
Ecological Informatics 37 (2017) 77–91

Contents lists available at ScienceDirect

Ecological Informatics

j ourna l homepage: www.e lsev ie r .com/ locate /eco l in f
A Bayesian approach for estimating phosphorus export and delivery rates
with the SPAtially Referenced Regression On Watershed attributes
(SPARROW) model
Dong-Kyun Kim a, Samarth Kaluskar a, Shan Mugalingam b, Agnes Blukacz-Richards c, Tanya Long d,
Andrew Morley e, George B. Arhonditsis a,⁎
a Ecological Modelling Laboratory, Department of Physical & Environmental Sciences, University of Toronto, Toronto, Ontario M1C1A4, Canada
b Lower Trent Conservation, Trenton, Ontario K8V 5P4, Canada
c Environment Canada & Climate Change, 867 Lakeshore Road, Burlington, Ontario L7R 4A6, Canada
d Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment & Climate Change, Toronto, Ontario M9P 3V6, Canada
e Kingston Regional Office, Ontario Ministry of the Environment & Climate Change, Kingston, Ontario K7M 8S5, Canada
⁎ Corresponding author.
E-mail address: georgea@utsc.utoronto.ca (G.B. Arhon

http://dx.doi.org/10.1016/j.ecoinf.2016.12.003
1574-9541/© 2016 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 5 May 2016
Received in revised form 12 December 2016
Accepted 14 December 2016
Available online 16 December 2016
The SPAtially Referenced Regression OnWatershed attributes (SPARROW) model is used to predict total phos-
phorus (TP) export and delivery rates from different subcatchments in the Bay of Quinte watershed. Bayesian in-
ference techniques were used to account for the uncertainty associated with the existing knowledge from the
system as well as the sampling/analytical error of the calibration data. Our analysis suggests that urban areas
are characterized by a fairly high areal phosphorus export with an approximate mean estimate of 120 kg of TP
per km2 on an annual basis. The contribution of phosphorus from agricultural land can vary considerably
among the various crop types (30–127 TP kg per km2), but is generally lower than the impact of urban areas.
Crop-specific (oat, wheat, corn, alfalfa, and fallow) export coefficient valueswere generally onparwith those typ-
ically reported in the literature. Our analysis also suggests that the attenuation rate in low flow streams (3.7% of
TP per kilometer) is distinctly greater than in those with high flow (1.1% of TP per kilometer). Using posterior
simulations, we obtained TP loading estimates from ungauged subwatersheds in the area that were twice as
high relative to values historically used. The predictive uncertainty of phosphorus export from different sub-ba-
sinswas also used to delineate “hot-spots” in the Bay of Quintewatershed thatmay be responsible for significant
nutrient fluxes, due to their landscape attributes and soil characteristics. Our predictions can be used as pointers
formaximizing the value of information of additional monitoring by determining locations where data collection
efforts should focus on. The key findings of the present modelling study will be ultimately linked with process-
basedmodels developed for the receiving waterbody to shed light on the causal connections among phosphorus
loading, sediment-water column interactions, and plankton community response.
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1. Introduction

One of the emerging imperatives of eutrophication management is
the advancement of our understanding of the relationships among
land-use activities, hydrological processes, and water quality (Wellen
et al., 2015). The profound implications of excessive nutrient enrich-
ment for the functioning of the receiving waterbodies highlight the im-
portance of obtaining robust non-point source nutrient load estimates
and rigorously examining optimization scenarios of the agricultural
cycle (tilling, planting, fertilization, irrigation, pesticide application,
ditsis).
harvesting, grazing) and associated management practices (buffer
strips, contour tillage, tile drainage, grassed waterways). Watershed
modelling is considered a useful analysis tool to quantify exogenous
phosphorus loading associated with watershed attributes, including
land uses and morphological characteristics (Singh and Frevert, 2006).
Many sophisticated watershed models—the Hydrological Simulation
Program Fortran (HSPF, Bicknell et al., 1996), Dynamic Watershed
Simulation Model (DWSM, Borah et al., 2002), and Soil and Water
Assessment Tool (SWAT, Arnold et al., 1998)—have been used to simu-
late fate and transport of a variety of pollutants at different spatiotem-
poral scales. Generally, HSPF is promising for long-term, continuous
simulations, while DWSM is better at reproducing short-term, episodic
precipitation events (Borah et al., 2002). SWAT is a physically process-
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basedmodel with detailed crop growth andmanagementmodules, and
as such it is suitable for projecting the long-term impact of land-use
management and climate change (Neitsch et al., 2011; Wellen et al.,
2014a, 2014b). Thesemodels have an established capacity to reproduce
hydrology, nutrient delivery and in-stream routing, but are often overly
complex and data demanding to be applied in any but the most inten-
sively monitored catchments (Cohn et al., 1989; Runkel et al., 2004).

