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ABSTRACT

Mechanistic models of ruminant digestion and metab-
olism have advanced our understanding of the processes 
underlying ruminant animal physiology. Deterministic 
modeling practices ignore the inherent variation within 
and among individual animals and thus have no way to 
assess how sources of error influence model outputs. We 
introduce Bayesian calibration of mathematical models 
to address the need for robust mechanistic modeling 
tools that can accommodate error analysis by remaining 
within the bounds of data-based parameter estimation. 
For the purpose of prediction, the Bayesian approach 
generates a posterior predictive distribution that repre-
sents the current estimate of the value of the response 
variable, taking into account both the uncertainty 
about the parameters and model residual variability. 
Predictions are expressed as probability distributions, 
thereby conveying significantly more information than 
point estimates in regard to uncertainty. Our study il-
lustrates some of the technical advantages of Bayesian 
calibration and discusses the future perspectives in the 
context of animal nutrition modeling.
Key words: Bayesian methods, ruminant, mechanistic 
modeling

Technical Note

Mathematical models of ruminant nutrition are used 
to formulate diets and integrate knowledge of ruminant 
digestion and metabolism. Models can be generally clas-
sified as empirical or mechanistic, each with different 
strengths and weaknesses. Empirical models are fitted 
to “training” data sets, and their application is con-
strained by the information in the development data. 
Mechanistic models of ruminant nutrition are causal 
in nature and can be theoretically applied to draw 
predictions outside their calibration domain. However, 
they are deterministic by design and their applications 

usually lack parameter variance or prediction error 
estimates (Baldwin, 1995; Reed et al., 2015). In cases 
where parameter or prediction errors are estimated 
through bootstrapping or other fitting techniques, they 
are usually estimated for predetermined components of 
the model and do not effectively capture the covariance 
among all model parameters. Many national nutri-
ent requirement models, such as the NRC (2001), are 
factorial combinations of stochastic, empirical models 
that incorporate error assessment but are limited by 
their static, factorial nature. The factorial approach of 
sequential combinations of empirically fit models pos-
tulates independence among the subsystems. However, 
in the ruminant animal, the processes of digestion and 
metabolism are tightly interlinked. In contrast, fitting 
a whole-animal mechanistic model relaxes the assump-
tion of independence as the parameters determining 
the behavior of each subsystem are specified simultane-
ously. Mechanistic models of ruminant nutrition such 
as those of Baldwin et al. (1987), Dijkstra et al. (1992), 
and Kebreab et al. (2002) depict our most accurate 
mathematical representation of the causal relationships 
operating at the subsystem level to represent the ani-
mal physiology dynamically given our current state of 
knowledge. However, the fitting methods typically used 
do not explicitly accommodate the error associated 
with the data nor do they allow for estimation of the 
appropriateness of model structure.

Models are not a true representation of complex 
biological systems but rather a depiction of our best 
understanding of the dominant processes within that 
system (Oreskes et al., 1994). Recognizing that there 
are forces acting on the system that are unaccounted 
for by the model and others that may be described 
incorrectly, one must explicitly recognize that model 
predictions will often be inaccurate. For example, the 
effect of particle size on rate of passage is a force that is 
not accounted for in this model, which will cause some 
degree of prediction error. Thus, it is the obligation 
of the modeler to communicate to the users the level 
of confidence with which the model can be expected 
to align with or deviate from reality. As knowledge of 
ruminant digestion and metabolism increases, the foun-
dation of mechanistic models is strengthened and so 
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their ability to respond to complex questions that face 
ruminant production systems today is also enhanced. 
However, if mechanistic models are to be used as deci-
sion-making tools, model errors need to be estimated 
well to highlight the parts of their structure that are 
not well-defined and to provide an assessment of the 
risks associated with the different production system 
practices.

