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The Bay of Quinte, a Z-shaped embayment at the northeastern end of Lake Ontario, represents a characteristic
case of an area of concern (AOC)where scientific uncertainty underliesmanagement efforts to address eutrophi-
cation problems. The present study attempts to examine the relationships between total phosphorus (TP)
(i.e., concentrations from point and non-point sources, net export, and yield) andwatershed attributes, including
land use cover and physiographic characteristics. Dynamic linearmodeling is applied to assess temporal trends in
the flow rates in five major tributaries of the area. Urbanized catchments near the Bay of Quinte show more dy-
namic flow patterns with significant within- and among-year variability and stronger response to local precipi-
tation patterns. The “flashy” behavior of urban land is characterized by relatively high net TP export and TP yield.
Self-organizing map analysis, classified the watershed into six distinct spatial clusters, representing two agricul-
tural, one forested, one urban, one pasture-dominated, and one transitional area. Our study shows that agricul-
tural and urban sites profoundly shape riverine TP dynamics. We also provide evidence that tributaries
draining agricultural areas exhibit considerable variability, depending onmanagement practices and soil proper-
ties. Excessive fertilizer or manure application in croplands, management practices (e.g., crop types and tillage
methods) and soil hydrological characteristics (e.g., hydraulic conductivity and permeability) generally deter-
mine soil phosphorus level and consequent losses through erosion and runoff from agricultural sites. In a similar
manner, pasture-based grazing systems appear to play an important role inmodulating the fate and transport of
phosphorus in the Bay of Quinte watershed.

© 2016 International Association for Great Lakes Research. Published by Elsevier B.V. All rights reserved.
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Introduction

Despite decades of active research in the field of watershed science,
there are still considerable gaps in our understanding of the complex
interplay among hydrological factors, morphological/ geological fea-
tures, land uses, and spatial patterns of the urban environment and
agricultural activities that modulate the attenuation rates of nutrients
and contaminants in a watershed context (Rode et al., 2010). Most
watersheds of management interest in the Great Lakes area are not
well studied, and therefore, one of the imperatives of the contemporary
management practices is the development of methodological frame-
works that can offer insights into the long-term watershed dynamics
of urban and agricultural landscapes (Arhonditsis et al., 2016). The
Bay of Quinte, a Z-shaped embayment at the northern end of Lake
Ontario, has experienced a long history of ecological problems, such as

toxic algal blooms, bacterial contamination, dominance (or invasion)
of undesirable fish species, and destruction of wildlife habitats
(Arhonditsis et al., 2016; Shimoda et al., 2016). To ameliorate these deg-
radation issues, the Great Lakes Water Quality Agreement between the
United States and Canada established a number of initiatives, objectives,
and guidelines to restore and maintain physicochemical and biological
integrity (USEPA, 1978). In particular, the Canadian government made
a commitment to restore the bay by introducing a comprehensive
action plan that primarily aimed to control nutrient loading from
municipal sewage treatment plants (STPs) (BQRAP, 1987). These reme-
dialmeasures have resulted in a dramatic reduction (N95%) of the phos-
phorus discharges from the 1960s, 215 kg d−1, to the 2000s, b10 kg d−1

(Kinstler and Morley, 2011). Nonetheless, despite the substantial
improvement of the ambient water quality conditions, high TP concen-
trations and harmful algal blooms remain a central issue in the system
(Minns et al., 1986a). The Bay of Quinte is still one of the International
Joint Commission's (IJC) 43 degraded sites or AOCs, as it experiences
11 out of 14 of the IJC's Beneficial Use Impairments (BUIs). Furthermore,
zebra and quaggamussels (Dreissena polymorpha andDreissena bugensis)
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have invaded the bay since the mid-1990s, further complicating ecosys-
tem structure and functioning (Dermott et al., 2003; Dermott and
Bonnell, 2011).

Phosphorus export from the adjacent catchments and internal nutri-
ent regeneration are both contributing to the eutrophication problems
in the Bay of Quinte. The latter problem is associated not only with the
sediment diagenesis processes but also the invasion of dreissenids
that could potentially accelerate the internal loading rates of the system
(Bailey et al., 1999; Leisti et al., 2006; Taraborelli et al., 2010; Kim et al.,
2013). Concerning the former issue, even though the total annual TP
loading has significantly decreased from 3.5 kg P km−2 d−1 between
1972 and 1986 to 2.5 kg P km−2 d−1 between 1987 and 2001 (Minns
et al., 2004), it still represents a major regulatory factor of the local
water quality problems (Kim et al., 2013). Notably, recent empirical
evidence suggests that the potential magnitude of the TP contribution
from the ungauged subwatersheds as well as the direct storm sewer
discharges have been underestimated, which in turn poses significant
challenges in obtaining crediblemodeling tools and subsequently estab-
lishing achievable delisting criteria (Kim et al., 2013). Casting doubt on
the reliability of existing modeling exercises in the area, Kim et al.
(2013) argued that the likelihood of a substantial underestimation
bias in the exogenous loading may lead to a situation, in which two
errors (underestimation of the exogenous and overestimation of the
internal loading) cancel each other out and result in a misleadingly
satisfactory model fit. Recognizing this uncertainty, the same study
showed that the response of the bay could vary significantly depending
on the assumptions made about the relative importance of the exoge-
nous versus endogenous loading. In this regard, Arhonditsis et al.
(2016) concluded that the verification (or further refinement) of the
existing loading estimates and subsequently the consolidation of their
connection with the prevailing conditions in the historical monitoring
sites is perhaps the most critical knowledge gap for identifying the
best management practices in the area.

In this study, we use several exploratory techniques to understand
the relationships between TP dynamics, such as loading, net export,
yield, and concentrations from point and non-point sources, andwater-
shed attributes, including land use cover and morphology of the Bay of
Quinte watershed. First, dynamic linear modeling is applied to assess
temporal trends in the flow rates in five major tributaries of the area.
Second, we develop linear regression models to evaluate their capacity
to depict the relationships between TP loading and landscape character-
istics of the watershed. We then use self-organizing map (SOM) analy-
sis, a novel pattern-recognition algorithm specifically designed to
reduce the multi-dimensionality of environmental datasets and to
allow for simpler visualization (and interpretation) of complex patterns
(Giraudel and Lek, 2001; Park et al., 2014; Ha et al., 2015). Specifically,
SOM is used to elucidate the spatial patterns of land use cover and
landscape features and subsequently to identify linkageswith the corre-
sponding TP variability. The lessons learned from this studywill be used
to validate a watershed modeling exercise that intends to improve
the annual nutrient loading estimates, to quantify the loading from
ungauged subwatersheds, to delineate “hot spots” where excessive
nutrient export occurs, and to identify sites that need to be studied
more intensively.

Methods

Data description

The total catchment area of the Bay of Quinte watershed is ap-
proximately 18,604 km2. We obtained a land cover database pro-
duced by the Ontario Ministry of Natural Resources from satellite
remote sensing imaging (available at http://www.geobase.ca/). The
original land cover data consisted of 12 subcategories of land use:
forest (deciduous and coniferous trees), water (lakes and ponds),
wetland (fen, marsh, alvar, bog, coniferous swamp, and deciduous

swamp), and other land use types (mining and cutovers) (Fig. 1a).
To quantify watershed morphological characteristics, we obtained a
7.2-m digital elevation model (DEM) of Ontario, created by Natural
Resources Canada, and used it to calculate the slope of the landscape
from the DEM. Soil hydraulic conductivity (Ksat) and soil bulk density
(BD) were collected from the national soil database (Agriculture and
Agri-Food Canada, http://sis.agr.gc.ca/). We used a commercial soft-
ware package of geographic information system (GIS), ArcGIS 9.3
(ESRI, 2004), for all the relevant calculations.