As a pragmatic alternative to complex mechanistic models, simple
empirical watershed models have been developed at large scales,
where a priori knowledge about the dominant biogeochemical process
ratesmay not be available (Alexander et al., 2004). These simplemodel-
ling constructs can offer first approximations of annual estimates of nu-
trient loads, yields, and deliveries at landscape and regional scales. A
characteristic example of the latter strategy is the SPAtially Referenced
Regressions onWatershed attributes (SPARROW); a statistically param-
eterized non-linear model with contaminant supply and process com-
ponents, including non-conservative transport, mass-balance
constraints, and surficial flow paths defined by topography, streams,
and reservoirs (Smith et al., 1997). SPARROW effectively dissects the
watershed functioning into three major processes: (i) pollutant export
from different land uses, (ii) land-to-stream delivery of pollutants, and
(iii) attenuation and loss in streams and lakes (Schwarz et al., 2006).
In terms of scalability, the SPARROW model has been applied to both
small- and large-scale watersheds (Alexander et al., 2002; Alexander
et al., 2004; Hantush, 2005). Watersheds are first divided into
subwatersheds, each of which drains to a water quality monitoring sta-
tion. Each subwatershed is then disaggregated into reach catchments
drained by a particular stream segment and the attributes of each
reach catchment are used as predictor variables of in-stream water
quality. Maximum likelihood and bootstrapping methods have been
used to obtain SPARROW parameter estimates and associated standard
errors (Alexander et al., 2002; McMahon et al., 2003; Robertson and
Saad, 2011). Nonetheless, despite their sound conceptual foundation
and structural simplicity, there is still considerable uncertainty, knowl-
edge gaps, and inherent limitations with SPARROW applications (Qian
et al., 2005). In this regard, the implementation of Bayesian inference
techniques can be advantageous in characterizing the spatial structure
of SPARROW model residuals due to autocorrelated forcing factors,
e.g., climate and soils, and year-to-year variability (Qian et al., 2005;
Wellen et al., 2012).

Along the same line of reasoning, Wellen et al. (2014a) focused on
addressing three fairly core issues of the SPARROW modelling practice,
such as: (i) the use of prior knowledge on parameter values in assisting
model calibration; (ii) the error/uncertainty associated with model cal-
ibration data; and (iii) the implications of the covariance of model pa-
rameters on the inference drawn and the prediction patterns derived.
Regarding the former issue, the Bayesian techniques confer a major ad-
vantage through their capacity to restrict model parameters to realistic
ranges based on information either from available data or existing
knowledge (Wellen et al., 2014a). Evidence about the covariance prob-
lem was provided by Qian et al. (2005), who showed that three of the
SPARROWparameters were highly correlated and concentrated around
a narrow “banana-shaped” region of the examined parameter space.
The questionable quality of the calibration datasets alongwith the chal-
lenges to support predictions in areas that have modestly been moni-
tored is another topic not heavily addressed in the literature. Both are
issues of great practical importance, given that most watersheds of
management interest are understudied and existing mean annual load
estimates are often obtained by rating curves that are characterized by
substantial uncertainty (Cohn et al., 1989; Cohn et al., 1992;
Alexander et al., 2002; Alexander et al., 2004; Moatar and Meybeck,
2005). In this context,Wellen et al. (2014a) developed a series of statis-
tical (measurement error) formulations that explicitly considered the
analytic uncertainty, sampling error, inter-annual variability as well as
the uncertainties stemming from the use of non-contemporaneous
measurements of flow and concentration in several stream reaches.
Building upon thesemethodological advancements, the broader ob-
jective of the present study is to advance our understanding of how ag-
ricultural and urban sites cycle nutrients and contaminants in the Bay of
Quinte watershed, Ontario Canada. The Bay of Quinte is an embayment
at the northeastern end of Lake Ontario with a long history of eutrophi-
cation, characterized by frequent and spatially extensive algal blooms,
and predominance of toxic cyanobacteria (Nicholls et al., 2002;
Shimoda et al., 2016). Our intent is to evaluate the accuracy of the cur-
rent nutrient loading estimates, quantify their uncertainty, and identify
hot spots of nutrient export in the watershed. Through the SPARROW
parameter estimation, ourmodellingwork aims to provide critical plan-
ning information, somanagement decisions related to the Bay of Quinte
can be better guided. Our modelling exercise offers estimates of export
coefficients and delivery rates from different subcatchments and thus
can be used to formulate (and subsequently validate) hypotheses re-
garding the “hot spots” of the Bay of Quinte watershed. Thus, the novel-
ty of our study lies not only in the implementation of Bayesian inference
techniques to derive rigorous nutrient loading estimates, but also in the
use of model uncertainty patterns to facilitate watershed management.
The key findings of the present modelling study will be ultimately
linked with the process-based models developed for the receiving
waterbody to elucidate the causal connections among phosphorus load-
ing, sediment-water column interactions, and plankton community re-
sponse. Empirical evidence and model predictions suggest that the
interplay between inflowing nutrient loads and circulation patterns
shapes the local biogeochemical processes, thereby modulating the se-
verity of eutrophication phenomena in the system (Arhonditsis et al.,
2016; Shimoda et al., 2016).

