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The Lotka–Volterramodel is themost commonly used framework to describe the dynamics of ecological systems
in which two species interact, one as a predator and the other as prey. Theoretical ecologists have since built on
variants of these equations, frequently applying them to model the dynamics of algal-herbivore interactions in
aquatic systems. In this study, we augment a Lotka–Volterra system by introducing a bioenergetically-explicit,
ecophysiological model to examine how variations in resource allocation affect zooplankton growth and subse-
quently phytoplankton dynamics. Ingestedmaterial within a zooplankter's gut is separated into distinct internal
congener pools that are used to support physiological processes occurring in a hierarchical direction: neurological
functions, energetics, osmoregulatory maintenance, waste management, and finally growth. Consistent with the
predictions of the “stoichiometric knife edge” theory, our analysis suggests that a balanced algal congener com-
position is required to optimize zooplankton internal congener saturations, resulting in a maximal allocation of
energy to growth. In examining the advantages rendered by different strategies of minimum and optimum so-
matic quotas when experiencing phosphorus-enrichment conditions, we show that herbivores with narrow ho-
meostatic bounds and animalswith lowminimumquotas (or depletion specialists) achieve optimal performance
first. Our analysis also predicts patterns of multiple stable equilibria inwhich the same environmental conditions
can be characterized by dramatically different prey-to-predator ratios. Importantly, abrupt shifts from one state
to another can be induced not only by short-term variations in food abundance but also by variations in the nu-
tritional quality of the prey. Our predictions have profound implications for connecting microscopic processes
withmacroscopic patterns and offer new insights into themultitude of factors thatmodulate foodweb dynamics.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Lotka and Volterra's pioneeringwork to reproduce the dynamics of a
predator-prey system has formed the core of ecological modelling over
the last century (Elser et al., 2012; Wangersky, 1978). Theoretical ecol-
ogists have since built on variants of these equations, frequently apply-
ing them to model the dynamics of algal-herbivore interactions in
aquatic systems. The trophic linkages between primary producers and
consumers are arguably the most important in aquatic food webs
(Brett and Muller-Navarra, 1997), as their interactions control the
flow of energy to higher trophic levels. In freshwater pelagic environ-
ments, the keystone herbivores Daphnia (Altshuler et al., 2011) exert
strong grazing impacts on phytoplankton biomass and species composi-
tion (Elser and Goldman, 1991; Sarnelle, 2005). The plethora of data
available on Daphnia, spanning multiple levels of ecological organiza-
tion (from genome to individuals to populations), make it a prime sub-
ject around which to develop models of food web dynamics (Mulder

and Bowden, 2007; Nisbet et al., 2010). Consequently, a rich history of
Daphnia-based models have emerged over the past several decades
that typically examine dynamics at the individual (McCauley et al.,
1990; Mooij et al., 2003; Paloheimo et al., 1982; Rinke and Petzoldt,
2003) or population (McCauley et al., 1996; Nisbet et al., 1997) levels.

Contemporary zooplankton modelling has focused on internal dy-
namics (e.g., at the sub-individual level), investigating the theoretical
implications of varying mass and energy on population dynamics and
algal-herbivore interactions. For example, “ecological stoichiometry”
integrates population dynamics with the mass balance of key nutrient
elements, namely carbon, nitrogen, and phosphorus, in order to
link grazer dynamics and algal nutritional status (Elser and Urabe,
1999; Sterner and Elser, 2002). In the last few decades, multiple
stoichiometrically-explicit models of Daphnia-algal interactions have
been developed (Andersen, 1997; Mulder and Bowden, 2007; Muller
et al., 2001; Sterner, 1990), which have provided insights into the cou-
pling of population dynamics and nutrient recycling. Further extensions
of the stoichiometric concept have coupled chemical heterogeneity
with Lotka–Volterra equations to capture the effects of food quality
and nutrient recycling feedbacks (Andersen et al., 2004; Loladze et al.,
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2000), while Perhar et al. (2013a) examined a zooplankton stoichio-
metric growth model that simulated the interplay among nitrogen,
phosphorus, and highly unsaturated fatty acids (HUFAs). Stoichiometric
models are now being applied to examine a phenomenon termed the
“stoichiometric knife edge”, where consumer dynamics are affected by
both insufficient as well as excess dietary nutrient content (Elser et al.,
2012; Peace et al., 2013, 2014).

Other contemporary advances in the modelling literature have fo-
cused on energy budgets, as well as individual-based perspectives, in
an attempt to introduce more realism into model dynamics. The dy-
namic energy budget (DEB) theory, based on a balance approach for
mass and energy, seeks to capture the quantitative aspects of metabo-
lism at the individual level for organisms of all species (Kooijman,
2010; Sousa et al., 2008). DEB models use differential equations to de-
scribe the acquisition and utilization of resources over an organism's en-
tire life-cycle, which depend on both the state of the organism and its
environment (Martin et al., 2012; Nisbet et al., 2000). For zooplankton,
DEBmodels have successfully described growth,maturation, and repro-
ductive processes in response to food availability (Nisbet et al., 2010),
and investigated the implications of low food and starving physiology
on predator-prey dynamics (Peeters et al., 2010). Individual-based
models (IBMs) simulate populations composed of discrete individuals,
of which each obeys a set of attributes or behaviours, such that
population-level behaviours emerge from the interactions among au-
tonomous individuals with each other and their abiotic environment
(Grimm, 1999; Huston et al., 1988). This bottom-up approach can link
the dynamics of individuals to higher levels of biological organization,
and is thus frequently used to answer research questions that involve
variations among individuals, their interactions, and individual life-
cycles (DeAngelis and Grimm, 2014). Two recent studies have com-
binedDEB theory and IBMs to predictDaphnia population cycles and re-
sponse to toxicants (Martin et al., 2013a, 2013b).

Even though these modelling approaches collectively capture key
aspects of ecosystem functioning, several limitations surrounding their
use remain. For example, DEB models are attractive to ecologists be-
cause standard DEB theory is applicable across species (e.g., models dif-
fer in parameter values not mathematical structure) which offers
generality, yet estimating a large number of parameters from published
data to characterize the individual can be challenging (Nisbet et al.,
2010; Sousa et al., 2010). Further, as the individual is the key unit of in-
terest, extrapolating behaviour to higher levels of biological organiza-
tion requires the development of additional modelling tools (Martin
et al., 2012) or individual developments may not be widely applicable

to other species or ecosystem settings (DeAngelis and Grimm, 2014;
but see Grimm et al., 2006, 2010). A major drawback of existing stoi-
chiometric models is their narrow focus on nutrients as sole determi-
nants of zooplankton growth, which does little to illuminate the broad
range of daphnid internal metabolic processes. In this regard, a handful
of studies have moved beyond the simple mass balance approach to in-
corporate separatemetabolic terms for the energy andmaterial budgets
of zooplankton, in order to characterize internal homeostatic processes
(Anderson et al., 2005; Arhonditsis and Brett, 2005a, 2005b; Perhar and
Arhonditsis, 2012; Perhar et al., 2012, 2013b). Despite these advances,
the empirical information required to properly constrain these models,
as well as the sequence of physiological processes, remain poorly char-
acterized (Perhar et al., 2013a).

An emerging field of research known as environmental metabolo-
mics yields a promisingmeans to depict the physiological status of zoo-
plankton. Metabolomics is the analysis of small molecules (e.g., amino
acids, proteins, carbohydrates, fats,macronutrients)within a cell, tissue,
organ, biological fluid, or entire organism, in response to an external
stressor (Lankadurai et al., 2013; see also our Fig. 1). Changes in organ-
ism health are manifested within themetabolomemore rapidly than in
the genome, proteome, and transcriptome (Viant, 2008). As a result, the
field of metabolomics has emerged as a rapid, robust, and informative
method formonitoring organism health (Lankadurai et al., 2013). In en-
vironmental metabolomics, nuclear magnetic resonance (NMR) is the
primary platform used to identify metabolites because the non-
selectivity of NMR facilitates the discovery of key metabolites that are
sensitive to environmental perturbations. To date, several NMR-based
metabolomic studies have successfully utilized this method to examine
the response of the Daphnia metabolome to contaminant exposure (Li
et al., 2015; Nagato et al., 2013; Poynton et al., 2011; Taylor et al.,
2009, 2010; Vandenbrouck et al., 2010), although only one has exam-
ined the impact of varying nutritional sources (Wagner et al., 2015).
By identifying a suite of metabolites that varied when Daphniawere ex-
posed to either low food quantity, nitrogen or phosphorus limiting
diets, Wagner et al. (2015) clearly demonstrated how metabolomics
provide a new framework to identify the nutritional status of con-
sumers. Combining Daphnia metabolomic responses into a broader
modelling framework promises to rapidly accelerate our understanding
of algal-grazer dynamics and unite previously discordant approaches to
food web modelling.