Water quality monitoring stations are from the Provincial Water
Quality Monitoring Network (PWQMN) administrated by the Ontario
Ministry of the Environment and Climate Change. From 1998 to 2009,
monthly TP concentration data were available at the 73 monitoring
stations in the Bay of Quinte watershed. We delineated catchment
areas (i.e., unit subwatersheds) using each PWQMN monitoring site
as a pour point in GIS. Namely, 73 subwatersheds—that is, gauged
watersheds—were created, under the assumption that the correspond-
ing PWQMN stations were drainage pour points. Subwatersheds in
which nomonitoring stations were located were regarded as ungauged
watersheds and their delineation was based on the consideration of the
corresponding tributary mouths as drainage pour points (Fig. 1b). We
used theWater Survey of Canada (WSC) Program,managed by Environ-
ment and Climate Change Canada (Water Survey Division, Burlington,
Ontario), to determine daily river/stream inflows for 48 monitoring
stations from five major tributaries: the Trent River, Moira River,
Salmon River, Napanee River, and Wilton Creek (Fig. 1c and Electronic
Supplementary Material (ESM) Table S1). Mean annual TP loads were
estimated as the product of mean annual TP concentrations and mean
annual flow rates at the 73 PWQMN stations (Moatar and Meybeck,
2005). Because the sampling locations of flow and TP measurements
were different, we estimated the mean annual flow rates of the 73
PWQMN stations via a catchment area regression model (Kim et al.,
unpublished data). The mean annual TP concentrations were derived
from daily PWQMN TP data within each year. We also compared the
derived TP loads with the Beale-ratio estimates (Preston et al., 1989).
We used contemporaneously measured data for concentrations and
flow rates (Station ID: 02HJ001 in Table S1 and 17002103802 in ESM
Table S2). The loading estimates between two methods were almost
identical. We also calculated mean annual point TP loading as the
product of mean annual TP concentration and effluent flow, based on
26 STPs within the Bay of Quinte watershed (Ontario Ministry of the
Environment and Climate Change, Eastern Region, Kingston). In addi-
tion to TP loading, we calculated net TP export by subtracting upstream
and downstream TP exports. We also estimated TP yield as the net TP
export divided by the area of each subwatershed. The number of septic
tanks in the Bay of Quinte watershed was based on the assumption that
each household in an un-serviced area has one septic tank (Statistics
Canada, http://www.statcan.gc.ca/).

Dynamic linear modeling

Dynamic linear modeling (DLM) analysis was used to detect the
temporal trends of the daily flow rates, for the five tributaries identified
above, while explicitly accounting for their covariance with the precip-
itation. Although DLMs have a simple structure similar to conventional
linear regressionmodels, their benefits are the time-variant parameters
along with their capacity to provide forecasts influenced by recent,
rather than distant, data (Pole et al., 1994; Lamon et al., 1998; Stow
et al., 2004). DLM forecasts for the response variable at time t are
based on contemporaneous observations and prior knowledge of the
parameters. Based on iterative applications of Bayes' theorem, our
knowledge with respect to the parameter values is sequentially up-
dated, using the data obtained at each time step and prior information
to derive the parameter posteriors. This evolving nature offers greater
insights into cause–effect relationships, and thus enables unraveling
complex ecological patterns over time (Mahmood et al., 2013). All
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DLMs comprise an observation equation and system equations as
follows:

Observation equation:

ln flow½ �tk ¼ baseline flowt þ βt � ln rain½ �tk þ ψtk ψtk � N 0;ωt½ �

System equations:

baseline flowt ¼ baseline flowt−1 þ ratet þ εt1 εt1 � N 0;σ t1½ �

ratet ¼ ratet−1 þ εt2 εt2 � N 0;σ t2½ �

βt ¼ βt−1 þ εt3 εt3 � N 0;σ t3½ �

ω−2
t ¼ γt−1 �ω−2

1 ; σ−2
tj ¼ γt−1 � σ−2

1 j t N1; j ¼ 1 to 3

baseline flow1; rate1;β1 � N 0;10000½ � t ¼ 1

ω−2
1 ; σ−2

1 j � Gamma 0:001; 0:001ð Þ

where ln[flow]tk is the observed river flow at year t and day k; ln[rain]tk
is the corresponding precipitation, both expressed in natural logarith-
mic scale; baseline flowt is the annual average flow; ratet is the rate of
change of annual flow; βt is the precipitation (regression) coefficient;
ψtk and εtj denote stochastic error terms for year t sampled from normal

distributionswith zeromeans and variancesωt andσtj, respectively; the
discount factor γ represents the aging of information with the passage
of time. In this study, we postulated that 5% of the information,
contained in the data, is lost with each time step (Lamon et al., 1998;
Stow et al., 2004). In addition, the stochastic nodes baseline flow, rate,
and β for the initial year (t = 1) follow a normal distribution with
mean 0 and variance 10,000, whereas ω1

−2 and σ 1j
−2 are determined

by gamma distributions with shape and scale parameters of 0.001, indi-
cating that our prior knowledge is “non-informative” or vague. Tomax-
imize the signature of precipitation to river flow, we implemented
cross-correlation analysis based on different moving time windows
and chose the one for each of the examined tributaries with the highest
correlation coefficient.

Self-organizing map

Self-organizing map (SOM), a form of Artificial Neural Network
analysis, is recognized as a powerful means of extracting information
fromcomplex,multi-dimensional data andmapping themonto reduced
dimensional space. The SOM network, originally proposed by Kohonen
(1982), mimics the intellectual functioning of higher animal brains,
whereby the neurons (i.e., data vectors) compete with one another in
Euclideanmap space, thereby converting highly nonlinear relationships
into simple geometric relationships. Kohonen (1997) stressed that
SOM, trained by purely nonlinear networks, could be more powerful

Fig. 1. General patterns of data available in the Bay of Quinte watershed: (a) land use coverage: the dashed line indicates the southern geological boundary of the Canadian Shield, (b) TP
concentrations measured at 73 water quality monitoring stations, and (c) flow rates recorded at 48 monitoring stations. The circled sites indicate seven PWQMN stations (Gull River,
Mississauga River, Lake Anstruther, Crowe River, Sawguin Creek, Marsh Creek, and Cressy Creek from left to right in panel (b) and six flow-monitoring stations used for DLM (HF002,
HF003, HL001, HM003, HM007, and HM004 from left to right in panel (c). The areas delineated by solid lines are gauged subwatersheds, while those with gray color are ungauged
watersheds.
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in processing very complex and intricate problems, in contrast to
conventional clustering and classification methods. SOM has been
widely applied to pattern recognition of various learning problems,
and it is deemed one of the more robust methodologies, particularly
due to its convenience for visual understanding (Chon et al., 1996).
Counter to linear ordination methods, including principal compo-
nent analysis and correspondence analysis, SOM's main advantage
is the ability to project multivariate data in a nonlinear way. SOM
also differs from conventional methods in that, in order to maintain
the topological features of the input array, it operates on mechanistic
principles of biology, such as competition and adaptation in data
learning processes. Thus, SOM is more effective not only in converting
high-dimensional constructs to lower dimensional configurations,
but also in clustering essential features of complex nonlinear data
(Giraudel and Lek, 2001).

SOM's network architecture is composed of two layers, input and
output (see Glossary of Terms at end of this article). The connectivity
between input and output layers is defined as arbitrary randomweight
vectors in the initial stage.While thedata are trained in the network, the
distances between input and weight vectors are compared. Among
them, one neuron (i.e., weight vector) that has the shortest distance to
the input vector is designated the best matching unit (BMU). Subse-
quently, all the weight vectors are updated and adjusted according to
topology of the BMU, until all the neurons become stabilized over
time. During this learning process in which the “nonlinear projection”
is formed, all nodes of the weight vectors activate and resemble each
other in similar locations (or topography). This will result in “a local
relaxation or smoothing effect” of the weight vectors of neurons in the
neighborhood and will lead to “global ordering” in continued learning
(see p.109–115 of chapter 3, Kohonen, 1997). The primary equations
of SOM are expressed as follows:

x−ωBMUj j ¼ min
i

x−ωij j

ωi t þ 1ð Þ ¼ ωi tð Þ þ h tð Þ � di tð Þ

h tð Þ ¼ α tð Þ � exp −
ωBMU−ωij j2
2σ2 tð Þ

 !

whereby di(t) represents a minimumEuclidean distance between input
x and weight ω in the i number of individual nodes (i.e., identical to the
size of SOM) at time t. In the relaxation process, the neighborhood
function h(t) plays a key role as a smoothing kernel defined over the
SOM lattices (see Glossary below). For convergence, h(t) → 0 while
time t → ∞; both the learning-rate factor α(t) and the BMU-coverage
width σ2(t) are monotonically decreasing over time.

For the SOM analysis, we used 18 input variables, including three
morphological characteristics (slope of landscape, soil hydraulic
conductivity, and soil bulk density) and 15 forms of land use cover
(lake, pond, alvar, bog, coniferous swamp, deciduous swamp, fen,
marsh, deciduous forest, coniferous forest, cutover, mining area, urban
land, pasture, and cropland) in the Bay of Quinte watershed (Table S2).
The extent of coverage of each land use type was expressed as an areal
percentage within each subwatershed. Subsequently, the SOM was
trained using 210 data samples—encompassing 73 gauged and 137
ungauged subwatersheds of the bay—and distributed these data onto
two-dimensional hexagonal lattices. The node number of the output
layer (i.e., SOM size) was determined based on the value close to 5

ffiffiffi
n

p
proposed by Vesanto and Alhoniemi (2000). Data ordination of the
output layer was classified by a hierarchical cluster analysis, according
to similarities of the corresponding weight neurons. To identify each
cluster's most dominant features, we compared the average of land use
coverage and morphological characteristics among the clusters and
then, within each cluster, we linked these averages to TP loading
variables, such as mean annual point-source loading, net export, yield,

and concentration. For all these analyses, we used the SOM Toolbox
developed by the Helsinki University of Technology (Vesanto et al.,
2000).