2. Method

2.1. Site description

The Bay of Quinte is a long and narrow Z-shaped embayment located
at the northeastern shore of Lake Ontario (Fig. 1). The catchment area is
approximately 18,604 km2. The Bay of Quinte watershed is geographi-
cally characterized by the Canadian Shield (or Precambrian Shield) in
the upper basin and non-Canadian Shield (or Paleozoic limestone) in
the lower basin (Minns et al., 1986). The major tributaries along the
north shore of the bay are the Trent River draining 12,600 km2, the
Moira River draining 2700 km2, and the Salmon and Napanee Rivers to-
gether draining 1660 km2. Trent River has a well-developed waterway,
which is about 390 km long and connects Lake Ontario to Georgian Bay
(Fig. 1). Given the waterway's hydrological operation, the flow regimes
prevailing in Trent River are significantly different from those in the rest
tributaries. Using Self-Organizing Map analysis, Kim et al. (2016) delin-
eated six spatial clusters in the Bay of Quinte watershed, representing
one forested, two agricultural, one urban, one pasture-dominated, and
one transitional area. The upper basin is predominantly occupied by
pristine forested areas and demonstrates lower TP riverine levels,
whereas the land uses in the lower basin are associated with anthropo-
genic activities and consequently characterized by higher TP concentra-
tions (Kim et al., 2016). Urbanized catchments near the Bay of Quinte
include several large cities and towns, such as Peterborough (popula-
tion ≈ 120,000), Trenton (≈20,000) and Belleville (≈92,000). There
are also 26 sewage-treatment plants (STP)within the Bay of Quintewa-
tershed, mainly located close to the urban development. The same loca-
tions show more dynamic flow patterns with significant within- and
among-year variability and stronger relationship with precipitation.
This “flashy” behaviour of urban sites is accompanied by a relatively
high net TP export and yield (Kim et al., 2016). Tributaries draining ag-
ricultural catchments (e.g., wheat, oat, corn, soybean, and alfalfa) exhib-
it considerable variability, depending onmanagement practices and soil
properties. In particular, Kim et al. (2016) showed that soil hydraulic
conductivity could significantly modulate phosphorus land-to-stream
delivery, and thus determine phosphorus export from agricultural



Fig. 1.Map of the Bay of Quintewatershed; the red circles indicate 73 PWQMN stations (TP concentrations) and the green triangles represent 48WSC stations (flow rates). The delineated
areaswith solid lines depict 210 subwatershed catchments. The grey-colored areas (at the bottompanel) represent the ungauged areas. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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areas. Pasture-based grazing systems similarly appear to play a major
role in determining the fate and transport of phosphorus in the area
(Kim et al., 2016).
2.2. Data compilation and GIS analysis

To calculate the TP loads, we compiled TP concentrations measured
at 73 stations of Provincial Water Quality Monitoring Network
(PWQMN) from2002 to 2010.Wealso collected flow rate data recorded
at 48 stations of theWater Survey of Canada over the same time period
(Fig. 1). Because of themismatch between flow andwater qualitymon-
itoring locations, we developed a flow-catchment area regression
model (r2 N 0.99, Fig. S1) to project annual flow rates at the 73
PWQMN stations. There are many methods to calculating annual con-
stituent loads when using non-continuous concentration records, but
less so for non-contemporaneous records of concentration and flow.
Moatar and Meybeck (2005) compared the accuracy and precision of
a number of different approaches to calculate annual phosphorus
loads and recommended the use of the product of means of sampled
concentrations and annual discharge, similar to the approach adopted
herein. Thus, mean annual TP load were expressed as follows:

ln TP Loadið Þ ¼ ln Flowið Þ þ ln TPið Þ

where ln(TP Loadi) refers to mean annual TP load in the logarithmic
scale at station i; ln(TPi) and ln(Flowi) represent mean annual TP con-
centrations and flow rates in logarithmic scale. Thus, mean annual TP
loads on the 73 PWQMN stations could be estimated alongwith the cor-
responding standard deviation values (i.e., depicting the year-to-year
loading variability). Thismethod postulates that flow and concentration
are independent and thus may result in an underestimation of annual
loads (Preston et al., 1989). In this particular study, there is a moderate
bias introduced as the correlation coefficients between contemporane-
ous measurements of flow and concentration ranged from 0.03 to
0.85, with a median of 0.41.

Point source loading estimates were based on 26 sewage treatment
plants (STPs) and four sites of the OntarioMinistry of the Environment's
Municipal/Industrial Strategy for Abatement (MISA) during the 1998 to
2010 period. The quantification of mean annual, point source TP loads
from unserviced area was based on the assumption that TP export pre-
dominantly involves septic-tank overflows, which are readily
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influenced by heavy rainfall. For this reason, we estimated the number
of the septic tanks based on population density, assuming that 2.5 peo-
ple per household share one communal septic tank (Statistics Canada,
http://www.statcan.gc.ca). Regarding the estimation of non-point
source TP loads, we used the maps for the areal extent of specific land
uses and morphological characteristics (Land Information Ontario of
the Ontario Ministry of Natural Resources, http://www.ontario.ca/
environment-and-energy/land-information-ontario). In particular for
the agricultural land use, we specified the areal extent of combinations
of cropland types (e.g.,wheat, oat, corn, alfalfa, and fallow) andmanage-
ment practices (e.g., no tillage, conventional or intensive tillage, and
conservation tillage) at the township dissemination level (OntarioMin-
istry of Agriculture and Food, http://www.omafra.gov.on.ca). A stream-
line of the Bay of Quinte watershed was extracted based on a 7.2-m
digital-elevation model (DEM) of Ontario created by Natural Resource
Canada (NRC). Other geographical calculations (e.g., stream lengths,
drainage/subwatershed areas, lake surface areas, areal extent of the
above crops and management practices) were conducted using Geo-
graphical Information Systems (GIS). With reference to calculating the
areal extent of the crops and applied management practices, we had
to estimate this extent using fractional coverage (due to limited infor-
mation) of the crops and management practices within the
subwatersheds. Each subwatershed was determined based on 73
PWQMN sites and 137 small residual drainage areas. Consequently,
the former group is regarded as gauged watersheds, while the latter
one as ungauged watersheds.