Following thismotivation, Perhar and Arhonditsis (2015) developed
a bioenergetically-explicit ecophysiological model that demonstrates
how variations in resource allocation affect Daphnia growth. This

Fig. 1. Metabolomics provide metabolite-specific information regarding the perturbations of Daphnia magna. This illustration shows how sub-lethal carbamazepine exposure alters
metabolites that participate in gluconeogenesis. Using 1H NMR-based metabolomics, metabolite fluctuations with sub-lethal exposure can be linked to perturbations in the
physiological status of D. magna (see Kovacevic et al., 2016 for details).
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model tracked food particles through a zooplankter's gut, where a frac-
tion of the grazed seston was assimilated based on its morphological
characteristics, and then ingestedmaterials were separated into distinct
internal pools (termed congeners). These congener pools were used to
support physiological processes occurring in a hierarchical direction:
neurological functions, energetics, osmoregulatory maintenance,
waste management, and finally growth. With this model, Perhar and
Arhonditsis (2015) demonstrated that the elevated energetic require-
ments of homeostasis can significantly compromise growth when
daphnids are exposed to unbalanced diets. The introduced hierarchical
approach tometabolite utilization is distinct from the current elemental
stoichiometric paradigm as primary regulators of algal food quality, and
brings a heightened level of consumer detail to mass-balance plankton
models.

Our long-term objective is to utilize Daphnia metabolomic data to
formulate a mechanistic model that links each metabolite to one or
more physiological process(es) and to shed light on the broader ecosys-
tem implications of declining Daphnia health. The present study repre-
sents the second stage in which we couple the daphnid
ecophysiological sub-model, developed by Perhar and Arhonditsis
(2015), with a Lotka-Volterra model, depicting predator (Daphnia)
and prey (algae) interactions. We use this model to examine three spe-
cific questions: Howdoes varying food quality affectDaphniaphysiolog-
ical response? Which homeostatic strategy maximizes Daphnia
physiological response to varying food quality? What are the conse-
quences of the interplay between variations in food quality and zoo-
plankton physiology in inducing alternative ecosystem states? The
ecophysiological perspective in predator-prey models is a vital step to-
wards connecting zooplankton dynamics with environmental signals
from external stressors. As such, our goal herein is to illustrate the
range of population dynamics induced when ecophysiology is explicitly
considered and to project the patterns of mass and energy flow at an
ecosystem scale.

2. Model description

Our model operates at two levels: the individual-based model
nestedwithin the foodwebmodel. Individual level dynamics are driven
by the daphnid model developed by Perhar and Arhonditsis (2015),
while the greater food web model is a modified Lotka-Volterra system,
depicting the dynamics of a predator (Daphnia), and prey (algae). The
daphnid model drives predator dynamics by modulating growth rates.
Ingested matter is broken down into fourteen (14) constituent conge-
ners. These congeners can be coarsely delineated into the following

categories (in no particular order): amino acids, highly unsaturated
fatty acids (HUFAs), mineral nutrients, calorie-carrying compounds,
and various other building blocks (Table 1). Congener fate within the
individual's body can be either monopolized on a single, or distributed
across several physiological processes. This distinction varies by both
congener characteristics, and physiological systems modelled. Included
in the present daphnid model are (in priority sequence): (i) neurologi-
cal functions, (ii) bio-energetics, (iii) osmoregulatory and tissuemainte-
nance, (iv) waste-management and homeostatic regulation, and (v)
anabolic growth and reproductive investments. Both modelled physio-
logical processes and the congeners driving them were devised around
potentially available metabolomic lab data. This strikes a pragmatic bal-
ance for a first approximation of an explicit eco-physiological model.
The modular nature of our framework not only allows for more conge-
ners and processes to be added as new data become available, but will
also allow for the incorporation of finer resolution physiological dynam-
ics as our baseline understanding improves. Below we describe our
model's physiological processes, one compartment at a time; see
Table 2 for model equations, Tables S1 and S2 for parameter descrip-
tions and values pertaining to Daphnia physiology, and Perhar and
Arhonditsis (2015) for a fully annotated description of the model.

Ourmodel follows a strict hierarchy,whereby physiological systems,
and their respective congeners, are separated into upstream and down-
stream classes. The differentiating factor is their subsequent impact.
Changes in upstream dynamics impart direct consequences on their
downstream counterparts. These impacts can be in the forms of rate
variance (e.g., bottleneck or facilitation), or logic decisions whereby
the animal actively switches processes on or off. Changes in down-
stream processes also exert impact, but are indirect and are applied
through feedback loops. Our model is designed, such that neurological
functions get priority over the rest of physiological process. Driven by
nitrogen (N), tryptophan (TRY), and tyrosine (TYR), this module is
meant to capture the organism's nervous system robustness. Specifical-
ly, both tryptophan and tyrosine are amino acids that are present in
proteins used for signal-transduction (Koide and Yoshida, 1994).
Further, both amino acids are precursors to neurotransmitters
(e.g., octopamine) and neurohormones (e.g., serotonin). To reflect
their roles in these processes, we have exclusively tied both tryptophan
and tyrosine in our model to the neurological system (i.e., they are
mono-fated congeners), but have also set a small fraction of nitrogen
to be used in this process. We quantify congener saturations using a
modified variant of Droop's quota (Droop, 1968), whereby the internal
concentration is compared against both theminimumviable concentra-
tion, and the optimum concentration (beyond which accrual can be
hazardous to the individual's health). Using tryptophan and tyrosine
saturations, we quantify neurological capacity by applying Liebig's law
of the minimum (Liebig, 1840). That is, the least saturated
neurologically-related amino acid cascades to the next physiological
system: bio-energetics.

Ourmodel considers three generic calorie-carrying compounds: car-
bohydrates (CARB), dietary proteins (PROT), and dietary fat (including
saturated and mono-unsaturated fats; FAT). Phosphorus (P) is the
fourth congener that is required for the bio-energetic compartment.
Within ourmodel, we have designated ingested carbohydrates and die-
tary proteins to be used exclusively for bio-energetics, but only fractions
of dietary fat and phosphorus are used in this module. Calorie-carrying
compounds are converted to their energetic equivalents, and summed
to form the organism's potential energy. This is the energetic capacity
of the individual to carry out its subsequent downstream processes
under ideal circumstances. With the understanding that ideal circum-
stances are rarely achieved in nature, we narrow this potential energy
in accordance with the previously defined neurological capacity. That
is, if the least saturated neurological pool is n% saturated, the organism's
energetic capacity is limited to n% of its potential energy. We refer to
this constraint as the neurological bottleneck. A second bottleneck fur-
ther narrows energetic capacity before it can be used to drive

Table 1
Modelled congeners, notations, and their functional roles in the model.

Congener Notation
(Si)

Functional role(s)

Tryptophan TRY Nervous system
Tyrosine TYR Nervous system
Carbohydrate CARB Energetics
Protein PROT Energetics
Fat FAT Energetics, maintenance
Choline CHO Maintenance, somatic growth investment
Cholesterol CLS Maintenance
Eicosapentaenoic
acid

EPA Reproductive growth investment

Docosahexaenoic
acid

DHA Reproductive growth investment

Glutamic acid GA Waste management
Glycine GLY Waste management
Cysteine CYS Waste management
Phosphorus P Energetics, maintenance, somatic growth

investment
Nitrogen N Nervous system, somatic growth investment
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Table 2
Daphnia physiology and Lotka-Volterra model equations. Definitions and values of parameters are provided in Tables S1 and S2.

Daphnia physiology sub-model equations

1 Assimilation efficiency
AE ¼ αC1 �FQ

αC2þFQ

29 Waste management mobilization of glycine (mass)

GLYMwas ¼ EWAS �WASbrkd1
GLYA:E:

� GLYSAT

2 Assimilated carbon
AC=graz·AE

30 Waste management mobilization of glutamic acid (mass)

GAMwas ¼ EWAS �WASbrkd2
GAA:E:

� GASAT

3 Assimilated congener
ASi:C=AC· foodSi:C

31 Waste management mobilization of cysteine (mass)

CYSMwas ¼ EWAS �WASbrkd3
CYSA:E:

� CYSSAT
4 Congener saturation

SiSAT ¼ SiINT−SiMIN
SiOPT−SiMIN

32 Energy remaining for growth
ER=EC−EOSM−EWAS

5 Somatic minimum quota of congener
SiMIN= low*Sisom

33 Energy allocated to anabolic growth
EANA=ER·ECbrkd2

6 Somatic optimum quota of congener
SiOPT=high*Sisom

34 Energy allocated to reproductive growth
EREP=ER·ECbrkd3

7 Neurological saturation
NEURSAT=min(TRYSAT,TYRSAT)

35 Division of energy (anabolic growth)
ANAbrkd=[P,N,CLS]

8 Neurological mobilization of tryptophan (mass)
TRYMneuro=TRYINT·TRYSAT·NeuroRate

36 Anabolic growth mobilization of phosphorus (mass)

PMana ¼ EANA �ANAbrkd1
PA:E:

� PSAT � PANA

9 Neurological mobilization of tyrosine (mass)
TYRMneuro=TYRINT·TYRSAT·NeuroRate

37 Anabolic growth mobilization of nitrogen (mass)

NMana ¼ EANA �ANAbrkd2
NA:E:

� NSAT � NANA

10 Neurological mobilization of nitrogen (mass)
NMneuro=NINT·NNEURO·NeuroRate

38 Anabolic growth mobilization of cholesterol (mass)

CLSMana ¼ EANA �ANAbrkd3
CLSA:E:

� CLSSAT � CLSANA
11 Energetic mobilization of carbohydrates (mass)

CARBMOBM=NEURSAT·CARBINT·MobRate
39 Division of energy (reproductive growth)

REPbrkd=[EPA,DHA]
12 Energetic mobilization of carbohydrates (energy)

CARBMOBE=CARBMOBM·CARBYIELD
40 Reproductive growth mobilization of EPA (mass)

EPAMrep ¼ EREP �REPbrkd1
EPAA:E:

� EPASAT

13 Energetic mobilization of fats (mass)
FATMOBM=NEURSAT·FATINT·FATENERGY·MobRate

41 Reproductive growth mobilization of DHA (mass)

DHAMrep ¼ EREP �REPbrkd2
DHAA:E:

� DHASAT

14 Energetic mobilization of fats (energy)
FATMOBE=FATMOBM·FATYIELD

42 Realized growth
G ¼ Gmax � ð EANAþEREP

EANAþEREPþEhs
Þ

15 Energetic mobilization of proteins (mass)
PROTMOBM=NEURSAT·PROTINT·MobRate

43 Tryptophan governing equation
dTRYINT

dt ¼ ATRY:C−TRYMneuro−TTRY:C−TRYINT � G
16 Energetic mobilization of proteins (energy)

PROTMOBE=PROTMOBM·PROTYIELD
44 Tyrosine governing equation

dTYRINT
dt ¼ ATYR:C−TYRMneuro−TTYR:C−TYRINT � G

17 Energetic mobilization of phosphorus (mass)
PMOBM=PINT·PENERGY·MobRate

45 Carbohydrates governing equation
dCARBINT

dt ¼ ACARB:C−CARBMOBM−TCARB:C−CARBINT � G
18 Total energetic capacity

EC=(CARBMOBE+FATMOBE+PROTMOBE)·PSAT·PENERGY
46 Fats governing equation

dFATINT
dt ¼ AFAT :C−ðFATMOBM þ FATMosmÞ−TFAT :C−FATINT � G

19 Division of total energetic capacity
ECbrkd=[OSM,ANA,REP]

47 Proteins governing equation
dPROTINT

dt ¼ APROT :C−PROTMOBM−TPROT :C−PROTINT � G
20 Energy allocated to osmoregulatory maintenance

EOSM=EC·ECbrkd1
48 Nitrogen governing equation

dNINT
dt ¼ AN:C−ðNMneuro þ NManaÞ−TN:C−NINT � G

21 Division of energy (osmoregulatory maintenance)
OSMbrkd=[P,CHO,CLS,FAT]

49 Phosphorus governing equation
dPINT
dt ¼ AP:C−ðPMOBM þ PMosm þ PManaÞ−TP:C−PINT � G

22 Osmoregulatory mobilization of phosphorus (mass)

PMosm ¼ EOSM �OSMbrkd1
PA:E:

� PSAT � PMAINT

50 Cholesterol governing equation
dCLSINT

dt ¼ ACLS:C−ðCLSMosm þ CLSManaÞ−TCLS:C−CLSINT � G
23 Osmoregulatory mobilization of choline (mass)

CHOMosm ¼ EOSM �OSMbrkd2
CHOA:E:

� CHOSAT

51 Choline governing equation
dCHOINT

dt ¼ ACHO:C−CHOMosm−TCHO:C−CHOINT � G
24 Osmoregulatory mobilization of cholesterol (mass)

CLSMosm ¼ EOSM �OSMbrkd3
CLSA:E:

� CLSSAT � CLSMAINT

52 EPA governing equation
dEPAINT

dt ¼ AEPA:C−EPAMrep−TEPA:C−EPAINT � G
25 Osmoregulatory mobilization of fats (mass)

FATMosm ¼ EOSM �OSMbrkd4
FATA:E:

� FATSAT � FATMAINT

53 DHA governing equation
dDHAINT

dt ¼ ADHA:C−DHAMrep−TDHA:C−DHAINT � G
26 Energy allocated to waste management

EWAS ¼ EOSM þ∑ETSi:C

54 Glycine governing equation
dGLYINT

dt ¼ AGLY:C−GLYMwas−TGLY:C−GLYINT � G
27 Division of energy (waste management)

WASbrkd=[GLY,GA,CYS]
55 Glutamic acid governing equation

dGAINT
dt ¼ AGA:C−GAMwas−TGA:C−GAINT � G

56 Cysteine governing equation
dCYSINT

dt ¼ ACYS:C−CYSMwas−TCYS:C−CYSINT � G
28 Turnover of excess congeners (recycled mass and associated energy)

TSi:C ¼ top�ðEC−EOSM−EWASÞðSiINT−SiOPT
SiOPT

Þ
∑ðSiINT−SiOPT

SiOPT
Þ�SiA:E:

� eb�e
−c�ðSiINT−SiOPT

SiOPT
Þ

ETSi:C ¼ top�ðEC−EOSM−EWAS ÞðSiINT−SiOPT
SiOPT

Þ
∑ðSiINT−SiOPT

SiOPT
Þ

� eb�e
−c�ðSiINT−SiOPT

SiOPT
Þ

Lotka-Volterra model equations
57 Prey biomass governing equation

dPREY
dt ¼ r � PREY � ð1− PREY

K Þ−PRED � graz
58 Predator biomass governing equation

dPRED
dt ¼ G � PRED−m � PRED−Fð PRED2

PRED2þhz2
Þ

59 Realized grazing rate
graz ¼ grz � ð PREY

PREYþhaÞ
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physiological processes. A fraction of phosphorus is allocated to bio-
energetics, and is used as a proxy for the ATP cycle. The
neurologically-driven bottleneck of the energetic capacity is multiplied
by both phosphorus saturation and the fraction allocated to bio-
energetics to yield the final energetic capacity. Unutilized energetic
compounds are assumed to be stored in their originating forms
(e.g., carbohydrate, protein, and fat stores). At this point, the organism
has two broadly categorized currencies: mass (ingested congeners
expressed in congener:carbon ratios), and energy (expressed in Joules),
and for the remaining physiological processes (i.e., downstream pro-
cesses), there is a delicate interplay between the two currencies. Ener-
getic allocation between the remaining processes is parameterized,
and can be shaped to reflect various evolutionary and developmental
goals. In this way, two differently parameterized individuals can experi-
ence vastly different dynamics in an identical environment. This also al-
lows for our eco-physiological model to incorporate aspects of niche
theory (Schoener, 2009), whereby differently parameterized individ-
uals are selected for unique environments (see Fig. 2).

Our so-called downstream processes include osmoregulatory and
tissue maintenance, removal of maintenance byproducts, homeostatic
regulation (as required), and growth investments (somatic and repro-
ductive). The aforementioned energetic fractionations determine how
muchof the energetic capacity is allocated to each process. This energet-
ic value is then used to mobilize each of the congeners required in the
physiological process. We assume maintenance processes are con-
trolled by four congeners: fractions of dietary fat and phosphorus (for
phospholipid formation), a fraction of cholesterol (CLS; for lipid raft

formation see Perhar et al., 2012), and choline (CHO; a phospholipid
precursor). As a first approximation, we assume energy is equally dis-
tributed among the four maintenance congeners. Having quantified
how much energy is acting upon each congener, we convert this mea-
sure intomass. Thesemassmeasures reflect howmuch ingested conge-
ner is utilized across the animal's body, and how much is added to the
existing internal reserve. If energetic allocations call for more mass,
then the organism digs into its internal reserves. This can only continue
for a limited time, however, as saturation values can fall to zero, at
which point the organism can no longer survive.

Fig. 2. Conceptual diagrams illustrating the transfer of congeners from algae to Daphnia, and the corresponding physiological ramifications.

Table 3
Lotka-Volterra model parameters, values, and units. Equation numbers refer to equations
listed in Table 2.