Results–Discussion

General watershed characteristics and flow patterns in the major
tributaries

The Bay of Quinte watershed is geographically separated into two
major areas: the northern basin set on the Canadian Shield and the
southern basin. The geological substrate of the northern basin mainly
consists of igneous rock and the landscape is dominated by boreal for-
ests (Fig. 1a). Thus, this area remains mainly pristine and is subject to
minimal release of phosphorus loads through erosional processes. Con-
sequently, themeasured TP concentrations in the creeks of the northern
basin are fairly low (b20 μg L−1 vis-à-vis an average of 30 μg L−1 over
the entire watershed), especially at Lake Anstruther (6 μg L−1), Missis-
sauga River (7 μg L−1), Gull River (8.8 μg L−1), and Crowe River
(9.6 μg L−1) (Fig. 1b). By contrast, the southern basin is mainly charac-
terized by agricultural land uses, such as croplands and pastures
(Fig. 1a). In addition, urban areas have sprawled in the lower basin in
concert with developing cities and big towns, such as Peterborough,
Trenton, and Belleville. For these reasons, distinctly higher TP concen-
trations are found in the lower part of the watershed, particularly at
Sawguin Creek (231 μg L−1), Cressy Creek (176 μg L−1), and Marsh
Creek (138 μg L−1). Regarding the spatial pattern of river/stream flows,
the flow rates recorded were distinctly higher in the Trent River than in
other tributaries (Fig. 1c and Table S1). Except for the mean flow rates,
we also examinedwithin-year and year-to-yearflowvariability in various
gauged locations, as it represents a critical factor that shapes the uncer-
tainty of TP loading from the Bay of Quinte watershed. The three highest
coefficient of variation (CV) valueswere similarly found in the Trent River
catchment, e.g., 52.8% at Blackstock Creek in the upper Trent River basin
(station ID 02HG003, ESM Fig. S1), which primarily stem from the slope
of landscape and soil texture. Steeper slopes are apt to induce rapid runoff
and greater sediment and phosphorus loss rates (Soldat and Petrovic,
2008). Soil texture (e.g., loam, silt, clay, and sand) is closely associated
with soil hydraulic conductivity and permeability, which can thenmodu-
late infiltration rates and land-to-stream phosphorus delivery (Djodjic
et al., 2004; van Es et al., 2004).

DLM analysis of the flow rates focused on four key results: (i) the
temporal trends of mean annual flow rates; (ii) annual changes in
flow rates; (iii) the slope coefficient β, representing the strength of the
relationship between flow rates and precipitation; and (iv) percentage
of annual flow rate change ([Flowyear − Flowyear-1]/[Mean Annual
Flow] × 100) in the Trent River (station ID: HF002 and HF003), Moira
River (HL001), Salmon River (HM003), Napanee River (HM007), and
Wilton Creek (HM004), respectively (Fig. 2; Table 1). In Trent River 1
(HF002), the covariate of flow at day t was the moving average of the
precipitation occurring over the six antecedent days (i.e., average from
raint to raint-6), while a 4-day moving window of precipitation was
used in Trent River 2 (HF003, Fig. 1c). When accounting for the covari-
ance with precipitation, the projected annual average flow rates have
been larger in Trent River 1 (≈20 m3 s−1) than in Trent River 2
(≈10 m3 s−1) over the past 40 years (1965–2005). In both locations,
annual changes of the flow rates were positive but significantly de-
creased from the 1960s to the mid-1970s (right-top of Trent River 1
and 2 in Fig. 2), that is, the tributaryflowwas increasingwith decreasing
rates. The flow rates in both locations have (on average) stabilized
thereafter (1980–2005) but were subject to year-to-year variability as
demonstrated by the short-term shifts between positive and negative
annualflow rate changes. Interestingly, the two predominantly forested
subwatersheds showed different patterns with respect to the time-
variant regression coefficient βt, which in turn suggests differences in
the influence of precipitation on flow rates. In Trent River 2, the slope
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was three times higher and gradually increased relative to Trent River 1.
By contrast, βt of Trent River 1 was lowest among all the tributaries of
the Bay of Quinte watershed, and this value was practically equal to
zero in 1988, indicative of a very weak flow–precipitation relationship
during that year. The latter pattern likely stems from the fact that the
flow records in Trent River 1 monitoring station are closely related to
a series of dam operations at Gull River, and therefore the upstream
regulations result in more stable flow rates that are weakly connected
with daily precipitation. On the other hand, Burnt River (Trent River 2),
though regulated, is not to the degree of Gull River, and therefore is
subject to greater temporal variability and tighter relationship with
precipitation.

Regarding the other tributaries, we found that a 6-day, 3-day, 8-day,
and 3-day moving window of precipitation had the strongest signature
on flow rates in Moira River, Salmon River, Napanee River, and Wilton
Creek, respectively (Table 1). These results indicate that hydrological
response—that is, the translation of precipitation into runoff—is fastest
in Salmon River and Wilton Creek, whereas Moira River, and Upper
Napanee River also have someflow regulation, though not to the degree
of Trent River. All these tributaries in question, including Salmon River
and Wilton Creek, have historically shown more fluctuating flow pat-
terns than in Trent River (left-top in Fig. 2). Until the late 1980s, annual
change of flow rates was decreasingly positive in Moira and Napanee
Rivers. Since then, these rates have become quite stable in Napanee

Fig. 2. DLM analysis of the temporal trends of flow rates in five tributaries of the Bay of Quinte watershed; Trent River upstream 1, Trent River upstream 2, Moira River, Salmon River,
Napanee River, and Wilton Creek. Top-left panels for each river depict the mean annual flow rates when accounting for the covariance with precipitation (red solid line: mean values,
dash lines: 95% posterior predictive intervals, box plots: observed data). Top-right panels for each river depict the annual rates of change of the flow rates. Bottom-left panels for each
river depict the slope regression coefficient of precipitation in response to flow rates. Bottom-right panels for each river depict percentage change of flow.
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River, whereas they have gradually increased in Moira River (right-top
in Fig. 2). Annual changes of flow rates in Salmon River and Wilton
Creek have shown a pattern of gradual increase over the entire period
(1965–2010). Specifically, the annual change of flow rate was mostly
negative in Wilton Creek until 2007, i.e., the flow was decreasing with
a slowing rate, but more recently has become positive. The slope coeffi-
cient βt was mostly stable, except in Salmon River, until 1990. But
since 1990, the coefficient has continuously increased in Moira River
and Salmon River (left-bottom in Fig. 2). Perhaps this increasing pattern
of βt is related to expanding urbanization at Moira River (and partially
at Salmon River) near Belleville. Urbanization can accentuate the impact
of storm events, resulting in more dynamic (“flashy”) hydrographs
relative to less disturbed streams (Duan et al., 2012), as well as signifi-
cant increases in annual flow rates, dry-season runoff, and floodmagni-
tudes (White and Greer, 2006). Moreover, the increasing degree of

imperviousness of the land surface, resulting from urban sprawl,
plays a key role in shaping the buildup and washoff processes when
storm events occur (Butcher, 2003). With respect to Wilton Creek, βt

has been steadily high over the 40-year study period. The latter is a
typical small-drainage stream, where runoff processes are generally
triggered more promptly from precipitation events (Minns et al.,
1986b; McGlynn et al., 2004). Mean annual flow rate (0 ~ 0.5 m3 s−1)
in Wilton Creek has been significantly smaller than in the other tribu-
taries. Percentage of annual flow change has been lower in Trent River
than in other tributaries (average: ≈25% in Trent River, ≈70% in
Moira River, ≈80% in Salmon River, ≈50% in Napanee River, and
≈75% in Wilton Creek). Except for the Trent River, larger fluctuations
have been recorded in the tributaries in recent years. In particular, the
highest percentage (≈300%) was recorded in Wilton Creek in the
early 2000s (right-bottom in Fig. 2).

Fig. 2 (continued).
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Fig. 2 (continued).

Table 1
Areal coverage of different land uses in the six gauged subwatersheds used for our dynamic linear modeling analysis.