2.3. SPARROW model configuration

SPARROW is a parsimonious hybrid empirical/process-based model
to estimate nutrient loads, yields, and deliveries at landscape and re-
gional scales. The statistical basis for calibrating SPARROWmodels pro-
vides an objectivemeans of empirically estimating the relation between
in-stream measurements of nutrient fluxes and the sources/losses of
nutrients within the watershed (Smith et al., 1997). In-stream nutrient
fluxes aremodelled as a non-linear function of nutrient sources (includ-
ing point sources, atmospheric deposition, and agricultural and devel-
oped land use), land-delivery processes, and in-stream nutrient
processing (McMahon et al., 2003). To implement the SPARROW
model, the Bay of Quinte watershed was first divided into
subwatersheds, each of which drains either to awater-quality-monitor-
ing station or to a river/streammouth. Second, each subwatershed was
disaggregated into reach-specific catchments that drain to a particular
stream segment (McMahon et al., 2003). We therefore created a total
of 210 subwatersheds that consisted of 73 gauged and 137 ungauged
ones, and used 3738 reach-specific catchments in total (Fig. 1). The
governing SPARROW equation can be expressed as follows:

ln Loadið Þ ¼ ln
XN
n¼1

XJi
j¼1

βnSn; je
−αZ jð ÞHS

i; jH
R
i; j

8<
:

9=
;

2
4

3
5εi

where the subscripts i and j refer to subwatersheds and reach catch-
ments, respectively; ln(Loadi) refers to the mean annual TP load in the
logarithmic scale, measured at station i in metric tons per year1; N is
the total number of sources (diffuse and point sources) and n is an
index for each source; Ji refers to the number of reaches in
subwatershed i; βn refers to the estimated TP export coefficient for
source n; Sn,j refers to the quantity of source n in reach j, and therefore
the product βnSn has units of metric tons per year. The parameter α re-
fers to the vector of land to water-delivery coefficients, and Zj is a vector
of the land-surface characteristics associated with drainage to reach j.
Hi , j
S represents the fraction of TP mass originating in reach j remaining
1 The same notation i is used for both stations and subwatersheds, because each
subwatershed has one station in its outlet.
at station i as a function of first-order loss processes in streams; Hi ,j
R re-

fers to the fraction of TPmass originating in reach j remaining at station i
as a function of first order loss processes in lakes and reservoirs; and εi
refers to a random multiplicative error term assumed to be indepen-
dently and identically distributed across all subwatersheds.

First-order loss processes in streams include loss to sediments and
biota, and are expressed as:

HS
i; j ¼ exp −KsLi; j

� �
where Ks refers to the first-order loss coefficient for streams (km−1),
and Li,j refers to the stream length in kilometers between reach j and sta-
tion i. First-order loss processes operating in lakes and reservoirs are
limited to loss to sediment, which is expressed as

HR
i; j ¼ ∏

l
exp −Krq−1

l

� �

where l refers to any lakes or reservoirs between reach j and station i; Kr

refers to thefirst-order loss coefficient or settling velocity (myear−1); ql
refers to the areal hydraulic loading of the lake/reservoir (m year−1).

We first examined which watershed characteristic (e.g., wetland
coverage, slope of landscape, soil hydraulic conductivity, and soil bulk
density) was the most closely associated with land-to-stream delivery
of TP export. This exploratory analysis showed that the vertical hydrau-
lic conductivity was the optimal surrogate variable to characterize Zj in
the Bay of Quinte watershed (Kim et al., 2016). Following Kim et al.'s
(2016) SOM clustering, our watershed characterization was based on
the specification of TP export (βn) by forest, urban land, pasture and
cropland areas. As previously mentioned, we specified the cropland TP
export coefficients according to crop types, tillage applications (orman-
agement practices), and hydrological soil groups. In doing so, we were
able to obtain two SPARROWmodel configurations inwhichwe consid-
er one single crop type (β1) across all agricultural lands (Model I), and
five crop types forwheat (γ1), oat (γ2), corn (γ3), alfalfa (γ4), and fallow
land areas (γ5) (Model II). An additional feature of the second model
was the explicit consideration of in-stream attenuation rates in low-
and high-flow streams, using the flow level of 1 m3 s−1 as a cutoff
point (Alexander et al., 2002). In Model II, we also conducted post-hoc
simulations that aimed to examine the interplay among crop types, ag-
ricultural management practices, and soil characteristics. Specifically,
we expressed probabilistically forty five cropland TP export coefficients
associated with five crop types × three management practices × three
hydrological soil groups (refer to asModel III hereafter). The threeman-
agement practices considered were no tillage, surface tillage, and soil
tillage (Fig. S2). The hydrologic soil groups comprised three categories
of moderately well drained (B), imperfectly and poorly drained (C),
and very poorly drained (D) soil texture, as designated by Agriculture
and Agri-Food Canada (http://www.agr.gc.ca).