Symbol Description Value Unit Equation

grz Maximum zooplankton grazing rate 1.25 day−1 59
K Algal carrying capacity 10 mg C L−1 57
r Algal growth rate 0.85 day−1 57
ha Algal grazing half saturation constant 5 mg C L−1 59
hz Zooplankton grazing half saturation constant 2 mg C L−1 58
F Fish predation rate 0.2 day−1 58
m Zooplankton mortality rate 0.01 day−1 58
Gmax Maximum zooplankton growth rate 0.64 day−1 42

Fig. 3. Sankey diagrams illustrating the flow of energy in the modelled daphnid. Energetic
flux is illustrated via arrowwidth. Potential energy is derived from ingested fuel congeners
(i.e., FAT, CARB, PROT), and is subject to P- and neuro-limitations. The organism uses re-
maining energy (i.e., energetic capacity) to drive physiological processes.
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We assume a 1:1 ratio of byproduct removal, whereby the organism
allocates identical reserves of energy to both maintenance and
maintenance-related byproduct removal. We have assumed that the
energy allocated to byproduct removal acts upon three mono-fated
amino-acid congeners: cysteine (CYS), glycine (GLY), and glutamic
acid (GA). These amino-acids are precursors to glutathione, a molecule
strongly associated with detoxification in aquatic crustaceans (Billiard
et al., 2008). Again, we assume an equal sub-fractionation between
the three congeners. Next, we have hypothesized that the organism
conducts a sanity check before it can invest resources into somatic and
reproductive growth. Namely, it checks to see how far (if at all) it has
deviated from homeostasis.We have quantified this as follows: if a sub-
set of congeners is supersaturated (i.e., have internal concentrations
greater than their respective optimal values), the organismhas deviated
from homeostasis. This can happen for a number of reasons, but is most
likely related to an unbalanced diet, or a consequence of upstream forc-
ing. If there is deviation from homeostasis, a fraction of remaining ener-
gy (destined for growth investment under ideal conditions) is used to
turnover supersaturated congeners. This newly allocated energy is dis-
tributed among supersaturated congeners. While it is plausible that or-
ganisms excrete excess materials with bias, in the absence of such data,
we have assumed an equal distribution. For example, if there are three
supersaturated pools, one third of the regulatory-turnover energy is ap-
plied to each. While this is meant as a corrective-measure, we

hypothesize that this decision - under extreme circumstances - can
turn into a run-away positive feedback cycle. Take for example, a situa-
tionwhere the organism is forced to divert growth energy in an attempt
to regain homeostasis. This strategy results in a lower net growth in-
vestment, and a lower overall growth rate (see following section).
This in turn is expected to mobilize smaller fractions of congeners, fur-
ther adding to the issue of excessive congener accrual. We have
modelled the turnover of excess matter using a sigmoidal relationship
(Gompertz equation), whereby slow release rates are triggered with
low supersaturation levels, followed by a rapid (approximately linear)
turnover increase until a maximum release rate is established, when
conditions of excessive congener accumulation prevail.

Energy remaining after maintenance, byproduct removal, and ho-
meostatic adjustments (when necessary) is divided between somatic
and reproductive growth investments. This delineation separates indi-
viduals with large developmental requirements from those with large
reproductive drives. It can be argued that this delineation will shift
with maturity: juveniles and non-sexually mature individuals will
focus all of their energy on somatic growth, while mature individuals
will have to consider both. Explicit daphnid development and matura-
tion along with the associated priority shifts between anabolic growth
and reproduction is outside the scope of the current study. Within the
model, we have specifically allocated energy for somatic growth invest-
ment to act on fractions of cholesterol (reflecting production of growth

Fig. 4. Sankey diagrams illustrating the flow of energy in the modelled daphnid. Somatic energetic fluxes in response to variations in dietary energetic, phosphorus, neurological,
reproductive, anabolic growth, and waste management congeners. Daphnid strategy was held constant at baseline conditions, and the affected algal congener concentrations were
varied equally (i.e., 10% of baseline for low, 500% of baseline for high). Scenarios involving multiple congeners were varied equally, whereby each algal congener concentration was
lowered to 10% or raised to 500%.
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Fig. 4 (continued).

Table 4
Daily energetic signatures fromgrazing to growth. Listed entries include: potential energy (POTENTIAL), energy remaining post-ATP bottleneck (BN1), energy remaining post-neurological
bottleneck (BN2), energy used for congener turnover (TURNOVER), and energy used for growth investments (GROWTH). HUFA=highly unsaturated fatty acids. Asterisks indicate scenar-
ios that do not experience a neurological bottleneck.

Scenario Units POTENTIAL BN1 BN2 TURNOVER GROWTH

Baseline J mg C−1

%
10.07
100.0

3.24
32.2

2.94
29.2

0
0

0.43
4.2

Higher maintenance J mg C−1

%
14.95
100.0

10.37
69.3

10.37*
69.3

0.05
0.4

0.19
1.3

Energetic depletion J mg C−1

%
1.54
100.0

1.16
75.7

1.16*
75.7

0.06
3.8

0.18
11.4

Energetic enrichment J mg C−1

%
21.36
100.0

1.48
6.91

0.50
2.3

0.02
0.1

0.05
0.2

Phosphorus depletion J mg C−1

%
15.94
100.0

0.89
5.6

0.89*
5.6

0.05
0.3

0.14
0.9

Phosphorus enrichment J mg C−1

%
3.85
100.0

1.36
35.4

0.38
10.0

0.01
0.4

0.04
1.1

Neurologic depletion J mg C−1

%
26.45
100.0

15.26
57.7

2.56
9.7

0.10
0.4

0.29
1.1

Neurologic enrichment J mg C−1

%
5.01
100.0

1.37
27.3

1.37*
27.3

0.11
2.3

0.34
6.8

HUFA depletion J mg C−1

%
10.07
100.0

3.24
32.2

2.94
29.2

0
0

0.43
4.2

HUFA enrichment J mg C−1

%
11.31
100.0

4.32
38.2

4.32*
38.2

0.16
1.4

0.49
4.3

Cholesterol depletion J mg C−1

%
10.07
100.0

3.24
32.2

2.94
29.2

0
0

0.43
4.2

Cholesterol enrichment J mg C−1

%
10.61
100.0

3.68
34.6

3.54
33.3

0.05
0.5

0.46
4.3

Glutamic acid depletion J mg C−1

%
10.07
100.0

3.24
32.2

2.94*
29.2

0
0

0.43
4.2

Glutamic acid enrichment J mg C−1

%
11.32
100.0

4.32
38.2

4.32*
38.2

0.16
1.4

0.49
4.3
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hormones and steroids; Heffner and Schust, 2010), and nitrogen and
phosphorus (to represent their roles in nucleic acid synthesis; Alberts
et al., 2002). Finally, we allocated energy for reproductive growth to
act on two mono-fated congeners: eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA), to reflect their concentration in daphnid
eggs, and their roles in sex hormone production (see Perhar et al.,
2012). Daphnid growth rate is a fraction of its maximumparameterized
growth rate. This fraction considers the amount of daily energy flux re-
maining for growth investment processes relative to the energetic use
efficiency of our zooplankter, as specified by a new parameter (Ehs;
see Table S1) conceptually similar to the half-saturation constants typi-
cally used to depict the kinetics of enzymatic reactions.

The Lotka-Volterra predator-prey model consists of two differential
equations, one for algae (prey) and one for Daphnia (predator), based
on formulations presented by Scheffer et al. (2000). The predator popu-
lation depends on the growth rate (G) of Daphnia, determined by the
metabolite-driven sub-model described above, multiplied by the avail-
able predator biomass, minus losses from mortality and fish predation.
Natural mortality rate, m, is fixed, while a type-III functional response
was postulated to account for fish predation, characterized by a maxi-
mum fish predation rate, F, and a half-saturation value, hz. The algal
population follows a classical logistic functionwith a maximum growth
rate r, and carrying-capacityK. Losses due to zooplankton grazing follow
a type-II functional response of algal biomass with an algal grazing half-
saturation constant, ha, and a maximum zooplankton grazing rate, grz.
Equations and parameters for the food-web component of the model
are summarized in Tables 2 and 3, respectively.

Fig. 5. Fraction of energy allocated to regulatory turnover (thick black line) used versus a) fuel congener enrichment, b) phosphorus enrichment, c) neuro-congener enrichment, d) HUFA
enrichment. Saturations of enrichment congeners are shown in colour. The least andmost saturated pools among the 14 congeners considered are shown in black dashed and dotted lines,
respectively.

Fig. 6.Homeostatic classification scheme using a congener seed value aroundwhichupper
and lower somatic congener bounds are formed. Using this scheme, individuals can be
designated as narrow (very low optimum and very high minimum bounds),
accommodating or wide (very high optimum and very low minimum bounds),
optimized for depletion (very low minimum bound), or optimized for enrichment (very
high optimum bound).
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3. Results-discussion