Bayesian mechanistic models are popular in fields 
such as ecology and biogeochemistry (Arhonditsis 
et al., 2008; Ramin and Arhonditsis, 2013) and have 
many advantages that will benefit the field of ruminant 
nutrition. Applying Bayesian calibration techniques to 
dynamic ruminant nutrition models combines the ad-
vantageous features of both mechanistic and statistical 
approaches. Bayesian calibration frameworks can char-
acterize multi-level structures (Zhang and Arhonditsis, 
2009): a particularly useful attribute when modeling 
animal physiology, where individual metabolic pro-
cesses connect to describe the productivity patterns 
of individual animals. Another advantage of Bayesian 
inference techniques is that they allow capitalizing on 
existing knowledge of the relative plausibility of model 
parameter values through the formulation of prior dis-
tributions (Arhonditsis et al., 2008). The amount of 
knowledge or confidence about the values of a given 
parameter determines the degree of information pro-
vided by the corresponding prior distribution. Designa-
tion of prior distributions constrains the solution space, 
which in mechanistic models can be prohibitively large 
and create barriers to model training exercises. Even 
a small amount of information about a parameter, for 
example, designation of a distribution that is limited to 
the positive real line, can prevent the search algorithm 
from going out of bounds and facilitate convergence to 
the best solution. Model practitioners have disparate 
views regarding the use of prior information alongside 
calibration data. One school of thought encourages the 
use of noninformative priors, which allows the data to, 
almost exclusively, determine the posterior parameter 
estimates. Indeed, in the asymptotic case where the 
number of observations approaches infinity, Bayesian 
and frequentist estimation are practically identical if 
noninformative conjugate prior distributions are used. 
On the other hand, when sample sizes are small (rela-
tive to the number of parameters being estimated), it 
may not be prudent to solely rely on the available data 
in guiding the search for defensible model solutions. In 
this case, the inclusion of prior information on model 
parameters can be beneficial in that it characterizes 
the parameter space with respect to its plausibility and 
therefore effectively reduces the discrepancy between 
model inputs and outputs (Gelman et al., 2014). Fur-
ther, when parameter distributions are updated through 

model calibration, posterior distributions can then be 
used as prior distributions for the next calibration when 
new data become available. Viewing model calibration 
as an inverse problem, the “prior–likelihood–posterior” 
update cycles more effectively lead to model solutions 
that can realistically reflect the internal structure of the 
modeled system and avoid getting “good results for the 
wrong reasons” (Zhang and Arhonditsis, 2008).

The Bayesian approach to mechanistic modeling can 
be adapted to model daily or sub-daily (i.e., hourly or 
any other period less than a day) time steps in steady-
state or non-steady-state dynamics depending on the 
quality and availability of data. The appropriateness of 
assuming steady state in simulations of dynamic sys-
tems has been questioned (Flynn, 2006). A steady-state 
model will, at best, achieve an average approximation 
of the ruminant animal if it is fed several equally pro-
portioned meals a day, which is contrary to common 
feeding practices of less than 3 meals per day. More 
realistic feeding patterns can be accommodated in a 
Bayesian setting through use of dynamic forcing func-
tions, making investigations into the effects of sub-daily 
fluctuations in rumen fermentation or rate of passage, 
for example, particularly accessible.

To illustrate this modeling technique, a 3-pool model 
of rumen N digestion and passage to the duodenum 
was developed. A description of model equations is 
given in Table 1. Inputs to the system through N intake 
are represented by IX, where X is either the soluble 
or potentially degradable N fraction in the feed; flows 
are represented by FA−B where the flow is movement 
of N from pool A to pool B. State variables or pools 
are represented by Q and degradation of N from the 
potentially degradable N pool (QDegN) to the soluble 
N pool (QSolN) is represented as a mass-action function 
mediated by the degradation constant kd. Similarly, 
flow of N from the rumen to the duodenum is also 
represented as a mass-action function through the rate 
of passage constant, kp. The rate of passage (kp) was 
further modeled as a function of intake where intake is 
a function of time:

 k k
I t

kp p  
BWp

= + ×
( )
×

⎛

⎝
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⎞
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⎟⎟⎟⎟⎟0 100β DM ,  [1]

where β is the coefficient representing the linear rela-
tionship between intake and rate of passage. The intake 
function, IDM(t), was modeled as an interpolation of 
feed intake over time such that the area under the 
curve was equal to total DMI. Uptake of N from QSolN 
to the microbial N pool (QMicN) is modeled through 
a Michaelis-Menten function, similar to that described 
by Dijkstra et al. (1992), where the maximum rate of 
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uptake (Vmax) is a function of the digestible organic 
matter content of the feed (OMd):

 V Vmax   OMd.
max

= ×β   [2]

Prior distributions for model parameters, θ = 
, , , , , ,k k V kV kd m max pmax p