2.4. Bayesian estimation of SPARROW parameters

We used Bayesian inference to parameterize the SPARROW model,
while accommodating the uncertainty associated with model parame-
ters and structure as well as the sampling/analytical error of calibration
data (i.e., TP loading estimates). Regarding the latter type of error, our
data quality submodel stipulates that the log-transformed loadings are
random variables drawn from normal distributions with mean values
equal to the previously described estimates and variances representing
the associated error and/or temporal variability at each site (Wellen et
al., 2014a). Because this approach confounds temporal (year-to-year)
variability at a site with the uncertainty of the estimation of the mean
TP loads, we opted for the most conservative (largest) specification of
the uncertainty as provided by the following equation:

σ2
i ¼ Var ln TPið Þð Þ þ Var ln Flowið Þð Þ þ 2Cov ln TPið Þ; ln Flowið Þð Þ

http://www.statcan.gc.ca
http://www.ontario.ca/environment-and-energy/land-information-ontario
http://www.ontario.ca/environment-and-energy/land-information-ontario
http://www.omafra.gov.on.ca
http://www.agr.gc.ca


81D.-K. Kim et al. / Ecological Informatics 37 (2017) 77–91
where σi
2 refers to the variance of the log-transformed TP loading mea-

sured at station i, and Cov refers to covariance between TP concentra-
tions and flow rates. The statistical formulation used to parameterize
the two SPARROW configurations is expressed as follows (Wellen et
al., 2014a):

Yi � N μ i;σ
2
i

� �
μ i � N ln Loadið Þ; δ2

� �

ln Loadið Þ ¼ ln
XN
n¼1

XJi
j¼1

βnSn; je
−αZ jð ÞHS

i; jH
R
i; j

8<
:

9=
;

δ2 � IG 0:001;0:001ð Þ

where Yi denotes the log-transformed observed/measured TP loads at
station i, σi

2 is the pre-describedmeasurement errors, μi represents a la-
tent variablewhich can be referred to as the “true” loading values; δ2 the
is themodel structure uncertainty determined by a non-informative in-
verse gamma (IG) distributionwith shape and scale parameters equal to
0.001; and ln(Loadi) corresponds to the SPARROW output.

All the prior distributions for the SPARROW model parameters are
provided in Table 1, whichwere then updated with annual loading esti-
mates from the gauged watershed locations. We used non-informative
(flat) distribution to land-to-stream TP delivery coefficients (α), given
the absence of literature information on the plausible α ranges in rela-
tion to soil hydraulic conductivity. The prior distributions for the settling
rate in lakes/reservoirs (Kr) and streamattenuation rate (Ks)were based
on our previous research (Cheng et al., 2010; Wellen et al., 2014a). As-
suming that the lower and upper limits of TP export rates from each
of the land uses, as obtained from Beaulac and Reckhow (1982) and
Harmel et al. (2008), occupied 95% of the total range in a logarithmic
scale, we determined priors of TP export coefficients for cropland (β1),
forest (β2), pasture (β3), and urban land (β4). The prior of the septic-
tank coefficient (β5) was specified based on local empirical evidence.
Our post-hoc simulations were based on probability distributions
assigned to the TP export coefficients for each combination of the five
crop types, three management practices, and three hydrologic soil
groups as derived from the MANAGE database (Harmel et al., 2008;
see also Fig. S3). In case the sample size (N) for a particular export coef-
ficient was limited to two records, the coefficients were determined
under the assumption that those two values occupied 95% of the total
range (e.g., Corn-No tillage-C and Fallow land-Surface tillage-B in Fig.
S3). If there were no data for a particular combination, we used the γi

specification for the corresponding crop type as global probability
across all management practices and hydrological soil groups.

Bayesian inference was applied to estimate model parameters, be-
cause of its ability to include prior information in themodelling exercise
and to explicitly accommodate model structural and parametric uncer-
tainty (Gelman et al., 2004). Bayesian inference treats each parameter θ
Table 1
Prior parameter estimates for the two SPARROWmodel configurations.