Basin Unit Lake Crop land Urban land Conifer forest Deciduous forest Pasture Alvar Bog Fen Swamp Marsh Logging Mining

Trent1 km2 216.9 7.2 8.8 358.4 699.1 25.0 18.5 1.1 3.4 0.1 9.7 3.2
% 16.0 0.5 0.7 26.5 51.7 1.9 0.0 1.4 0.1 0.3 0.0 0.7 0.2

Trent2 km2 62.2 68.7 0.1 195.7 112.0 55.3 15.7 2.7 21.1 0.6 0.0
% 11.7 12.9 0.0 36.6 21.0 10.4 2.9 0.5 0.0 3.9 0.1 0.0 0.0

Moira km2 129.0 261.7 11.8 991.7 844.1 143.0 2.6 34.3 6.7 215.6 3.0 7.7 96.3
% 4.7 9.5 0.4 36.1 30.7 5.2 0.1 1.2 0.2 7.8 0.1 0.3 3.5

Salmon km2 52.0 77.5 0.6 311.5 215.6 69.8 34.9 17.5 4.5 50.0 2.5 6.2 67.5
% 5.7 8.5 0.1 34.2 23.7 7.7 3.8 1.9 0.5 5.5 0.3 0.7 7.4

Napanee km2 70.1 128.8 3.5 100.0 320.2 86.0 16.5 3.3 7.9 51.0 9.7 0.0 7.6
% 8.7 16.0 0.4 12.4 39.8 10.7 2.1 0.4 1.0 6.3 1.2 0.0 0.9

Wilton km2 0.3 38.8 10.6 22.1 25.6 4.8 0.2 1.0 0.1 0.9
% 0.3 37.2 0.0 10.1 21.1 24.6 4.6 0.0 0.2 0.9 0.1 0.0 0.9
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Relationships between total phosphorus export and land use

Both agricultural and urban nutrient export fluxes are highly vari-
able and contingent upon a number of regulating factors, including
soil type, urban storm water management, agricultural intensity, and
conservation practices (Moore et al., 2004; Soldat and Petrovic, 2008;
Soldat et al., 2009). Agricultural nutrient export rates have historically
been considered higher than those from urban areas, although recent
empirical and modeling evidence suggests that urban TP loads can be
comparable or even higher (Winter and Duthie, 2000; Duan et al.,
2012). High urban TP loading has been attributed to storm water-
induced bank erosion, high fertilizer use on residential lawns, and lack
of phosphorus retention on impervious surfaces (Withers and Jarvie,
2008; Pfeifer and Bennett, 2011). In the same context, considerable
insights have been gained by a recent comparative examination of
the daily flows in an urbanized (Redhill Creek) and an agricultural
(Grindstone Creek) catchment in the neighboring Hamilton Harbour
area, which supported the idea of a single threshold separating two
states of watershed response to precipitation (Wellen et al., 2014). It
was hypothesized that the watershed response to precipitation occurs
in distinct states, such that precipitation depth above a certain threshold
triggers an extreme state, which is characterized by a qualitatively
different response of the watershed to precipitation. To solidify this
working hypothesis, Long et al. (2014, 2015) have collected 87 24-h
level-weighted composite samples from a variety of catchment states
(rain, snowmelt, baseflow) from all four major tributaries to Hamilton
Harbour between July 2010 and May 2012. The key findings from this
research were as follows: (i) daily TP loads varied by three orders of
magnitude between wet and dry conditions, with storm events and
spring freshets driving peak daily loads in urban and agricultural water-
sheds, respectively; (ii) areal TP loadswere significantly higher from the
urban relative to the agricultural watersheds; and (iii) the characteriza-
tion of TP concentrations during high flow conditions was essential in
establishing accurate concentration versus flow relationships and sub-
sequently nutrient load estimates. The brief, but intense, events which
occurred b10% of the time were found to be responsible for 50%–90%
of TP loads delivered to Hamilton Harbour from its tributaries. While
the lessons learned from the integratedwatershed-receivingwaterbody
system in the Hamilton Harbour AOC are typically used to draw
inference about the Bay of Quinte AOC and vice versa, the question aris-
ing here is towhat extent some of the previouslymentioned patterns of
agricultural versus urban nutrient export fluxes hold true in the Bay of
Quinte watershed.

In particular, TP loads exhibited a spatial gradient from the upper to
the lower basin, but the corresponding standard deviations (i.e., year-
to-year variability) did not demonstrate a clear pattern (Fig. 3). TP
loads from upstream catchments were distinctly lower than those from
downstream catchments, and the highest TP load values were found in
the lower part of the Trent River with the largest drainage area among
the major local tributaries (Fig. 3a). Specifically, large annual TP loads,
exceeding 4 ln P tons yr−1 (≈55 P tons yr−1), were frequently found
in the catchment between Peterborough and Trenton. In this region,
TP loads are partly elevated as a result of point-source loading ema-
nating from the nearby urbanized areas. Concerning variability in
annual TP loading, we found larger standard deviations primarily in
locations where the stream order was lower, which was consistent
with our DLM analysis showing greater year-to-year variability in
the flow rates in small streams. In a similar manner, we found that
subwatersheds with higher TP load variability were geographically
close to stations in which variability of flow rates was also high
(Table S2). For instance, the subwatershed of ID 108 is quite close
(≈20 km) to the flow-monitoring station (02HG003) that showed
the largest CV of flow rate (ESM Fig. S1). Given that the two contigu-
ous locations have similar morphological characteristics, it is reason-
able to assume that the relationship between TP loading and flow
rate is significantly strong. Nonetheless, it is also worth mentioning
that agricultural land also occupies the largest portion (32.6%,
13.35 km2) of this subwatershed (ID 108 in Table S2 and Fig. S1),
and therefore TP export from the agricultural land may also be mod-
ulated by different land use/management practices, such as crop
types and tillage methods.

In order to compare in greater depth TP export, we first examined TP
yield (mass per unit area per time) and net TP export (mass per time)
with respect to the presence of a particular land use type in each of
the 73 gauged subwatersheds (Fig. 4). If we do not consider the actual
area occupied by the different land use types, the general patterns of
TP yield and net TP export suggest the largest amounts of phosphorus
originate from subwatersheds that have croplands, pastures, or forests.
TP yield was greatest in subwatersheds with croplands (mean:
29.7 kg km−2 yr−1, median: 6.0 kg km−2 yr−1), followed by forests
(mean: 14.2 kg km−2 yr−1, median: 6.1 kg km−2 yr−1) and pastures
(mean: 9.2 kg km−2 yr−1, median: 2.5 kg km−2 yr−1). Net TP export
was larger in subwatershedswith forests (mean: 1.25 tons yr−1,median:
0.58 tons yr−1) than in croplands (mean: 1.01 tons yr−1, median:
0.48 tons yr−1). Interestingly, net TP export and yield were significantly
lower in urban sites, which deviates from the emerging paradigm that TP

Fig. 3. TP loadings measured at 73 PWQMN stations in the Bay of Quinte watershed; (a) mean annual TP loadings and (b) standard deviation of annual TP loadings.
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export tends to be higher in urban/suburban lands than in forest and ag-
ricultural areas (Duan et al., 2012). Nonetheless, the latter finding should
be viewedwith caution as the fractional areas (%) of urban lands within
each subwatershed are usually much smaller than those of crop-
lands. Thus, the corresponding box plots do not fully reflect the rela-
tionship between TP yields/net exports and urban land, as they are
confounded by the impact of other land uses that occupy larger
areas in the 31 subwatersheds, where urban sites are also found. To
shed light on the latter issue, we examined the relationships be-
tween annual net TP export and actual area occupied in each
subwatershed by six land uses: lake, wetland, forest, urban land, pas-
ture, and cropland (Fig. 5). Box–Cox power transformations were
implemented to stabilize variance of data and effectively linearize
the bivariate relationships examined (Box and Cox, 1964; see ESM
Fig. S2). Based on the corresponding slope values, cropland (0.29)
was most strongly related to net TP load (or net TP export), followed
by pasture (0.25), wetland (0.24), lake (0.14), forest (0.13), and
urban area (0.06). Similar to the previous results though, the area oc-
cupied by urban environment was not a strong predictor of the net
TP loading. Further, the coefficient of determination values of the
corresponding simple regression models were fairly low (r2 =
0.003 ~ 0.20). The relationship between annual net TP export and
percentage areal coverage for each land use was also found consis-
tently weak (ESM Fig. S3), and therefore the use of methods that
stipulate linearity may not be adequate to elucidate the relationship
between TP loading and land use patterns in the Bay of Quinte
watershed.