β β⎡
⎣⎢

⎤
⎦⎥
 were designated as lognormal 

distributions in which the variance was specified such 
that the minimum and maximum of a 95% confidence 
interval were (0.5μ) and 2μ, where μ is an estimate of 
the parameter obtained from the literature (Table 2). 
The lognormal distribution was chosen because it ex-
cludes biologically impossible negative numbers and 
the shape and scale parameters are interpreted within 
the context of the system being modeled. Alternative 
formulations to the weakly informative prior distribu-
tions implemented here include noninformative (or flat) 
priors such as a normal (0, 1002) or uniform (−100, 
100) distribution. However, given the moderate number 
of parameters in the model, the reasonable amount of 
calibration data, and the substantial literature-based 
biological information about the parameters, we opted 
for weakly informative priors as the best choice for the 
present parameter estimation exercise. The calibration 
data consisted of 17 observations on one animal of 
QMicN and the total flow (FTot) of N out of the rumen to 
the duodenum taken over the course of a 3-d trial (Rob-
inson, 1983, and personal communication from the au-
thor). Total diversion of the digesta at the duodenum 
was used to measure flow and no record of milk produc-
tion was taken as it was not the focus of that trial. The 
diet consisted of 65% mixed alfalfa and grass hay, 26% 
cracked corn, and 8% soybean meal on a DM basis fed 
in one meal of 6.55 kg/d. Two Gaussian formulations 
were considered in which the model was assumed to be 
either a perfect simulator of the system with the only 

error attributed to measurement of the data (M0; Equa-
tion [3]) or an imperfect simulator of the system with 
error due to both model structure and measurement 
error (M1; Equation [4]) are given below:

 yij i ijf= ( )+θ,  ,  ,y I0 ε   [3]

 yij i j ijf= ( )+ +θ,  ,  .y I0 ϕ ε   [4]

In Equations [3] and [4], yij is the vector of 17 observa-
tions over time for i = 1, …, 17 and j = [QMicN, FTot]; 
f(θ, y0, Ii) is the solution of the differential equation 
system at time point i, given the parameters θ, initial 
values y0, and model inputs I; φj is the structural error 
due to the model; and εij is the random error due to 
measurement. A noninformative Gamma distribution 
was designated for the error precision parameter ϕj

−2 
because it is constrained to the positive real line and is 
the conditional conjugate prior when a Gaussian likeli-
hood is assumed. The error due to measurement (εij) 
was specified as 15% of the measured value, yij; the 
latter specification was used in recent Bayesian calibra-
tion exercises in the literature (Arhonditsis et al., 2008; 
Zhang and Arhonditsis, 2008), whereas the effect of the 
assumptions made about the measurement error can 
always be examined through sensitivity analysis (Zhang 
and Arhonditsis, 2009).

The model was fit in WinBugs software using the 
WBDiff package for differential equations (Spiegel-
halter et al., 2003). Convergence of the Markov chain 
Monte Carlo chains was checked using the Brooks-
Gelman-Rubin scale-reduction factor (Brooks and 
Gelman, 1998). This diagnostic is based on analyzing 
multiple simulated Markov chain Monte Carlo chains 
by comparing the variances within each chain and the 
variance between chains. Large deviation between these 

Table 1. Model parameter descriptions and mathematical representations

Pool/flux  Description  Mathematical description1

QSolN Rumen soluble N (fraction A) ISol + FDeg−Sol − FSol−Mic − FSol−Duod
QDegN Rumen potentially degradable N (fraction B) IDeg − FDeg−Sol − FDeg−Duod
QMicN Microbial N FSol−Mic − FMic−Duod
ISol Input to rumen soluble N Soluble N fraction × N intake
IDeg Input to rumen degradable N Degradable N fraction × N intake
FDeg−Sol Degradation of DegN to SolN kd × QSolN

FSol−Mic Uptake of SolN into MicN
V
k CR
max

m1+ /
FSol−Duod Passage of SolN to DuodN kp × QSolN
FDeg−Duod Passage of DegN to DuodN kp × QDegN
FMic−Duod Passage of MicN to DuodN kp × QMicN

1kd (/h) is the rate of degradation of degradable N into soluble N; Vmax (g of N/h) is the maximum rate of 
incorporation of soluble N into microbial N; km (g of N/L) is the concentration at half maximal rate of uptake 
of soluble N into microbial N; CR (g of N/L) is the concentration of soluble N in the rumen; and kp (/h) is the 
rate of passage of rumen contents into the duodenum.
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2 variances indicates nonconvergence, whereas values 
close to 1 suggest that each of the multiple chains has 
stabilized, and they are likely to have reached the target 
distribution. The latter condition was met for each of 
the model parameters considered. The accuracy of the 
posterior parameter values was inspected by ensuring 
that the Monte Carlo error (an estimate of the differ-
ence between the mean of the sampled values and the 
true posterior mean) for all parameters was less than 
15% of the sample standard deviation (Geweke, 1992). 
For more information on Bayesian modeling in the Bugs 
platform, see Lunn et al. (2012) and Ntzoufras (2011).