Parameter Unit Model type

Delivery coefficient (α) h cm−1 I, II
TP export coeff. of cropland (β1) tons km−2 yr−1 I
TP export coeff. of forest (β2) tons km−2 yr−1 I, II
TP export coeff. of pasture (β3)
TP export coeff. of urban area (β4)
TP export coeff. of septic tank (β5) tons tank−1 yr−1

TP export coeff. of wheat area (γ1) tons km−2 yr−1 II
TP export coeff. of oat area (γ2)
TP export coeff. of corn area (γ3)
TP export coeff. of alfalfa area (γ4)
TP export coeff. of fallow land (γ5)
1st order settling rate in lakes (Kr) m yr−1 I, II
1st order attenuation rate for streams (Ks) km−1 I, II
as a randomvariable and uses the likelihood function to express the rel-
ative plausibility of obtaining different values of this parameter when
particular data have been observed.

P θjdatað Þ ¼ P θð Þ � P datajθð ÞZ
θ

P θð Þ � P datajθð Þdθ

whereby P(θ) denotes the prior probability distribution of parameter θ,
P(data |θ) represents the likelihood of data observation given the differ-
ent θ values, and P(θ |data) is the posterior probability that expresses
the update belief on the θ values, contingent upon the observed data.
The denominator of this equation is often called the “marginal distribu-
tion of observable data”, which acts as a scaling constant that normal-
izes the integral of the area under the posterior probability
distribution. Regarding Bayesian calibration of SPARROW model, we
used Markov chain Monte Carlo (MCMC) simulations to obtain se-
quences of realizations from the model posterior distribution. Specifi-
cally, we used the general normal proposal Metropolis algorithm as
implemented in the WinBUGS software (Lunn et al., 2000). This algo-
rithm is based on a symmetric normal proposal distribution, whose
standard deviation is adjusted over the first 4000 iterations such as
the acceptance rate ranges between 20% and 40%. We ran 30,000 itera-
tions from two chains of eachmodel configuration, using a thin of 10 to
control the serial correlation. Thefirst 5000 sampleswere discarded and
the posterior statistics were calculated with the remaining 5000 sam-
ples (=2 chains × [30,000 − 5000] / 10).

We evaluated the degree of change between prior and posterior pa-
rameters with the delta index; a metric of the distance between two
probability distributions given by the following mathematical formula
(Endres and Schindelin, 2003; Hong et al., 2005):

δθ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

P θð Þ log 2P θð Þ
P θð Þ þ P θjdatað Þ þ P θjdatað Þ log 2P θjdatað Þ

P θð Þ þ P θjdatað Þ
� �

dθ

s

where P(θ) and P(θ |data) represent the marginal prior and posterior
distributions of a given parameter θ, respectively. This metric is equal
to zero if there is no difference between the two distributions, and
has a known upper bound equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log2

p
, if there is no overlap be-

tween the two distributions. We subsequently standardized the
delta index (Δ, normalized delta index) to be expressed as a percent-
age relative to this maximum value. MCMC estimates of the mean
and standard deviation parameter values (i.e., TP export coefficients
from different land uses, land-to-water delivery coefficients, and at-
tenuation rates) along with the covariance structure were used to
update the model (Gelman et al., 2004). Under the assumption of a
Mean S.D. References

1 22,000 –
0.310 0.390 Beaulac and Reckhow (1982), Harmel et al. (2008)
0.006 0.043 Beaulac and Reckhow (1982), Harmel et al. (2008)
0.108 0.099
0.148 0.126
0.002 0.002 Unpublished data
0.111 0.056 Harmel et al. (2008)
0.139 0.039
0.162 0.167
0.053 0.025
0.073 0.041
12.84 4.76 Cheng et al. (2010)
0.04 0.17 Wellen et al. (2014a)
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multivariate normal distribution, the conditional distributions of the
raw (or log-transformed) parameter values are given by:

θ̂ij j ¼ θ̂i þ θ j−θ̂ j

h i
Σ−1

j Σi; j

Σij j ¼ Σi þ Σ j;iΣ
−1
j Σi; j j∈ iþ 1;…;nf g

where θ̂ij j and Σi | j correspond to the mean value and the dispersion
matrix of the parameter i conditional on the parameter vector j; the
values of the elements Σi, Σi , j, and Σj correspond to the variance

and covariance of the two subset of parameters; and θ̂i , θ̂ j, θj corre-
spond to the posterior mean and random values of the parameters i
and j, respectively. Our updated SPARROW constructs were then
used to draw predictions regarding the TP export and downstream
delivery rates from the ungauged subwatersheds. Finally, the post-
hoc model augmentation that examined the effects of different com-
binations of crop types, management practices, and soil hydrological
groups postulated conditional independence among the forty-five
export coefficients given the posterior structure of the rest parame-
ter vector. Relative to their literature-based prior specification, the
first- and second-order moments of the land-use export coefficients
for this exercise were proportionally changed based on the prior-to-
posterior updating patterns of the corresponding crop type-specific
(γ1–5) coefficients.