Land use pattern recognition using SOM

The SOM produced a total of 18 hexagonal lattice maps, visualiz-
ing the relative topological distribution of input variables used in
the data learning process. Fig. 6 demonstrates two-dimensional dis-
tributions of the 18 input variables on SOM, as depicted by chromatic
contrast. The dark color represents large values or high densities
of corresponding inputs (or variables). Notably, a higher degree of
slope appears at the upper part of SOM. A similar pattern of high den-
sities at the upper areas of the 2D maps is also found for deciduous
and coniferous forests, bogs, logging, and mining areas. This similar-
ity reflects the (plausibly) strong correlation between the slope of
the landscape and the areal extent of these land use types in the
Bay of Quinte watershed. Along the same line of thinking, we also
found that Ksat is inversely correlated with the soil bulk density. The

SOMpattern of bogs is clearly different from those of other types ofwet-
lands, such as alvar, coniferous and deciduous swamps, fen, and marsh.
By contrast to Ksat, soil bulk density andwetlands, pasture, and cropland
have higher density over the lower part of SOM, while urban land is lo-
calized in a small areal range. The urban land areas partly resemble the
SOM density patterns of ponds.

The Bay of Quinte watershed was also visualized based on SOM data
classification, representing heterogeneous patterns of land use and
morphological characteristics (left panels in ESM Fig. S4). Data inputs
from each subwatershed correspond to each of the hexagonal lattices
(right panels in ESM Fig. S4). Using all data of land use and other
attributes, covering a total 210 subwatersheds (i.e., 73 gauged and 137
ungauged ones), SOM classified the Bay of Quinte watershed into six
distinct clusters (Fig. 7). Table 2 shows total average and cluster average
values of 18 input variables (from 210 subwatersheds) and observed TP
dynamics (from 73 gauged subwatersheds). In Cluster 1, where specific
types of wetlands demonstrate their highest percentage areas (≈9.8%
of alvar, ≈8.1% of coniferous swamp, and ≈0.43% of fen) among
the six clusters, point-source loading is low (30 kg yr−1) and net TP
export in particular is the smallest (1.08 tons yr−1). In Cluster 2, land-
scape slope is largest, soil bulk density highest, and forest coverage
(i.e., deciduous and coniferous area) also highest. The mining and log-
ging areas are the most abundant, which is typical of the Canadian
Shield's mountainous regions. In the same cluster, TP yield and TP con-
centration are the lowest (8 kg km−2 yr−1 and 14 μg L−1, respectively)
across all six clusters. In Cluster 3, most subwatersheds are located
near the Bay, cropland coverage is highest (≈75%), and annual TP
yield and average TP concentration are the highest (528 kg km−2 yr−1

and 103 μg L−1). In Cluster 4, Ksat is the highest, deciduous swamp is
most abundant, and cropland coverage is second largest (≈41%). The
subwatersheds in Cluster 4 experience the largest net TP export,
which is primarily derived from their larger areal extent, along with
larger (i.e., the second largest) fractions of cropland. In Cluster 5,
urban land occupies ≈74% of the subwatersheds, although urban sites
are relatively small and fragmented. Net TP export and yield are second
highest (3.72 tons yr−1 and 209 kg km−2 yr−1), together with largest
point-source loading (2.44 tons yr−1). The subwatersheds classified in
Cluster 5 include the towns of Peterborough, Trenton, and Belleville. In
Cluster 6, pasture and cropland occupy ≈60% of the land use, marsh
density is the highest, and the subwatersheds within the same cluster
are located adjacent to the Bay of Quinte, point-source loading and TP
concentration are second highest (158 kg yr−1 and 69 μg L−1,
respectively).

Fig. 4. TP yield (left) and net TP load (right) according to land use types in the Bay of Quintewatersheds. Bracketed numbers indicate the number of subcatchments that each land use type
is found regardless of the actual area occupied.
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Fig. 6. SOMs of morphological characteristics and land use coverage, which visualize relationships amongmulti-dimensional data on lower dimensional (2-D) maps. Right bands indicate
the range of values of each variable. Ksat refers to soil hydraulic conductivity. Units are the same as shown in Table 1.

Fig. 5. Relationships between annual net TP exports and different land use areas (lake, wetland, forest, urban land, pasture, and cropland) in the 73 watersheds. The lambda (λ) value
indicates the power of the Box–Cox transformation to which all data were raised during the development of regression models.
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Conclusions

The paradigm of phosphorus, as the primary driver of the severity of
eutrophication problems, has profoundly shaped the restoration actions
in the Bay of Quinte. Local management strategies were originally
designed to reduce phosphorus loading from all major municipal and
industrial point sources. Stemming from the reduction of phosphorus
in detergents along with the upgrades at the local wastewater treat-
ment plants, daily average phosphorus loadings into the Bay of Quinte
decreased from 214 kg P d−1 between 1968 and 1972 to 60–
68 kg P d−1 between 1978 and 1986 and have seldom exceeded the
level of 25 kg P d−1 since 2000 (Kim et al., 2013). This significant decline

in the proportion of phosphorus loading associated with point sources
(b3%) has shifted the focus to the contribution of tributaries as an
important regulatory factor in determining the trophic status of the
downstream water body. While every watershed is unique in terms of
the magnitude of tributary nutrient concentrations and prevailing
flow conditions, there are several common factors underlying the ob-
served loading variability such as the land use, seasonality, catchment
state (baseflow or high flow conditions), and physiographic attributes
(Long et al., 2014, 2015). Thus, establishing the causal linkages among
land use patterns, morphological characteristics, and non-point-source
loading is critical for understanding the current state of eutrophication
in the Bay of Quinte. The basic lessons learned from the present analysis
are summarized below.

Owing to its robustness in pattern recognition (Chon et al., 1996),
SOM delineated six spatial clusters that exhibit dominant land use
characteristics, except for Cluster 1 which can be described as depicting
transitional areas. Themain distinct feature for this clusterwas the pres-
ence of different wetland types (alvar, coniferous swamp, and fen)with
areal coverage higher than in other locations. Cluster 2 is typical of
mountainous watersheds, in which both slope of landscape and forest
coverage are highest. Cluster 3 contains a high proportion of agricultural
land in the vicinity of the Bay of Quinte and is mostly located in the
ungauged watershed. Cluster 4 covers the lower part of Trent River
catchment, except for two subwatersheds, one located at the upper
Napanee River and the other at the upperWilton Creek. The latter clus-
ter is also characterized by the second largest cropland fraction and the
highest hydraulic conductivity values of all clusters. Cluster 5 is primar-
ily characterized byurban areas and thehighest areal coverage of ponds,
while Cluster 6 includes a high proportion of pasture (≈30%) and also
contains a large portion of the ungauged watershed.

Although urban areas are very small and partly isolated in the Bay of
Quinte, their impact on TP loads is pronounced, as reflected in Cluster
5's second largest net TP export (3.729 tons P yr−1) and TP yield

Fig. 7. SOMclassification of a total of 210 (73 gaugedand 137 ungauged) subwatersheds in
the Bay of Quinte. Clustering is based on Fig. S2.

Table 2
SOM classification of the watershed attributes in the Bay of Quinte. White-colored variables are input used for data learning, and gray-shaded variables are observed values (mean ±
standard error) corresponding to each SOM cluster. Bold numbers indicate the highest value for each variable among the six clusters. Superscripts indicate statistically significant differ-
ences in each row/variable among the six clusters based on Scheffe's multiple comparison test (p b 0.05).

Variable Unit Mean Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Slope of landscape degree 2.792 ± 0.0.78 3.136 ± 0.191 bc 4.697 ± 0.191 a 2.476 ± 0.110 cd 3.424 ± 0.151 b 2.405 ± 0.177 cd 2.052 ± 0.072 d

Hydraulic conductivity (Ksat) cm h-1 1.953 ± 0.073 1.643 ± 0. 082 c 2.392 ± 0.158 b 1.365 ± 0.094 c 3.475 ± 0.197 a 3.030 ± 0.499 ab 1.415 ± 0.038 c

Bulk density (BD) g m-3 1.085 ± 0.011 1.084 ± 0. 013 b 1.282 ± 0.078 a 1.123 ± 0.005 ab 0.912 ± 0.027 c 1.097 ± 0.028 ab 1.101 ± 0.011 b

Lake coverage % 1.52 ± 0.3 1.58 ± 0.7 bc 7.93 ± 1.2 a 0.00 ± 0.0 c 2.95 ± 1.1 b 0.04 ± 0.0 bc 0.16 ± 0.1 c

Pond coverage % 1.41 ± 0.2 1.45 ± 0.3 b 2.73 ± 0.3 ab 0.65 ± 0.1 b 0.57 ± 0.2 b 5.18 ± 2.5 a 1.30 ± 0.4 b

Alvar coverage % 3.58 ± 0.5 9.80 ± 2.3 a 0.22 ± 0.2 b 0.74 ± 0.2 b 0.37 ± 0.2 b 0.00 ± 0.0 b 4.38 ± 0.6 b