Energeticflow through themodelled daphnid is presented in a series
of flow diagrams (see Figs. 3, 4). The energetic yield of fuel compounds
(internal FAT, CARB, and PROT) is summed to form the organism's daily
maximum potential energy. This potential energy is subject to a bottle-
neck if phosphorus saturation is b1. This step is representative of the
ATP cycle, and can modulate the individual's capacity to capitalize
upon the existing energetic potential. Energetics are further subject to
a neurological bottleneck if tryptophan or tyrosine saturations are
below 1. This process is representative of nervous-system stress
(e.g., limited neurotransmission), and like the previous bottleneck, con-
trols the actual utilization of the daily energetic potential. The energy re-
maining after this second bottleneck is the organism's energetic
capacity, and is used to drive maintenance, recycling, regulatory turn-
over, anabolic investment, and reproductive investment. Under our
baseline scenario (Table 4; Fig. 3a), P saturation is approximately
97.5%. Thus, after accounting for the fraction of phosphorus allocated
to energetics (33%), the energetic potential of consumed fat, carbohy-
drates, and protein is subject to an approximate 68% reduction and
this is illustrated by arrow weights in the flow diagram: the flux into
the phosphorus-bottleneck is larger than the flux out (or 10.07 J mg
C−1 × 0.975 × 0.33= 3.24 J mg C−1). Neurologic congeners tryptophan
and tyrosine also have saturations below 1 (90.7% and 94%, respective-
ly), and thus pose aminimal restriction to theutilization of the energetic
potential (or 3.24 J mg C−1 × 0.907 = 2.94 J mg C−1). Once past the
neurological bottleneck, the remaining energy is used to drive physio-
logical processes. Our baseline individual allocates 10% of its energetic
capacity to maintenance (eOSM), which necessitates an additional
10% for recycling of maintenance byproducts (eBYP); see Eq. 32 in
Table 2. The energetic remainder is put toward growth (eGR),
encompassing both anabolic and reproductive investments. This exam-
ple illustrates a well-balanced and optimally functioning individual,
where congener availability in the food is being used efficiently. In par-
ticular, the individual is able to maintain all congener pools below the
point of saturation, allowing for growth maximization. This in turn
feeds back in the form of congener mobilization, further preventing un-
healthy congener accumulation. In terms of the macroscopic patterns,
the baseline scenario is characterized by a prey-to-predator ratio
equal to one (Fig. S1). Under identical conditions, an individual with a
physiological strategy out of synchronization with environmental con-
ditions may not fare as well. Repeating the experiment with an individ-
ual highly focused onmaintenance (45% of energetic capacity allotted to
maintenance) yielded significantly different results (Table 4, Fig. 3b).
While initial environmental conditions (i.e., food availability and conge-
ner concentrations) were identical, the organism exhibited markedly

different physiological energetic fluxes. Because this strategist allocates
more resources to maintenance (as illustrated by the thicker flows to
eOSM and eBYP), few resources remained for growth investment. This
animal growth limitation led to a chain reaction, whereby resourcemo-
bilization rates slowed, and the majority of congener pools reached su-
persaturation. This supersaturation triggered the need for regulatory
turnover (eTO), which further limited growth, and resulted in addition-
al internal congener accumulation. Thus, even under seemingly ideal di-
etary conditions (e.g., energetic, neurological, and phosphorus
supersaturation; Fig. 3b), a physiological strategy at the individual
level that opts for higher energetic investment on maintenance can
yield drastically different prey-predator dynamics relative to the base-
line scenario (Fig. S1).

The mismatch between organismal strategies and environmental
conditions can be a significant driver of ecological dynamics (Sterner
and Elser, 2002). Thus, we investigated multiple aspects of food quality
to gauge organism response. Specifically, we introduced variability in
calorie-carrying (Fig. 4a, b), phosphorus (Fig. 4c, d), neurological (Fig.
4e, f), reproductive (Fig. 4g, h), anabolic growth (Fig. 4i, j), and waste
management (Fig. 4k, l) congeners. Congener availability in algae was
increased to 500% over the baseline scenario to mimic enrichment

Fig. 7. Various homeostatic strategists in response to algal phosphorus enrichment (solid
lines), and depletion (dashed lines). In each case, the system experiences hysteresis,
whereby enrichment and depletion follow different trajectories.

Fig. 8. Time series illustrating the effects of quantitative (i.e., biomass; a), and qualitative
(i.e., congener availability; b) perturbations on food web equilibrium when characterized
with a baseline daphnid.
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conditions, and then reduced to 10% to reproduce resource limiting sce-
narios. The implications of the twelve scenarios are evaluated against
the baseline individual portrayed in Fig. 3a. Organism response was vi-
sualized using energetic flow diagrams, in order to illustrate the effects
of bottlenecks.When subject to energetic depletion, the lack of energet-
ic potential was propagated through to low growth relative to the base-
line scenario (Table 4, Fig. 4a). A direct effect of low realized growth is
the lower congener mobilization rate, resulting in accumulation and
(a seemingly paradoxical) supersaturation. In this case, supersaturation
was experienced across many congener pools, necessitating regulatory
turnover. From a macroscopic standpoint, the scenario of exposure to
an energetically depleted diet is the least desirable, whereby high pri-
mary producer biomass coexists with low production at the higher tro-
phic levels (Fig. S1; see also Brett andMuller-Navarra, 1997).When fuel
congeners were available in abundance (i.e. energetic enrichment;
Fig. 4b), our model predicts that the excessively high initial daily ener-
getic capacity leads to the establishment of a steady state reflective of
an inverted food web pyramid, where relatively low phytoplankton
can sustain high zooplankton (and subsequently fish) biomass
(Fig. S1). At the organismal level, this scenario suggests a high energetic
potential that rapidly diminishes due to post-ATP and post-neurological
bottlenecks imposed by severe phosphorus, and tryptophan/tyrosine
limitations (Table 4; Fig. 4b), which in turn are predominantly driven
by the algal food shortage. Notably, only a minor fraction of the energy
capacity is utilized for regulatory turnover due to the supersaturated
fuel congener concentrations.

Investigating the two potential bottlenecks yielded similar re-
sponses, whereby algal depletion of phosphorus (Fig. 4c), or tryptophan
and tyrosine (Fig. 4e), resulted in large amounts of unutilized energy
within the daphnid (Table 4). In both cases, growth was low enough
for congener accumulation to occur across multiple pools, thereby trig-
gering regulatory turnover. Phosphorus depletion had a more severe
impact on daphnid growth rate than neurological congener depletion
(Table 4, Fig. 4c, e), which likely reflects the broader implications of
multi- versus mono-fated congeners. That is, while ingested phospho-
rus is used for energetics, maintenance, and anabolic investment, tryp-
tophan and tyrosine are only used for neurotransmission. Thus, it is
reasonable to assume the heightened sensitivity of growth on lowphos-
phorus is due to this fractionation, whereby ingested phosphorus is re-
duced to 10% of reference conditions, but of the reduced intake, only a
percentage is allocated to energetics. Similar reasoning can be applied
to enrichment scenarios, where phosphorus-enrichment (Table 4,
Fig. 4d) elicited an initially stronger growth response than neuro-
enrichment (Table 4, Fig. 4f) leading to the establishment of a steady
state with a six-fold predator-to-prey ratio (Fig. S1). In both cases,
only the enriched pools achieved supersaturation, thereby triggering
regulatory turnover; especially with the scenario of neurological
enrichment.

The aspects of food quality considered to this point have been up-
stream, in the sense that they directly influence the energetic cycle.
That is, fuel congeners define the maximum potential energy, which is
then shaped by available phosphorus, tryptophan, and tyrosine, deter-
mining the individual's actual energetic capacity. This in turn regulates
congenermobilization fractions and growth. Testing daphnid sensitivity
to variations in algal HUFA, cholesterol, glutamic acid content, both the
organism's response and the prey-predator patternswere nearly identi-
cal to baseline conditions (Table 4, Fig. 4g, i, k). The only difference was
the extremely depleted pools of the corresponding congeners. By con-
trast, the examination of enrichment scenarios led to the establishment
of a steady statewith a prey-to-predator ratio b 1 (Fig. 4h, j, l), likely due
to the supersaturation of the corresponding congeners that triggered
regulatory turnover and thus lowered animal growth during the tran-
sient phase (Fig. S1). Interestingly, the higher algal food availability
after the prey-predator system reaches its equilibrium phase results in
both higher energetic potential and energetic investment (per unit of
biomass) to growth under enrichment conditions.

In testing the effects of differential food quality stresses, the activa-
tion of regulatory turnover was a recurring pattern. That is, while fat,
carbohydrate, protein, phosphorus, tryptophan, and tyrosine enrich-
ment triggered regulatory turnover due to enrichment-related accumu-
lation, so did depletion. This is indicative of a bottleneck phase, as
illustrated by the Quadrant Metric in Perhar and Arhonditsis (2015)
(see their Fig. 2). This behaviour was also apparent in the previous
experiment's flow diagrams (Fig. 4), and was limited to upstream con-
geners. In contrast, EPA and DHA depletion did not trigger regulatory
turnover, as there are nodirect feedbacks to upstreamcongener dynam-
ics. We compared congener saturations for the least andmost saturated
pools (across all 14 congeners), saturations of the enriched congeners
under consideration, and the fraction of energy allocated to turnover
being actively used (eTO; Fig. 5). In the current specification, our
model sets the fraction of energy remaining after maintenance and
byproduct removal for regulatory turnover to a maximum of 25%. That
is, if the individual is straying from homeostasis, it can allocate up to
one quarter of its growth energy towards regaining homeostatic bal-
ance. The fraction of energymobilized tomaintain homeostasis (eTO) il-
lustrates the inherent hierarchy within the upstream congeners. An
eTO = 0 indicates optimal daphnid functioning as a result of a balance
diet. Three distinct patterns emerged under various algal (food) conge-
ner enrichment scenarios (Fig. 5). While phosphorus, tryptophan, and
tyrosine enrichment passed through regions where all available energy
was used for growth (i.e., eTO=0; Fig. 5b, c), energy-related congeners
did not pass through such a phase (Fig. 5a). There was a small decrease
in the fraction of turnover energy used under energetic congener en-
richment, but this fraction never dropped to 0% (Fig. 5a). Simply put,
for a given algal content in non-fuel congeners (Table S2), our model
conceptualization stipulates two scenarios with respect to the energetic
content of the zooplankton diet that both result in non-zero regulatory
turnover; namely, our zooplankter experiences (i) food items depleted
in energy-related congeners, and therefore the lowered growth rate is
accompanied by accumulation of non-fuel congenerswhich in turn trig-
gers regulatory turnover; and (ii) energy-rich diets that plausibly accel-
erates turnover to discard the excess material. In addition, the eTO= 0
region only occurred when phosphorus or tyrosine (and for some por-
tions tryptophan) were neither minimally nor maximally saturated
(Fig. 5b, c). Under an algal HUFA enrichment scenario, regulatory turn-
over (eTO N 0) did not occur until DHA became supersaturated, while
EPAwas alwaysminimally saturated (Fig. 5d). Taken together, these re-
sults suggest that there is an optimal algal congener composition that
optimizes Daphnia's internal congener saturations, resulting in a maxi-
mal allocation of energy to growth. This optimal diet consists of mid-
ranged phosphorus and neurological congener concentrations. The
“stoichiometric knife edge” theory implies that optimal food contains
a balanced nutrient content (Elser et al., 2012); recent stoichiometrical-
ly explicit algal-herbivore models have demonstrated that consumer
growth is reduced by food with both too little, and too much, phospho-
rus content (Peace et al., 2013, 2014). Our model further extends this
concept, demonstrating that not just stoichiometric nutrients, but mul-
tiple (e.g., neurological, fatty acid) congenersmust also exist in balanced
proportions in order for Daphnia to achieve optimal growth.