3. Results-discussion

3.1. SPARROW parameterization and watershed process characterization

Our SPARROW modelling exercise aims to gain insights into the
land-use export, land-to-stream delivery, lake/reservoir settling, and
in-stream attenuation of phosphorus in the Bay of Quinte watershed.
In this regard, we first compared the corresponding average posterior
values against empirical estimates from the literature and then exam-
ined to what extent these parameter posteriors vary among the two
model configurations (Table 2). In the SPARROW literature, the capacity
of watershed attributes to modulate land-to-stream delivery of phos-
phorus was more effectively depicted by the soil drainage index
(Alexander et al., 2002), soil hydrological groups (McMahon et al.,
2003; Wellen et al., 2014a), and wetland coverage (Wellen et al.,
2012). In the Bay of Quinte watershed, we found that the soil hydraulic
conductivity was the most sensitive variable and the derived land-to-
stream delivery coefficients (α) ranged from 0.172 to 0.197 h cm−1,
Table 2
Posterior estimates and interpretation of the SPARROWmodel parameters.

Parameter Unit Model type Me

Delivery coefficient (α) h cm−1 I 0.1
II 0.1

TP export coefficient of cropland (β1) tons km−2 yr−1 I 0.0
TP export coefficient from wheat areas (γ1) II 0.0
TP export coefficient from oat areas (γ2) 0.1
TP export coefficient from corn areas (γ3) 0.0
TP export coefficient from alfalfa areas (γ4) 0.0
TP export coefficient from fallow lands (γ5) 0.0
TP export coefficient of forest (β2) tons km−2 yr−1 I 0.0

II 0.0
TP export coefficient of pasture (β3) tons km−2 yr−1 I 0.0

II 0.0
TP export coefficient of urban area (β4) tons km−2 yr−1 I 0.1

II 0.1
TP export coefficient of septic tank (β5) tons tank−1 yr−1 I 0.0

II 0.0
1st order settling rate in lakes (Kr) m yr−1 I 2.9

II 4.9
1st order attenuation rate for streams (Ks) km−1 I 0.0
1st order attenuation rate for small streams (Ks1) II 0.0
1st order attenuation rate for large streams (Ks2) 0.0
indicating that it takes approximately 10–12 min for TP to be vertically
transmitted by 1 cm(Fig. 2). In a similarmanner, Smith et al. (1997) and
Alexander et al. (2004) applied soil permeability (cm h−1), using NRCS
State Soil Geographic data (STATSGO, U.S. Department of Agriculture,
1994; Schwarz and Alexander, 1995), and reported land-to-stream
phosphorus delivery estimates somewhat lower than ours, ranging be-
tween 0.026 and 0.073 h cm−1. On the other hand,Moore et al.'s (2004)
SPARROW application in New England streams found that none of the
variables used to test for phosphorus loss on the landscape (such as
soil permeability, percent wetland) were significant predictors of phos-
phorus loads at either 85- or 95% confidence levels, and thus assumed
that the land-delivery losses are factored into the source coefficients
for forested, agricultural and developed land areas. It is also interesting
to note that the mean soil hydraulic conductivity in the Bay of Quinte
watershed is distinctly lower (≈1.95 cm h−1; Kim et al., 2016) relative
to Moore et al. (2004), STATSGO-based soil permeability in New En-
gland streams (≈11.3 cm h−1).

Regarding the agricultural land-use (β1) coefficient, we found a pos-
terior estimate of 34 kg P km−2 yr−1whichwas significantly lower than
themean value of the prior distribution assigned (310 kg P km−2 yr−1)
from existing literature compilations (see Table 1, Beaulac and
Reckhow, 1982). Based on the same generic “agricultural land” charac-
terization, Alexander et al. (2004) reported an average TP export rate of
33 kg P km−2 yr−1 for the entire United States, but also demonstrated
that the Mississippi regional watersheds were characterized by nearly
four-fold rates (123 kg P km−2 yr−1). Moore et al. (2004) reported
that 108 (±26) kg of phosphorus are entering the river system in
New England for each square kilometer of agricultural land upstream
per year. In amore local comparison,Wellen et al. (2014a) found a sim-
ilar three-times highermean export rate (≈100 kg P km−2 yr−1) in the
Hamilton Harbour watershed relative to our estimate. Given that these
varying estimates collectively reflect the influence of several cropland
characteristics, such as crop types, management practices, and soil hy-
drological groups, the specification of TP export coefficients should be
more focused in order tomeaningfully assist themanagement decisions
in the Bay of Quinte watershed. In this regard, the posterior parameter-
ization ofModel II shows phosphorus export values that are on parwith
estimates derived from other agricultural watersheds in North America
(Table 2 and Fig. 2). Specifically, we found that areas occupied by oat
have the highest TP export coefficient (γ2, 127 kg P km−2 yr−1), follow-
ed by wheat (γ1, 76 kg P km−2 yr−1), fallow land (γ5, 72 kg P km−2-

yr−1), corn (γ3, 44 kg P km−2 yr−1), and alfalfa (γ4,
30 kg P km−2 yr−1). Moreover, reviewing the literature-based
an S.D. Interpretation