Inference about parameter posterior distributions 
and the amount of information the data contain about 
each parameter can be drawn by comparing parameter 
prior and posterior distributions. This can be done 
qualitatively through visual assessment of prior and 
posterior plots (Figure 1) and comparisons of distribu-
tion shape and scale parameters (Table 2). The delta 
index (δθi, Equation [5]) is a quantitative metric that 
estimates the change in parameter distribution shape 
and can be conveniently expressed as a percentage of 
the maximum value of the metric (Endres and Schinde-
lin, 2003; Ramin and Arhonditsis, 2013):

 δ
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Here, π(θi) and π(θi | D) are the prior and posterior 
distributions of parameter θi, respectively. In the Bayes-
ian context, this metric can be interpreted as the square 
root of twice the information gained about θi upon ob-
servation of the data, D. The delta index has a mini-

mum value of 0 when the prior and posterior are the 
same, and a maximum value of 2 210log  when the 2 
distributions do not overlap. The delta indices of model 
parameters, expressed as a proportion of the maximum 
value, are given in Table 2.

Model fit can be assessed through the posterior 
predictive P-value (Meng, 1994; Gelman et al., 1996), 
the deviance information criterion (Speigelhalter et al., 
2002), and the Bayes factor (Kass and Raftery, 1995). 
The posterior predictive P-value was developed as a 
Bayesian measure analogous to the frequentist P-value. 
However, the traditional P-value gives the probability 
of observing the data under the null hypothesis whereas 
the posterior predictive P-value is the probability that 
data replicated from the proposed model is more ex-
treme than the observed data. Thus, in the Bayesian 
setting, the null hypothesis that the replicated data 
do not systematically differ from the observed data 
is rejected when the posterior predictive P-value ap-
proaches probabilities of 0 and 1, and is accepted if 
the P-value is close to 0.5 (Arhonditsis et al., 2008). 
Two measures of discrepancy, the χ2 test statistic and 
the log-likelihood, were used to assess the posterior 
predictive P-value of the model (Gelman et al., 1996). 
The P-value can be expressed visually by plotting the 
discrepancy of the data from the model against the 
discrepancy of the posterior predictions from the model 
(Figure 2a,c). An alternative visualization is to produce 
the histogram of the likelihood values of the posterior 
predicted replicates relative to the model with the 
mean likelihood of the data (given the model) plotted 
as a vertical line (Figure 2b,d). It can also be expressed 
as a numerical value representing the number of cases 
in which the likelihood of the posterior predictions is 
greater than the mean likelihood of the data (Figure 2; 
Gelman et al., 1996).

Table 2. Comparison of prior and posterior densities1 from model 1 (Equation [4])

Parameter2

Central tendency

 

SD

Delta indexPrior (median) Posterior (mean) Prior Posterior

kd 0.14 0.137 0.984 0.0363 0.664
βVmax 21.03 13.9 122.4 2.87 0.303

km 3 4.39 18.4 1.13 0.505
βkp 0.05 0.0626 0.284 0.0185 0.169

kp0 0.09 0.0890 0.530 9.95E-3 0.397
1Prior densities are user defined likelihood distributions of parameter values based on knowledge of the system. 
Posterior values are estimates of parameter likelihoods after model calibration. The delta index is a standard-
ized measure of how much the parameter likelihood changed through calibration with 0 indicating no change 
and 1 indicating maximum possible change.
2kd (/h) is the rate of degradation of degradable N into soluble N; βVmax  [g of N/(h·g of dOM)] is the rate of  
increase in maximum rate of incorporation of soluble N into microbial N per unit of digestible OM; km (g of  
N/L) is the concentration at half maximal rate of uptake of soluble N into microbial N; βkp [/(h·g of DMI)]; kp0 
(/h) is the initial rate of passage of rumen contents into the duodenum.
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Figure 1. Parameter prior (dashed lines) and posterior (solid black line) distributions with the prior medians shown in the vertical line. βVmax  
[g of N/(h·g of dOM)] is the rate of increase in maximum rate of incorporation of soluble N into microbial N per unit of digestible OM; kp0 (/h) 
is the initial rate of passage of rumen contents into the duodenum; kd (/h) is the rate of degradation of degradable N into soluble N; βkp (/h × 
kg of DMI) is the coefficient representing the linear relationship between intake and rate of passage; km (g of N/L) is the concentration at half 
maximal rate of uptake of soluble N into microbial cells. Color version available online.
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The latter 2 measures are means for comparing 
model fitness when more than one model is investi-
gated. The deviance information criterion is the Bayes-
ian counterpart of the Akaike information criterion in 

that both consider model performance while penalizing 
complexity and thus favoring selection of the most 
parsimonious models (Speigelhalter et al., 2002). The 
Bayes factor (B10) is the posterior odds of one model 