We define our daphnid's homeostatic bounds using literature-
driven “seed” values for each congener. These “seed” values are then in-
flated and deflated to create optimum and minimum somatic resource
bounds, respectively (Fig. 6). For example, if an individual's homeostatic
range is defined by inflation and deflation factors of 1.25 and 0.75, re-
spectively, the organism's somatic congener concentrations cannot fall
below 75% of the seed values, and implies malnutrition-related stress
if somatic congener concentrations are N125% of the seed values. This
characterization scheme is the second instancewhere themodel allows
to differentiate zooplanktonbehaviour based on physiological strategies
(the first being energetic allocation between physiological processes).
For example, if an individual has very low optimum, and very highmin-
imum bounds, it will have a very narrow congener range in which the
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animal can function optimally and therefore demonstrates rigid stoi-
chiometric behaviour (narrow strategist; Fig. 6). Conversely, if an indi-
vidual has a very high optimum bound combined with a very low
minimum bound, it is characterized by a more dynamic stoichiometry
and will be referred to as a wide strategist. We also considered special-
ized species with a similar quota range as the baseline individual, but
with shifted optimal and minimal bounds, such that they thrive under
enrichment (i.e., very high optimum bound; enrichment specialist), or
depletion (i.e., very low minimum bound; depletion specialist) condi-
tions (Fig. 6). Organisms with very narrow homeostatic bounds are ex-
pected to perform poorly against wide strategists in volatile
environments with respect to the quantity and quality of their diet,
experiencing both somatic resource limitation and supersaturation
quicker than their counterparts. If conditions arewithin their nutritional
requirements, however, narrow strategists can outperformwide strate-
gists because with all else being equal, they will tend to have higher so-
matic saturations, which would alleviate bottlenecks, resource
mobilizations, and eventually growth. A wide strategist, on the other
hand, will opt for a “slow burn” strategy, displaying more muted re-
sponses to external fluctuations.

In a phosphorus-enrichment scenario relative to the default food
quality conditions (Table S2), organisms with narrow homeostatic
bounds achieve optimal performance first (Fig. 7). The next specifica-
tion to reach optimal performance is the depletion specialist. In addi-
tion, both the narrow strategist and depletion specialist achieve a
higher biomass at lower algal phosphorus concentrations than the base-
line individual (Fig. 7). In contrast, the enrichment and wide strategists
are the last to achieve optimal functioning, respectively. [It is important
to note that our exercise does not consider the likelihood of covariance
between somatic quotas and physiological rates, which can further
modulate the response of the individual zooplankters to algal food qual-
ity variations.] When repeating the same experiment in reverse
(i.e., phosphorus depletion), we found regions where enrichment and
depletion trajectories (Fig. 7, solid and dashed lines, respectively) did
not coincide. These patterns are indicative of multiple stable equilibria
in the Lotka-Volterra system (sensu Scheffer et al., 2001), and the ranges
of multiple equilibria were proportional to a strategist's congener
spread. That is, the narrower the daphnid homeostatic range, the small-
er the range of algal phosphorus concentrations over which multiple
equilibria occurred (Fig. 7). It is worth noting that congener spread
alone does not dictate the system's tendency to spawn multiple
attractors. Multiple steady state equilibria are plausible in different re-
gions of phase space, when examining enrichment or depletion scenar-
ios for different congeners, or altering the non-phosphorus congener
values in the current experiment. Within the constraints of the current
experiment, however, themagnitude of congener spreadwas an impor-
tant factor in determining the system's likelihood to experience multi-
ple attractors. Thus, modelling approaches not considering congener
quotas (i.e., models with fixed stoichiometric requirements) would be
expected to experience identical trajectory-dynamics across resource
enrichment and depletion scenarios. In addition, depending on the
specification of the organism, the systemmay be able to experience var-
ious equilibria states. For example, with algal phosphorus concentra-
tions ranging from 5 to 6 μg P mg C−1, systems with zooplankters of
narrow nutrient quotas can be either in a state of low producer to con-
sumer or high producer to consumer ratios. In the same scenario, if the
same system were characterized by Daphnia of any other specification,
there would be only one steady state equilibrium. In other words, sys-
tems with Daphnia of various characteristics will be prone to multiple
attractors at different congener availabilities.

In the aforementioned regionswhere the system is prone tomultiple
equilibria endpoints, perturbations can conceivably shift the system
from one equilibrium to another (Scheffer et al., 2001). Thus, if the con-
ditions are right, and the perturbation is of an appropriate magnitude
and duration, the system may not recover to its initial state. Studies
have illustrated this dynamic in the context of quantitative imbalances,

whereby a large influx of biomass (or depletion of biomass) can irre-
versibly alter the food web's structure (see examples in Beck, 2013).
In a similar manner, we were able to reproduce this pattern in our
model by artificially inflating phytoplankton biomass (Fig. 8a). By incre-
mentally increasing phytoplankton biomass for a certain amount of
time, the system settled to an alternate equilibrium characterized by a
high producer to consumer biomass ratio. Once the system settled to
this equilibrium, no artificial inflation of phytoplankton biomasswas re-
quired tomaintain this high producer-to-consumer ratio. Wewere able
to switch back to the previous equilibriumby instantaneously removing
a portion of the phytoplankton biomass. The system respondedwith in-
creased zooplankton biomass, and a temporarily increasing phyto-
plankton biomass, but soon settled back to its initial equilibrium
characterized by a producer-to-consumer ratio of approximately 1.
More interestingly, we were also able to induce equilibria shifts from a
qualitative standpoint (Fig. 8b). In this instance, we overrode
phytoplankton's phosphorus content for a short period, restored normal
conditions, then overrode phytoplankton phosphorus content again for
a second short period before returning to normal conditions. The two
spikes (i.e., the period starting at time step 1500, and the period starting
at time step 3500)were enough to shift the system into alternate steady
states. In the first spike, we altered phytoplankton to be less nutritious,
through a lower phosphorus concentration. The ramifications of this
were realized almost instantly, as zooplankton biomass fell sharply,
which likely triggered the sharp rise in phytoplankton. Following the
spike, phytoplankton phosphorus concentration was reset to pre-spike
conditions, but producer and consumer biomass values did not return
to their initial states. Rather, they held steady in their new equilibrium.
In the second spike, we made phytoplankton more nutritious, through
heightened phosphorus content. The ramifications of this were, again,
realized almost immediately, as zooplankton biomass increased sharply
and phytoplankton biomass fell. Following this second spike, the system
settled to a pre-spike prey-to-predator ratio of 1, effectively illustrating
the potential back and forth nature of a system with multiple steady
states.

4. Concluding remarks-future perspectives

Representing a freshwater food web with a Lotka-Volterra model is
admittedly a simplification. By incorporating Daphnia's physiological
dynamics into the model, we have effectively included a complex set
of intra-organismal dynamics nestedwithin the producer-consumer in-
teractions. Specifically, homeostatic spread - or the difference between
minimum viable congener concentration, and optimal congener con-
centration – assigns a buffer capacity to the consumer to cope with
the variability of the food quantity and quality. For example, in the
case of enrichment followed by depletion with a large homeostatic
spread, the system exhibits very different dynamics along both trajecto-
ries. Thismacroscopic complexity is entirely due to the internal process-
ing of Daphnia. Along an enrichment trajectory, zooplankton biomass
jumps to a higher standing biomass once a critical physiological point
has been reached. In our analysis, we found that this critical physiolog-
ical threshold is consistent across all strategists and all environmental
conditions. Similarly, along a depletion trajectory, the system settles to
an alternate equilibrium characterized by a shift in zooplankton bio-
mass to a significantly lower state once a critical physiological point
has been reached. This responsewill not emerge inmodels not account-
ing for organismal nutritional and energetic variability.

