.

**Figure S8:** Comparison of rates of change in fish mercury levels from six composite methods with those from the regular method of individual fish samples for mercury analysis. The results have been presented as percentage of total number of rate estimates within 2 and 3 times of the corresponding rates from the regular method.





**Figure S9:** Comparison of temporal trends (increasing or decreasing) in fish mercury levels from six composite methods with those from the regular method of individual fish samples for mercury analysis.

## References

OMOECC. 2015-2016 Guide to Eating Ontario Fish. Toronto, Ontario, Canada:

Ontario Ministry of the Environment and Climate Change; 2015