Figure 2. Posterior predictive P-values as assessed by the χ2 test statistic (a, c) and the log-likelihood (b, d) of the data (D) and model pre-
dicted replicates (ypred) for the microbial nitrogen pool (a, b) and total flux of nitrogen to the duodenum (c, d). In the log-likelihood histograms, 
the mean data log-likelihood given the model at hand is shown with a vertical line. M1 designates the model formulation used that included 
measurement and structural model error as indicated equation 4; θ is the vector of prior distributions. Color version available online.
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(M1) over the other (M0), which is estimated from the 
model likelihood of the data and the (often equal) prior 
probabilities assigned to each model of interest using 
Bayes theorem:

 B
pr D M pr M

pr D M pr M10
1 1

0 0
=

( ) ( )
( ) ( )
|

|
.  [6]

Here, M0 represents the null hypothesis (H0) that the 
model is a perfect simulator of the system (Equation 
[3]), and M1 represents the alternative (H1), that there 
is a structural error due to the model (Equation [4]). 
Assuming pr(M1) = pr(M0), B10 can be estimated 
simply from the ratios of model likelihoods where the 
posterior model likelihood is integrated over the poste-
rior distribution of model parameters. In this example, 
incorporation of a structural error term (M1, Equation 
[4]) resulted in a Bayes factor > 100 which, according 
to the framework proposed by Kass and Raftery (1995), 
is decisive evidence in support of M1 over M0.

Plots of model (M1) predictions and observed values 
over time (Figure 3) provide a visual assessment of the 
model fit to the data and the expected pattern of pool 
fluctuation under a single daily feeding schedule. Most 
observations fall within the 95% credible intervals (Fig-
ure 3) indicating a good model fit, although the derived 
uncertainty bands are fairly broad and extend to less 
than zero for FTot. Whereas the latter posterior pattern 
primarily stems from the substantial temporal vari-
ability of the calibration data set, we note that these 
credible intervals serve as a proof of concept of the abil-
ity of the proposed calibration framework to provide 
dynamic predictive error estimates. From a statistical 
standpoint, the negative values for FTot can be avoided 
by truncating the Gaussian model likelihood used or by 
simply postulating that the model error is log-normally 
distributed. On the other hand, from an inferential 
viewpoint, the likelihood of negative predictive outputs 
during the parameter estimation exercise could have 
implications about the quality of the calibration data, 
especially when we use multivariate data compiled from 
different sources, the mechanistic foundation of the 
mathematical model developed, or both.

To illustrate the utility of Bayesian mechanistic 
models in predicting future feeding or management 
scenarios, posterior estimates were used to run simula-
tions and assess model outcomes. Markov chain Monte 
Carlo samples of parameters were used to construct 
a posterior multivariate distribution, based on param-
eter mean values and variance-covariance patterns 
(Arhonditsis et al., 2008). Two dietary inputs to the 
model were varied to assess their effect on microbial 
protein production. Specifically, OMd content and SolN 

as a percentage of total N were varied in even incre-
ments from 0.55 to 0.85 and 0.18 to 0.5, respectively. 
A Markov chain Monte Carlo of the microbial N pool 
was monitored and recorded for daily microbial N pro-
duction under each dietary setting. The proportion of 
the Markov chain Monte Carlo chain that exceeds the 
designated threshold of 90 g/d provides the likelihood 
that microbial N production exceeds the threshold in 
the given dietary scenario. The threshold was chosen as 
a reasonable estimate of microbial N production for the 
given DMI based on values reported in the literature 
for higher levels of DMI and the NRC (2001) estimate 
of microbial N production for the calibration data diet. 
The results of the simulations are given in Figure 4 and 
indicate that increasing OMd and SolN both increase 
the probability that microbial N will exceed the thresh-
old.