This “outside in-inside out effect, with a physiological buffer in be-
tween” draws parallels with cybernetics, a branch of science detailing
the goal-seeking aspect of system behaviour (Wiener, 1947). Stemming
from the Greek word for art of steering, cybernetics can be summarized
as the science of feedback, information, and goals (Ramkrishna and
Song, 2012). As it stands now, our modelled daphnid is not an explicit
cybernetic organism. While it uses feedback and system information
to determine its performance, it does not dynamically adjust its
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behaviour based on environmental feedback. This is a likely next step,
wherebywewould build on the existingdefinition of organismstrategy.
Currently, organism strategies are defined with energetic partitioning,
and homeostatic spread. A likely third dimension to this would be the
extent to which energetic partitioning could be adjusted. For example,
the most flexible strategist could be defined with a large homeostatic
spread, and a very dynamic energetic partitioning scheme. Conversely,
a more conservative strategist would be one with a narrow spread,
and a very limited ability to adjust its energetic scheme. To our knowl-
edge, this is an aspect of model parameterization that has not been ex-
plored (i.e., the time explicit automatic logic-driven adjustment of
parameters) that will unleash a new level of detail, with the potential
for a closer-to-nature approximation in the current generation of
food-web models.

We have presented a first-generation approximation of Daphnia
physiology, and as such have made several simplifications in the name
of pragmatism. One simplification is the role of each congener in the
animal's physiology. We have considered several classes of congeners
(e.g., mineral nutrients, fatty acids, amino acids, neurotransmitter prox-
ies, waste management proxies, energetic congeners, and various other
building blocks), and associated them with various aspects of Daphnia
physiology. Some congeners are mono-fated, while others have multi-
ple fates. This issue likely needs to be addressed, as most congeners
should not only be substitutable (to an extent) with other congeners,
but also be expected to play multiple roles within the body. Arguably,
the most dynamic congener in our system is phosphorus. It is actively
used in bioenergetics, maintenance, and somatic growth investment
within the animal's body. Previous studies of Daphnia justified the use
of phosphorus as the primary limiting reagent due to its role in RNA rep-
lication (Elser et al., 2003). In the context of our study, we assumed that
phosphorus' most important facet is its role in bioenergetics
(i.e., reflecting dynamics of the ATP cycle). We observed our model to
switch from one steady state equilibrium to another once certain ener-
getic capacity critical points were reached. Similar tipping points were
not observed inmaintenance, nor somatic growth investmentmodules.
This could also be the underlying cause of phosphorus' sensitivity under
depletion conditions, as its depletion is felt across multiple modules
within the organism's hierarchical framework. Coincidentally, many
downstream congeners are mono-fated. Fatty acids EPA and DHA are
used only for reproductive investment, while amino acids cysteine, gly-
cine, and glutamic acid are only used in waste management. These con-
geners are consistently the least impactful on organism functioning, as
their depletion does not adversely affect upstream processes. If, howev-
er, therewere links to upstreamprocesses via a neurological feedback in
the case of DHA, and restorative force dynamics in the case of the afore-
mentioned amino acids, our daphnid would not only be a more closed
system with tighter feedbacks, but also more closely resemble reality.

Highly complex ecological systems require a wide range of model-
ling approaches in order to understand their emergence and function-
ing (DeAngelis and Grimm, 2014). The Lotka-Volterra equations were
a breakthrough in dynamic modelling a century ago when they were
first developed, yet are admittedly simplifications of complex interac-
tions among predators and their prey. Coupling our daphnid sub-
model to a Lotka-Volterra food web model was a strategic choice, to
gain a first approximation of food web level effects due to varying con-
sumer internal physiology. Consequently, our results may be a reflec-
tion of this simplification. For example, we have observed multiple
internal conditions that can yield identical food web level conditions.
Similarly, large-scale changes in internal conditions can make little to
no impact on macroscopic food web dynamics in some instances,
while in others the slightest internal shift can cause dramatic shifts at
the macroscale. In this sense, the model is exhibiting weak emergence,
whereby various combinations of themodel's subcomponents come to-
gether to form macroscopic patterns. In contrast to the Lotka-Volterra
family of models, which are based on differential equations where the
outcomes are predestined by assumptions made in those equations,

agent-based models (whereby individual daphnids are modelled in-
stead of overall biomass) are increasingly acknowledged to provide
more realistic answers to fundamental food web questions (Railsback
and Grimm, 2011). Our current approach utilizes a lumped
population-levelmodel that assumes average properties of a population
(Hellweger and Kianirad, 2007). By allowing consumers to behave real-
istically, through the addition of goal-seeking behaviour, such that indi-
viduals undertake actions based on choices that maximize their goal
(i.e., increase individual fitness), stronger emergencepatternswill likely
be attainable (DeAngelis and Grimm, 2014). Moving towards an agent-
based platform also has the advantage of a microscopic to macroscopic
perspective, to explore how variations in internal physiology influence
individual decisions (to maximize fitness), and ultimately food web
properties, under varying environmental conditions. Further, an
agent-based setting would enable us to examine variations across the
life-cycle of our daphnid, as well as explore the interplay of HUFA con-
geners on energetic partitioning between reproduction and somatic
growth. Once variability is introduced at the agent-level
(i.e., strategies, requirements, and behaviours are resolved to the indi-
vidual level instead of the population level as presented here), we will
undoubtedly gain further insight into food web dynamics.

Perhar and Arhonditsis (2015) used the ecophysiology (sub)model
to demonstrate that the energetic requirements of homeostasis can
compromise daphnid growth under an imbalanced diet. By coupling
the Perhar and Arhonditsis (2015) growth sub-model to a Lotka-
Volterra predator-prey model, we have demonstrated the conse-
quences of this variability in Daphnia internal physiological processes
on food web dynamics: variations in homeostatic strategies and dietary
conditions resulted in variations in energetic partitioning allocated for
daphnid growth, whichwasmanifested in alternative ecosystem states,
characterized by dramatically different algal and zooplankton standing
stocks (i.e., biomass). The high energetic costs to maintain homeostasis
when Daphnia consumes an imbalanced diet occurred for multiple con-
geners, not just macronutrients (i.e., phosphorus); although supersatu-
ration of multi-fated congeners (e.g. phosphorus, neurological) had a
larger impact on energetic partitioning than mono-fated ones
(e.g., HUFAs). Further, dietary daphnid enrichment and depletion tra-
jectories induced hysteresis effects at the population level (i.e., in zoo-
plankton biomass). Moving beyond the simplicity of Lotka-Volterra
models, to an agent-based platform,will require a shift towards amicro-
scopic perspective (i.e. characterizing internal Daphnia physiology). In
future, working tightly with metabolomics data will provide a way for-
ward for a more accurate portrayal of the combined responses of multi-
ple metabolites to dietary variation or environmental stressors
(e.g., Wagner et al., 2015), revolutionize our understanding of Daphnia
physiology, and ultimately algal-grazer dynamics, in aquatic
ecosystems.
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Table S1: Parameter descriptions and values pertaining to Daphnia physiology sub-model of Perhar 

and Arhonditsis (2015), and the Lotka-Volterra predator-prey model, used in this study.  