Bog coverage % 0.14 ± 0.0 0.01 ± 0.0 b 1.62 ± 0.2 a 0.00 ± 0.0 b 0.01 ± 0.0 b 0.00 ± 0.0 b 0.00 ± 0.0 b

Conifer swamp coverage % 3.14 ± 0.3 8.08 ± 1.0 a 1.21 ± 0.3 bc 0.43 ± 0.2 c 3.65 ± 0.4 b 1.00 ± 0.5 bc 2.27 ± 0.3 bc

Deciduous swamp coverage % 3.26 ± 0.3 3.83 ± 0.7 a 3.10 ± 0.7 ab 0.01 ± 0.0 b 4.49 ± 0.6 a 0.97 ± 0.5 ab 4.16 ± 0.7 a

Fen coverage % 0.15 ± 0.0 0.43 ± 0.3 a 0.09 ± 0.0 a 0.01 ± 0.0 a 0.19 ± 0.1 a 0.00 ± 0.0 a 0.09 ± 0.0 a

Marsh coverage % 2.25 ± 0.6 2.97 ± 1.2 a 0.08 ± 0.0 a 1.77 ± 0.6 a 0.71 ± 0.2 a 0.00 ± 0.0 a 3.64 ± 1.4 a

Deciduous coverage % 17.59 ± 1.0 21.83 ± 2.2 b 41.24 ± 2.5 a 7.51 ± 1.3 c 17.61 ± 1.6 b 1.98 ± 0.8 c 16.22 ± 1.4 b

Conifer coverage % 12.27 ± 0.9 21.82 ± 1.8 b 39.41 ± 2.2 a 1.18 ± 0.3 e 13.87 ± 0.9 c 0.65 ± 0.3 de 6.47 ± 0.7 d

Logging coverage % 0.05 ± 0.0 0.00 ± 0.0 b 0.55 ± 0.2 a 0.00 ± 0.0 b 0.00 ± 0.0 b 0.00 ± 0.0 b 0.00 ± 0.0 b

Mine coverage % 0.96 ± 0.3 1.90 ± 1.1 ab 4.08 ± 1.2 a 0.03 ± 0.0 b 0.11 ± 0.0 b 0.01 ± 0.0 ab 0.66 ± 0.3 b

Urban coverage % 4.31 ± 1.1 0.10 ± 0.1 b 0.28 ± 0.1 b 0.25 ± 0.2 b 1.21 ± 0.5 b 73.56 ± 6.5 a 1.47 ± 0.5 b

Pasture coverage % 17.64 ± 0.9 13.19 ± 1.3 b 2.68 ± 0.7 c 13.49 ± 1.3 b 16.06 ± 1.1 b 2.90 ± 0.8 c 28.08 ± 1.4 a

Cropland coverage % 34.27 ± 1.6 15.83 ± 1.3 d 2.84 ± 1.0 e 74.57 ± 2.0 a 41.20 ± 1.6 b 18.62 ± 4.7 d 32.51 ± 1.7 c 

Point source loading tons P yr-1 0.107±0.068 0.030±0.022 b 0.028±0.018 b 0.000±0.000 b 0.023±0.011 b 2.440±2.440 a 0.158±0.095 b

Net TP export tons P yr-1 3.095±0.447 1.080±0.206 a 2.840±0.507 a 2.218±1.632 a 4.038±0.957 a 3.729±2.300 a 2.873±0.584 a

TP Yield 0.063±0.017 0.021±0.012 bc 0.008±0.002 c 0.528±0.253 a 0.040±0.008 bc 0.209±0.141 abc 0.170±0.092 b

TP concentration mg P L-1 0.029±0.004 0.017±0.001 b 0.014±0.001 b 0.103±0.073 a 0.027±0.002 b 0.018±0.002 ab 0.069±0.023 a
tons P km-2 

yr-1
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(209 kg P km−2 yr−1). Winter and Duthie (2000) provided an estimate
of ≈500 kg P km−2 yr−1 of areal phosphorus export (i.e., yield) from
urban areas of Laurel Creek, located in Southern Ontario. Dietz and
Clausen (2008) reported that TP loading was highly correlated with
total impervious area, as extensive paving increases soil imperviousness
and reduces storage capacity, thereby generating fast runoff (Hatt et al.,
2004). Our DLM analysis alignswith these findings in that the relatively
urbanized catchments near the Bay of Quinte showmore dynamic flow
patterns with significant within-year and year-to-year variability as
well as tighter relationship with the local precipitation.

Consistent with the popular notion in the literature, agricultural
activities appear to primarily shape the non-point TP export from the
Bay of Quinte watershed. Excessive fertilizer or manure application in
croplands,management practices (e.g., crop types and tillagemethods),
and soil hydrological characteristics (e.g., hydraulic conductivity and
permeability) generally determine soil phosphorus level and conse-
quent losses through runoff from agricultural sites (Pote et al., 1996;
Sims et al., 2000). SOM identified two clusters characterized by high
areal cropland coverages. Cluster 3 had the highest TP yield and concen-
tration, while Cluster 4 had the largest net TP export. The former cluster
comprises the township areas of Prince Edward County and Lennox–
Addington. In Prince Edward County, corn and alfalfa occupied the larg-
est fraction of cropland areas (37% of corn, ≈36% of alfalfa, and 25% of
wheat), while N50% of the same locations did not implement tillage
methods, such as surface or injected soil tillage. By contrast, in
Lennox–Addington, alfalfa accounted for 57% of cropland followed by
corn (31%) and wheat (12%), while tillage methods were more fre-
quently applied (N60%; Quinte Conservation, personal communication).
Cluster 4 encompasses the township areas within Kawartha Lakes and
Northumberland County. The Kawartha Lakes area has a higher propor-
tion of alfalfa (55%), followed by corn (24%) and wheat (18%), whereas
the Northumberland County area has the largest proportion of untilled
cropland (≈57% of no tillage, ≈29% of surface soil tillage, and ≈13%
of injected soil tillage). Moreover, Cluster 4 is characterized by the
highest hydraulic conductivity among all clusters delineated, which
may explain the lower TP yield and concentrations relative to Cluster
3. That is, the soil's high hydraulic conductivity could attenuate phos-
phorus land-to-stream delivery (Weld et al., 2001), which in turn mod-
erates phosphorus export from the corresponding sites.

Other dominant land uses in the Bay of Quinte watershed include
forested and pasture areas. Consistent with earlier reports (Dillon
and Kirchner, 1975), the forested locations had the lowest TP yield
(≈8 kg P km−2 yr−1) and concentration (≈14 μg P L−1) (Table 1), as
there are no major anthropogenic sources of TP loading and the runoff
ratio (the percentage of rainfall volume to runoff) is typically very low
(Corbett et al., 1997). Counter to urban sites, forested areas have larger
capacity to store surface runoff (Corbett et al., 1997; Harris, 2001).
Regarding the pasture land, earlier work by Beaulac and Reckhow
(1982) stated that pasture and grazed areas are comparable to agricul-
tural areas with respect to their potential impact as non-point sources.
Likewise, Nash and Halliwell (2000) noted that substantial variability
characterizes the fate and transport of phosphorus in pasture-based
grazing systems. Nash et al. (2000) further showed that phosphorus
mobilization in pasture-dominated watersheds occurs primarily as a
result of dissolution, rather than erosional processes. In North Carolina,
Butler et al. (2006) estimated 70 ~ 350 kg P km−2 yr−1 of TP yield
derived from riparian pasture, and also found that dissolvedphosphorus
export increased significantly as pasture coverage expandedwith heavy
rainfall. In the Bay of Quinte watershed, the pasture-dominated cluster
(#6) exported approximately 170 kg P km−2 yr−1, but since the same
areas are also characterized by agricultural activities (32.5% of land
use), it is difficult to unequivocally estimate the impact of pasture.
On a final note, wetlands are well known as nutrient sinks, playing a
key role in phosphorus removal, and Winter et al. (2002) showed a TP
export decrease that is inversely related to wetland areal coverage.
However, Dillon and Molot (1997) showed a TP export increase

proportional to wetland areal coverage in south-central Ontario, and
Paterson et al. (2006) demonstrated a similarly strong positive relation-
ship in twenty watersheds of this region. Thus, the positive relationship
between net TP loads and wetland area found in our study could be
a plausible result. Furthermore, Cluster 1 included the three most
dominant wetlands (alvar, coniferous swamp, and fen), but the corre-
sponding fractional areas are fairly small to infer about their relative
contribution to the TP loads collectively exported from these areas
(Table 2).