Model evaluation results suggest the model fits the 
data well and the data contain sufficient information 
to improve estimates for most of the parameters. The 
delta indices given in Table 2 and density plots in Fig-
ure 1 indicate that even the small amount of data used 
in this study provide enough information to change the 
density of the parameters, resulting in a larger increase 
in confidence of parameter estimates. The posterior 

Figure 3. Model solutions (lines) and 95% credible intervals (gray 
area) plotted against time (h) along with the observed data of the 
microbial N pool and N flow to the duodenum used to fit the model 
(symbols).
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predictive P-values shown in Figure 2 indicate that 
model predictions do not systematically differ from the 
observed values for QMicN or FTot. However, grouping 
the observations over time to get one estimate of model 
fit for each type of data could mask a systematic error 
or lack of fit at a specific time point. To avoid this 
problem, a posterior predictive P-value for each time 
point and each type of data should be estimated. The 
large (>100) Bayes factor when comparing M0 and M1 
indicates that accounting for model structural error 
greatly improves model fit. This error structure can be 
expanded to allow the error to vary over time or to 
accommodate other sources of error such as individual 
animal or study variance. The Bayes factor can then 
be used to select the best model for the data. Finally, 
model predictions plotted over time with observations 
(Figure 3) support a good model fit and follow the ex-
pected pattern of digesta flow for a single-daily feeding 
regimen.

The posterior simulations illustrated in Figure 4 
communicate the degree of confidence that a certain 
threshold will be exceeded. From a user perspective, 
this uncertainty is a valuable piece of information that 
could prevent loss of faith in model utility when predic-
tions are not realized. For example, instead of basing 
our decisions on point (average) estimates of milk pro-
duction without any insights into the associated uncer-
tainty, the Bayesian calibration framework can predict 
the probability with which an examined diet will exceed 

a given level of milk production (e.g., there is an 80% 
probability that milk production will be higher than 35 
kg/cow per d, if we adopt a particular diet). In essence, 
the Bayesian proposition aims to shift the focus of the 
decision making process from an average prediction to 
a probability mass that delineates the likelihood of suc-
cess (or failure) of a tested production practice. It is 
the responsibility of animal scientists to provide users 
with the most credible information available to guide 
their management decisions, but also to be transparent 
about the level of precision and accuracy associated 
with model predictions.

The methods described provide a framework for fit-
ting a simple 3-pool model that accounts for error due 
to measurement and model structural error for each 
source of data. This model can be expanded (given data 
availability) by adding additional pools, errors that vary 
over time, random effects of animal or study (or both), 
or modeling parameter variances. The flexibility of the 
Bayesian framework and the ability to probabilistically 
incorporate prior knowledge of the system makes this 
technique well suited to mechanistic models of ruminant 
digestion and metabolism. In most experiments, data 
are collected at many time points over the course of a 
study; however, much of the information is lost when 
these observations are averaged by day or trial period. 
Bayesian mechanistic models can be fit to time series 
allowing all of the data to inform model estimates. Fur-
ther, the iterative nature of the Bayes’ theorem, which 

Figure 4. Posterior probability of microbial nitrogen production (MicN, g/d) exceeding 90 g/d under varying digestible organic matter intake 
(DOMI, kg/d) and soluble nitrogen intake (SolN, g/d). Points represent values of the observed diet.
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allows sequential updating of parameter distributions, 
facilitates accumulation of information from the data 
through multiple calibrations (Arhonditsis et al., 2008). 
Finally, the posterior uncertainty patterns can be used 
to guide data collection efforts and experimentation 
that revolves not only around model endpoints but also 
individual mechanisms or process rates (Zhang and 
Arhonditsis, 2008). User-friendly software, advances in 
computing power, and a growing body of work from 
other fields make this approach more accessible than 
ever.

The challenge facing the dairy industry today is to 
increase production in an economically and environ-
mentally sustainable manner. To meet this challenge, 
producers and policy makers depend on scientific anal-
ysis of increasingly complex systems. A large amount of 
uncertainty about the principles that direct ruminant 
digestion and metabolism, including everything from 
rumen fermentation to genetic variation, exists. As long 
as this uncertainty remains, it is the modeler’s respon-
sibility to provide a cogent analysis of the contribution 
of individual sources and collectively evaluate the de-
gree of confidence to model predictions. Conventional 
deterministic mechanistic models do not provide error 
estimates and thus fail to provide an assessment of the 
risk associated with decisions based on model results. 
Bayesian mechanistic models capture the inherent vari-
ability of the biological system under study and provide 
an assessment of the error associated with complex 
model results. Decision makers such as producers can 
benefit from knowledge of associated error while pre-
dicting outcomes such as milk production.
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