Symbol Value Unit Equation from 

Table 2 

Definition  

𝑇𝑅𝑌𝑠𝑜𝑚 21.7 μg TRY mg C-1 5, 6 Somatic tryptophan to carbon ratio 

𝑇𝑌𝑅𝑠𝑜𝑚 23.7 μg TYR mg C-1 5, 6 Somatic tyrosine to carbon ratio 

𝐶𝐴𝑅𝐵𝑠𝑜𝑚 130 μg CARB mg C-1 5, 6 Somatic carbohydrate to carbon ratio 

𝐹𝐴𝑇𝑠𝑜𝑚 131 μg FAT mg C-1 5, 6 Somatic saturated fatty acid to carbon ratio 

𝑃𝑅𝑂𝑇𝑠𝑜𝑚 158 μg PROT mg C-1 5, 6 Somatic protein to carbon ratio 

𝐶𝐿𝑆𝑠𝑜𝑚  25.3 μg CLS mg C-1 5, 6 Somatic cholesterol to carbon ratio 

𝐶𝐻𝑂𝑠𝑜𝑚  9.69 μg CHO mg C-1 5, 6 Somatic choline to carbon ratio 

𝐸𝑃𝐴𝑠𝑜𝑚  24.6 μg EPA mg C-1 5, 6 Somatic eicosapentaenoic acid to carbon ratio 

𝐷𝐻𝐴𝑠𝑜𝑚  2.8 μg DHA mg C-1 5, 6 Somatic docosahexaenoic acid to carbon ratio 

𝐺𝐿𝑌𝑠𝑜𝑚  5.16 μg GLY mg C-1 5, 6 Somatic glycine to carbon ratio 

𝐺𝐴𝑠𝑜𝑚  43.1 μg GA mg C-1 5, 6 Somatic glutamic acid to carbon ratio 

𝐶𝑌𝑆𝑠𝑜𝑚  17.3 μg CYS mg C-1 5, 6 Somatic cysteine to carbon ratio 

𝑃𝑠𝑜𝑚 8.74 μg P mg C-1 5, 6 Somatic phosphorus to carbon ratio 

𝑁𝑠𝑜𝑚 77.9 μg N mg C-1 5, 6 Somatic nitrogen to carbon ratio 

Low 0.109 unitless 5 Lower fraction for calculating minimum somatic 

congener bounds 

High 1.18 unitless 6 Upper fraction for calculating optimum somatic 

congener bounds 

𝛼𝐶1  0.9 unitless 1 Thermodynamic constraint 1 

𝛼𝐶2 0.03 (mg C L-1)1/2 1 Thermodynamic constraint 2 

FQ 0.647 (mg C L-1)1/2 1 Food quality index 

Gmax 0.64 day-1 42 Maximum zooplankton growth rate  

𝐸ℎ𝑠  0.45 J mg C-1 day-1 42 Use efficiency of energy allocated to anabolism and 

reproduction 

b 5 unitless 28 Sets the supersaturation level in which the turnover 

begins  

c 2 unitless 28 Increase of turnover rate with increasing 

supersaturation 

top 0.25 unitless 28 Maximum fraction of growth energy diverted to 

homeostatic turnover 

𝑁𝑁𝐸𝑈𝑅𝑂  0.5 unitless 10 Fraction of nitrogen for neurotransmitter synthesis 

𝑁𝐴𝑁𝐴  0.5 unitless 37 Fraction of nitrogen for growth  

𝑃𝐸𝑁𝐸𝑅𝐺𝑌 0.33 unitless 17, 18 Fraction of phosphorus for energetics 

𝑃𝑀𝐴𝐼𝑁𝑇  0.33 unitless 22 Fraction of phosphorus for maintenance 

𝑃𝐴𝑁𝐴  0.33 unitless 36 Fraction of phosphorus for growth 

𝐹𝐴𝑇𝐸𝑁𝐸𝑅𝐺𝑌  0.5 unitless 13 Fraction of fat for energetics 

𝐹𝐴𝑇𝑀𝐴𝐼𝑁𝑇  0.5 unitless 25 Fraction of fat for maintenance 

𝐶𝐿𝑆𝑀𝐴𝐼𝑁𝑇  0.5 unitless 24 Fraction of cholesterol for maintenance  

𝐶𝐿𝑆𝐴𝑁𝐴  0.5 unitless 38 Fraction of cholesterol for growth  

𝐸𝐶𝑏𝑟𝑘𝑑1  0.1 unitless 20 Fraction of total energy for maintenance 

𝐸𝐶𝑏𝑟𝑘𝑑2  0.435 unitless 33 Fraction of total energy for anabolism 
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𝐸𝐶𝑏𝑟𝑘𝑑3  0.565 unitless 34 Fraction of total energy for reproduction 

𝑂𝑆𝑀𝑏𝑟𝑘𝑑1
 0.25 unitless 22 Fraction of maintenance energy allotted to 

phosphorus 

𝑂𝑆𝑀𝑏𝑟𝑘𝑑2
 0.25 unitless 23 Fraction of maintenance energy allotted to choline 

𝑂𝑆𝑀𝑏𝑟𝑘𝑑3 0.25 unitless 24 Fraction of maintenance energy allotted to 

cholesterol 

𝑂𝑆𝑀𝑏𝑟𝑘𝑑4 0.25 unitless 25 Fraction of maintenance energy allotted to fat  

𝑊𝐴𝑆𝑏𝑟𝑘𝑑1  0.33 unitless 29 Fraction of waste management energy allotted to 

glycine 

𝑊𝐴𝑆𝑏𝑟𝑘𝑑2  0.33 unitless 30 Fraction of waste management energy allotted to 

glutamic acid 

𝑊𝐴𝑆𝑏𝑟𝑘𝑑3  0.33 unitless 31 Fraction of waste management energy allotted to 

cysteine 

𝐴𝑁𝐴𝑏𝑟𝑘𝑑1  0.33 unitless 36 Fraction of anabolic energy allotted to phosphorus 

𝐴𝑁𝐴𝑏𝑟𝑘𝑑2  0.33 unitless 37 Fraction of anabolic energy allotted to nitrogen 

𝐴𝑁𝐴𝑏𝑟𝑘𝑑3  0.33 unitless 38 Fraction of anabolic energy allotted to cholesterol 

𝑅𝐸𝑃𝑏𝑟𝑘𝑑1  0.5 unitless 40 Fraction of reproductive energy allotted to EPA 

𝑅𝐸𝑃𝑏𝑟𝑘𝑑2  0.5 unitless 41 Fraction of reproductive energy allotted to DHA 

𝑁𝑒𝑢𝑟𝑜𝑅𝑎𝑡𝑒 0.171 day-1 8, 9, 10 Neurological congener mobilization rate 

𝑀𝑜𝑏𝑅𝑎𝑡𝑒 0.242 day-1 11, 13, 15, 17 Energetic congener mobilization rate 

𝐶𝐴𝑅𝐵𝑌𝐼𝐸𝐿𝐷  0.0167 J µg CARB-1 12 Energetic yield of carbohydrates 

𝐹𝐴𝑇𝑌𝐼𝐸𝐿𝐷 0.0377 J µg FAT-1 14 Energetic yield of fat 

𝑃𝑅𝑂𝑇𝑌𝐼𝐸𝐿𝐷  0.0167 J µg PROT-1 16 Energetic yield of protein 

𝑇𝑅𝑌𝐴.𝐸. 7.05∙10-4 J µg TRY-1 28 Tryptophan activation energy  

𝑇𝑌𝑅𝐴.𝐸.  7.06∙10-4 J µg TYR-1 28 Tyrosine activation energy 

𝐶𝐴𝑅𝐵𝐴.𝐸.  5.65∙10-4 J µg CARB-1 28 Carbohydrate activation energy 

𝐹𝐴𝑇𝐴.𝐸. 3.16∙10-4 J µg FAT-1 25, 28 Fat activation energy 

𝑃𝑅𝑂𝑇𝐴.𝐸. 2.81∙10-4 J µg PROT-1 28 Protein activation energy 

𝐶𝐿𝑆𝐴.𝐸. 1.90∙10-5 J µg CLS-1 24, 28, 38 Cholesterol activation energy 

𝐶𝐻𝑂𝐴.𝐸. 7.99∙10-4 J µg CHO-1 23, 28 Choline activation energy 

𝐸𝑃𝐴𝐴.𝐸.  1.36∙10-4 J µg EPA-1 28, 40 EPA activation energy 

𝐷𝐻𝐴𝐴.𝐸. 1.12∙10-4 J µg DHA-1 28, 41 DHA activation energy 

𝐶𝑌𝑆𝐴.𝐸. 7.28∙10-4 J µg CYS-1 28, 31 Cysteine activation energy 

𝐺𝐿𝑌𝐴.𝐸. 5.31∙10-4 J µg GLY-1 28, 29  Glycine activation energy 

𝐺𝐴𝐴.𝐸. 3.03∙10-4 J µg GA-1 28, 30 Glutamic acid activation energy 

𝑃𝐴.𝐸. 1.29∙10-3 J µg P-1 22, 28, 36 Phosphorus activation energy 

𝑁𝐴.𝐸. 2.49∙10-3 J µg N-1 28, 37 Nitrogen activation energy 
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Table S2: Algal congener concentrations for the baseline scenario.  

SYMBOL DESCRIPTION VALUE UNIT 

ALGALTRY Algal tryptophan to carbon ratio 12.9 µg TRY mg C-1 

ALGALTYR Algal tyrosine to carbon ratio 15.375 µg TYR mg C-1 

ALGALCARB Algal carbohydrate to carbon ratio 79.5 µg CARB mg C-1 

ALGALFAT Algal fat to carbon ratio 64.5 µg FAT mg C-1 

ALGALPROT Algal protein to carbon ratio 115 µg PROT mg C-1 

ALGALCLS Algal cholesterol to carbon ratio 9 µg CLS mg C-1 

ALGALCHO Algal choline to carbon ratio 2.9 µg CHO mg C-1 

ALGALEPA Algal EPA to carbon ratio 4.47 µg EPA mg C-1 

ALGALDHA Algal DHA to carbon ratio 1.47 µg DHA mg C-1 

ALGALCYS Algal cysteine to carbon ratio 5.1 µg CYS mg C-1 

ALGALGA Algal glutamic acid to carbon ratio 11.8 µg GA mg C-1 

ALGALGLY Algal glycine to carbon ratio 1.62 µg GLY mg C-1 

ALGALP Algal phosphorus to carbon ratio 4.5 µg P mg C-1 

ALGALN Algal nitrogen to carbon ratio 36.05 µg N mg C-1 
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Figure S1. Predator (red) and prey (blue) biomass (mg C L-1) trajectories under different algal 

nutritional enrichment and depletion scenarios. The corresponding daily energetic signatures for each 

scenario are presented in Table 4. 
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