To recap,wewere able to discern distinct landuse patterns andmor-
phological characteristics in relation to TP export in the Bay of Quinte
watershed. Self-organizing map analysis delineated six spatial clusters
in the Bay of Quinte watershed, representing one forested, two agricul-
tural, one urban, one pasture-dominated, and one transitional area. Our
study showed that agricultural and urban land areas primarily regulate
riverine TP dynamics. Tributaries draining agricultural catchments
exhibit considerable variability, depending on management practices
and soil properties. In particular, the hydraulic conductivity of the
soils could significantly modulate phosphorus land-to-stream delivery,
and therefore determine phosphorus export from agricultural areas.
Urbanized catchments near the Bay of Quinte show more dynamic
flow patterns with significant within- and among-year variability and
stronger relationship with precipitation. This “flashy” behavior of
urban sites is accompanied by a relatively high net TP export and
TP yield. Pasture-based grazing systems similarly appear to play a
major role in determining the fate and transport of phosphorus in
the area. Our delineation of the spatial TP loading patterns will be
essential in guiding an on-going watershed modeling exercise that
aims to quantify nutrient export coefficients and delivery rates
from different subcatchments and thus verifying our key findings
regarding the nutrient export “hot spots” and the potential effects
of climate change on the severity of eutrophication problems in the
Bay of Quinte.
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Glossary

Best matching unit (BMU): Virtual units compete with each other for having a minimum
distance towards the selected sampling neuron. BMU refers to one of the virtual units
having the minimum distance at the end of data learning. It is often called “winning
neuron”.
Global ordering: Data ordination generated by continuous local relaxation during the
learning process on the entire map.
Input layer: Layer of neural cells projected on two-dimensional grid that receives input
variables directly.
Local relaxation or smoothing effect: During the learning process, the nonlinear projection
is formed. The neural nodes are getting topologically close in the array up to a certain
geometric distance,whichwill activate each other to learn something from the same input
vector. This results in a local relaxation on the weight vectors of neurons in the
neighborhood.
Neighborhood function: During the learning process, the BMU is defined. All the neighboring
neurons around the BMU are updated using the neighborhood function.
Output layer: The hexagonal layer where all neurons occupy specific locations after the
learning process.
Weight vector: Virtual parametric vectors that activate input vectors for data learning.
These vectors are initialized randomly, and gradually updated during the learning process.
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Figure S1: 73 gauged subwatersheds and 48 flow monitoring stations in the Bay of Quinte watershed. The numbers indicate the 

subwatershed IDs.  



 

 

Figure S2: Frequency distribution of land-use sizes in the Bay of Quinte watershed (N=73). The left 

panels depict observation frequency in normal scale, and the right panels represent the empirical 

distribution after the Box-Cox transformation.  



 

 

Figure S2 (continued) 

  



 

Figure S3: Relationships between annual net TP exports and different land-use areal fractions 

(lake, wetland, forest, urban land, pasture and cropland) in the 73 gauged subwatersheds.  
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Figure S4: Data clustering by SOM. Numbers lower than 300 indicate 73 gauged subwatershed IDs represented in Table S2. Subwatersheds in 

which the ID numbers are greater than 300 refer to 137 ungauged subwatershed IDs. 



Table S1: Catchment size and mean flow rates based on 48 monitoring stations in the Bay of Quinte watershed. 

Station ID Latitude Longitude N of years Watershed 
Catchment 

(km2) 

Mean 

(m3 s-1) 
CV (%) 

02HF002 44.73 -78.82 48 Trent River 1281.6 19.6 21.6 

02HF003 44.71 -78.68 48 Trent River 1251.9 18.5 22.4 

02HF004 44.93 -78.79 16 Trent River 18.3 0.2 20.8 

02HG001 44.29 -78.84 23 Trent River 184.9 1.7 25.0 

02HG002 44.09 -79.01 18 Trent River 41.7 0.3 29.7 

02HG003 44.13 -78.83 3 Trent River 33.9 0.3 52.8 

02HH001 44.64 -78.14 25 Trent River 254.2 3.6 20.8 

02HH002 44.68 -78.35 21 Trent River 306.5 4.4 19.5 

02HH003 44.12 -78.70 6 Trent River 30.4 0.3 18.4 

02HJ001 44.30 -78.32 48 Trent River 115.8 1.1 27.5 

02HJ002 44.42 -78.28 28 Trent River 7336.4 85.1 20.4 

02HJ003 44.30 -78.04 34 Trent River 282.7 2.9 24.3 

02HJ005 44.12 -78.39 7 Trent River 10.4 0.1 15.7 

02HJ006 44.31 -78.37 4 Trent River 106.7 1.2 50.2 

02HJ007 44.15 -78.45 4 Trent River 45.5 0.6 15.3 

02HK002 44.37 -77.77 54 Trent River 9146.3 94.4 25.5 

02HK003 44.48 -77.68 51 Trent River 1930 23.7 24.8 

02HK004 44.26 -77.60 31 Trent River 12005.4 143.2 24.1 

02HK005 44.84 -77.93 34 Trent River 440.5 6.5 19.5 

02HK006 44.54 -77.70 32 Trent River 551.8 7.4 20.3 

02HK007 44.13 -77.79 28 Trent River 161.9 2.0 16.8 

02HK008 44.34 -77.48 17 Trent River 92.9 1.1 20.5 

02HK009 44.20 -77.91 21 Trent River 83.2 0.9 18.2 

02HK010 44.12 -77.59 4 Trent River 12532.2 125.2 15.3 

02HK011 44.11 -77.61 17 Trent River 33.1 0.4 27.4 

02HK014 44.17 -77.59 1 Trent River 12499 166.7 N/A 

02HK015 44.20 -77.82 3 Trent River 78.8 1.1 31.2 

02HK016 44.30 -77.83 4 Trent River 33 0.4 35.2 

02HK017 44.33 -77.63 3 Trent River 111.9 1.3 46.3 

02HL001 44.25 -77.42 95 Moira River 2602.9 30.5 25.8 

02HL003 44.54 -77.37 55 Moira River 430 5.2 24.8 

02HL004 44.55 -77.33 53 Moira River 679.4 8.4 23.4 

02HL005 44.50 -77.62 45 Moira River 297.8 3.8 22.1 

02HL007 44.49 -77.32 8 Moira River 1767.7 21.1 25.7 

02HL008 44.50 -77.23 4 Moira River 306.3 4.1 33.0 

02HL101 44.49 -77.32 4 Moira River 1767.7 25.1 13.0 

02HL102 44.48 -77.22 6 Moira River 172.4 2.8 27.1 

02HL103 44.28 -77.33 14 Moira River 207.8 3.1 25.0 

02HL104 44.41 -77.31 1 Moira River 2198.1 25.3 N/A 

02HM001 44.28 -76.93 39 Napanee River 778.5 9.2 29.0 

02HM002 44.47 -76.76 54 Napanee River 178.4 2.0 21.1 

02HM007 44.33 -76.84 37 Napanee River 699.5 8.8 19.9 

02HM003 44.21 -77.21 52 Salmon River 906.7 10.8 24.4 

02HM010 44.49 -76.99 7 Salmon River 533.6 7.1 20.8 



Station ID Latitude Longitude N of years Watershed 
Catchment 

(km2) 

Mean 

(m3 s-1) 
CV (%) 

02HE003 44.09 -77.21 7 Demorestville Creek 32.9 0.4 9.9 

02HM004 44.24 -76.85 45 Wilton Creek 104.4 1.5 22.8 

02HM006 44.23 -76.76 40 Millhaven Creek 144.2 2.0 22.2 

02HM011 44.41 -76.59 4 Millhaven Creek 57.7 0.7 39.4 



Table S2: Areal extent of different land-use based on 73 gauged subwatersheds in the Bay of Quinte watershed 

Station ID ID Unit Lake 
Crop 

land 

Urban 

land 

Conifer 

forest 

Deciduous 

forest 
Pasture Alvar Bog Fen Swamp Marsh Logging Mining 

06018000402 4 
 

0.06 2.19 0.91 0.51 2.18 3.03 0.93 
 

0.03 0.25 0.07 
  

06018000502 5 
 

15.55 32.54 
 

7.89 38.90 20.03 2.26 
 

0.99 3.22 1.54 
  

17002601902 7 
 

8.78 12.76 
 

113.76 108.01 7.59 
 

1.18 
 

23.97 
 

0.86 
 

17002602102 9 
 

0.01 28.22 
 

5.50 7.23 3.97 
  

0.07 5.97 0.84 
  

17002602202 10 
  

2.54 
 

1.21 3.56 0.22 
   

0.11 
   

17003500102 12 
 

1.15 12.18 3.53 0.54 2.02 5.62 0.57 
  

0.05 0.06 
 

0.25 

17003500202 13 
 

0.36 15.66 
 

3.21 11.88 10.22 5.79 
 

0.06 1.77 
  

1.33 

17003500402 15 
 

68.59 100.92 
 

96.21 306.29 70.14 10.15 3.27 7.85 49.15 9.60 
 

6.04 

17003700302 18 
 

0.33 38.82 
 

10.59 22.06 25.64 4.81 
 

0.16 0.99 0.10 
 

0.93 

17000900102 20 
  

1.80 
 

0.02 
 

0.29 
   

0.02 
   

17002113802 21 
 

3.13 
  

34.28 37.09 0.01 
 

1.57 
    

3.43 

17002113902 22 
 

14.46 
  

41.32 29.03 
  

1.64 
   

0.05 4.50 

17000800102 32 
  

0.25 
 

0.44 0.64 0.39 0.20 
  

0.10 
   

17000800202 33 
  

1.93 
 

0.10 0.28 0.46 0.13 
  

0.33 
   

17001400102 34 km2 1.58 3.91 
 

1.38 7.60 10.53 2.91 
 

0.05 4.72 0.22 
  

17002100302 36 
 

58.60 24.28 1.57 261.50 300.22 24.33 
 

8.31 1.52 56.06 
 

13.95 9.72 

17002100602 39 
 

0.11 21.00 
 

6.73 6.16 11.60 
   

6.27 
   

17002100702 40 
 

0.18 11.71 
 

27.08 21.78 6.72 
  

2.85 22.15 
  

0.33 

17002100802 41 
 

1.84 115.64 2.21 16.52 28.05 45.37 
   

21.88 
  

0.01 

17002101302 47 
 

0.64 8.48 
 

1.91 2.45 4.07 
   

0.66 
   

17002101602 50 
 

80.83 9.06 6.98 274.79 228.48 9.03 
 

12.60 0.71 15.98 
 

1.79 9.60 

17002101702 51 
 

28.39 5.65 
 

71.42 68.37 4.09 
 

2.62 
 

10.34 
  

39.06 

17002101802 52 
 

141.82 131.98 0.42 281.14 231.80 69.33 
 

13.77 0.73 33.87 4.95 
 

0.41 

17002102102 55 
 

49.14 167.70 
 

88.57 57.83 115.22 
  

1.63 29.18 3.46 
  

17002102302 57 
 

14.31 41.05 
 

19.72 15.08 26.36 
   

8.62 0.52 
 

0.40 

17002102502 59 
 

216.86 7.19 8.81 358.37 699.13 25.01 
 

18.53 1.12 3.44 0.08 9.71 3.24 

17002103802 72 
 

0.04 51.12 4.43 11.96 15.83 18.15 
  

0.71 13.65 
  

0.07 

17002104102 75 
 

1.54 26.06 8.18 0.91 4.74 15.53 
   

0.71 
   

17002105202 85 
 

32.48 0.58 0.32 83.31 68.17 0.58 
 

2.26 
 

7.38 
  

4.13 

17002105402 87 
 

62.23 68.66 0.05 195.65 112.04 55.28 15.72 2.65 
 

21.06 0.57 
 

0.04 

17002105702 90 
 

13.06 50.43 0.32 24.37 20.89 27.21 
   

17.75 0.25 
  

17002106502 98 
 

5.10 46.94 
 

26.99 20.77 27.34 
  

2.06 16.88 1.04 
 

0.75 



Station ID ID Unit Lake 
Crop 

land 

Urban 

land 

Conifer 

forest 

Deciduous 

forest 
Pasture Alvar Bog Fen Swamp Marsh Logging Mining 

17002106602 99 
  

7.56 
 

0.96 1.00 2.29 
   

0.75 
   

17002106702 100 
 

97.05 139.59 0.49 33.20 47.42 57.10 
   

27.69 7.29 
 

1.10 

17002107002 102 
 

1.96 43.56 9.81 11.73 14.37 23.69 
   

9.55 
  

0.24 

17002107402 105 
 

3.68 110.97 
 

50.56 53.84 43.55 
  

0.07 12.63 0.30 
 

1.62 

17002107502 106 
 

130.98 0.82 10.47 485.81 542.35 22.72 
 

25.85 
 

0.59 
 

10.82 8.65 

17002107702 108 
 

0.01 13.35 
 

10.21 12.49 4.29 
   

0.60 
   

17002109202 123 km2 19.30 0.23 0.38 61.43 58.65 1.40 
 

4.08 0.11 9.98 
  

18.15 

17002109502 125 
 

45.95 3.29 
 

196.16 278.31 5.49 
 

2.57 
 

16.37 
 

2.70 1.08 

17002111802 147 
 

17.64 377.48 1.53 92.71 150.35 99.48 2.10 
 

10.27 84.53 8.19 
 

0.65 

17002111902 148 
  

109.69 
 

10.87 26.18 38.33 
   

5.05 0.02 
 

0.21 

17002112002 149 
 

0.01 5.33 
 

2.09 0.77 2.49 
   

1.65 
   

17002113002 156 
 

70.09 229.85 3.10 63.57 78.20 86.05 
  

0.25 40.42 8.18 
 

1.17 

17002600202 158 
 

6.89 141.66 0.01 120.11 121.07 55.43 1.69 
 

0.94 67.70 0.04 
 

0.64 

17002600402 160 
 

7.59 7.28 0.30 10.88 15.50 1.80 
   

6.93 0.31 
 

8.34 

17002600602 162 
 

1.65 15.02 0.35 23.69 15.91 6.23 
  

0.86 12.44 0.23 
  

17002600702 163 
 

13.13 9.43 
 

122.66 101.84 14.69 
 

3.34 0.29 29.86 1.57 0.78 24.35 

17002600902 165 
 

54.75 2.18 
 

325.90 211.62 6.47 
 

19.84 2.88 9.73 0.02 6.06 39.91 

17002601002 166 
 

21.84 6.52 
 

212.01 132.31 9.37 
 

9.89 
 

17.63 
 

0.04 20.35 

17002601101 167 
 

6.06 9.40 0.17 33.80 67.37 13.99 0.87 
 

1.56 27.25 
  

2.44 

17002601202 168 
 

0.57 11.94 0.77 10.71 30.82 15.04 
  

0.07 4.94 
   

17002601302 169 
 

0.47 1.32 
 

2.72 12.03 1.51 
   

2.84 
   

17002113102 173 
 

0.03 2.61 
 

0.92 0.97 1.33 
   

0.14 
   

17002113202 174 
  

24.24 
 

22.78 20.21 11.95 
   

3.98 
   

17002113302 175 
 

0.72 74.90 
 

28.15 28.79 17.62 
   

11.76 
   

17002602302 176 
 

7.01 5.89 0.68 8.19 16.05 5.76 
  

0.01 4.75 
  

0.23 

17002113602 177 
 

0.29 93.44 
 

28.26 27.09 27.15 
  

0.15 10.49 0.19 
 

0.78 

17002113702 178 
  

18.90 
 

4.71 4.47 4.95 
   

0.81 
  

0.01 

17002114102 179 
 

2.19 37.32 
 

36.33 22.69 33.99 
  

0.45 14.65 
  

0.00 

17002114202 180 
 

0.69 27.95 
 

29.46 18.46 26.56 
  

0.08 14.85 
  

0.32 

17002114302 181 
 

0.02 22.63 
 

7.04 4.86 9.41 
   

5.02 
   

17002114402 182 
 

0.37 2.93 12.34 0.39 0.61 0.46 
   

0.43 
  

0.02 

17002114002 183 
 

0.10 72.46 
 

25.86 28.93 22.03 
  

0.04 5.68 
  

0.20 

17002114502 184 
 

59.98 
 

5.70 123.97 235.29 
  

6.50 
   

12.31 0.56 

17000600102 186 
 

0.01 2.84 
 

0.03 0.99 0.41 
    

0.66 
  



Station ID ID Unit Lake 
Crop 

land 

Urban 

land 

Conifer 

forest 

Deciduous 

forest 
Pasture Alvar Bog Fen Swamp Marsh Logging Mining 

17001600102 187 
 

0.96 12.11 
 

6.15 5.44 11.52 6.39 
  

10.75 1.21 
  

17002106802 190 
 

7.11 109.92 7.23 44.82 61.44 24.63 0.16 
 

0.97 25.77 0.35 
  

17002112802 192 km2 0.23 10.16 0.45 4.20 6.09 2.51 
   

1.41 
   

17002112902 193 
 

0.07 4.56 
 

2.72 3.57 1.25 
   

0.69 
   

17002600102 194 
 

0.26 7.59 9.55 0.57 0.81 0.98 
   

1.52 
   

17003100102 230   52.02 77.47 0.58 311.46 215.59 69.76 34.93 17.49 4.54 50.01 2.53 6.20 67.48 
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