90 0.065 It takes approximately 11.5 min for TP to be transmitted for 1 cm.
72 0.063 It takes approximately 10 min for TP to be transmitted for 1 cm.
34 0.013 34 kg of TP per km2 are released from cropland on an annual basis.
76 0.032 76 kg of TP per km2 are released from wheat areas on an annual basis.
27 0.065 127 kg of TP per km2 are released from oat areas on an annual basis.
44 0.026 44 kg of TP per km2 are released from corn areas on an annual basis.
30 0.011 30 kg of TP per km2 are released from alfalfa areas on an annual basis.
72 0.038 72 kg of TP per km2 are released from fallow lands on an annual basis.
10 0.003 10 kg of TP per km2 are released from forests on an annual basis.
18 0.006 18 kg of TP per km2 are released from forests on an annual basis.
26 0.012 26 kg of TP per km2 are released from pasture on an annual basis.
40 0.020 40 kg of TP per km2 are released from pasture on an annual basis.
19 0.082 119 kg of TP per km2 are released from urban area on an annual basis.
26 0.087 126 kg of TP per km2 are released from urban area on an annual basis.
01 0.0004 1 kg of TP is released from septic tank on an annual basis.
01 0.001 1 kg of TP is released from septic tank on an annual basis.
52 1.332 TP settles with an average rate of 2.95 m per year in lakes.
80 1.551 TP settles with an average rate of 4.9 m per year in lakes.
02 0.004 0.2% of TP is attenuated per kilometer in streams.
37 0.022 3.7% of TP is attenuated per kilometer in small streams.
11 0.007 1.1% of TP is attenuated per kilometer in large streams.
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probability distributions assigned to different combinations of crop
types, management practices (no tillage, conservational and conven-
tional methods), and hydrological soil groups (B, C and D) (Table S1),
we note thatwheat, corn and fallow land displayed verywide TP export
ranges, varying between 22 and 248 kg P km−2 yr−1, 7–133 kg P km−2-

yr−1, and 28–3499 kg P km−2 yr−1, respectively. By contrast, alfalfa
(42–49 kg P km−2 yr−1) and oat areas (170–179 kg P km−2 yr−1)
were characterized by low TP export variability, primarily due to the
number and nature of the pertinent study sites registered in MANAGE
database. Nonetheless, while we cannot rule out the likelihood of bias
in some of the probability distributions used for our post-hoc simula-
tions (see following sections), we also note that the value of informa-
tion of the existing calibration dataset along with the uncertainties in
delineating the areal extent of specific crop type-management prac-
tice-hydrological soil group do not allow to meaningfully characterize
the corresponding forty five TP export coefficients in a statistical sense.

Regarding TP export rates pertaining to other land uses, the coeffi-
cients of forest (β2), pasture (β3), and urban areas (β4) varied among
the differentmodel configurations. The posteriormean values of β2 var-
ied between 10 and 18 kg P km−2 yr−1 between the two models (Fig.
2), andwere consistently higher than thepriormean (6kgP km−2 yr−1,
Table 1) derived by the values compiled from Beaulac and Reckhow
Fig. 2. Posterior distributions of SPARROW parameters: Model I (solid line) and Model II (dash
parameters assigned to small and large streams, as specified in Model II.
(1982). Moore et al.'s (2004) reported coefficients for forested lands in-
dicate that 13.4 (±3.8) kg of phosphorus enter the streams in New
England for each square kilometer of forested land upstream per year.
Our Model II's β2 posterior estimate (18 kg P km−2 yr−1, Table 2) was
very similar to the forest TP export (19 kg P km−2 yr−1) in Alexander
et al.'s (2004) US-wide SPARROW application. Regarding the pasture-
related (β3) coefficient, the mean posterior estimates ranged between
26 and 40 kg P km−2 yr−1 (Table 2 and Fig. 2), whereas the
corresponding prior was approximately two- to three-times higher
(108 kg P km−2 yr−1, Table 1). Even though there is limited research
on TP export from pasture lands, the existing empirical evidence sug-
gests fairly high export rates in Australian (450 kg P km−2 yr−1, Nash,
2002) and North-American (2340 kg P km−2 yr−1, Butler et al., 2006)
watersheds. On the other hand, Alexander et al. (2004) reported a β3 es-
timate of 120 kg P km−2 yr−1, which was significantly lower than the
values reported by Nash (2002) and Butler et al. (2006). With respect
to the pasture TP export rates, Cade-Menun et al. (2013) underscored
that the associated variability may stem from the grazing intensity
and precipitation/snowmelt. The same study reported that there were
no significant differences between cropland andpasture for TP in runoff,
but there were significant differences between specific nutrient forms,
with dissolved reactive phosphorus higher in runoff from cropland
ed line). In the stream attenuation rate panel, black and grey dashed lines correspond to



Fig. 2 (continued).
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and particulate phosphorus higher in runoff from pasture (Cade-Menun
et al., 2013). These results were interpreted as an evidence that there
are different sources and transfer mechanisms between pasture and
cropland. Pasture areas lack soil inversion and therefore the nutrients
deposited by animals in dung and urine accumulate at the soil surface,
which in turn makes them more susceptible to loss in runoff (Bourke
et al., 2009; Owens and Shipitalo, 2009). In the present study, the rela-
tively low β3 estimates are consistent with the results of a recent SOM
analysis which demonstrated three-times lower TP net export (or
yield) from pasture relative to cropland areas (Kim et al., 2016). In a
similar manner, an older TP export survey in Southern Ontario from
the early 1970s estimated a pasture TP export of 18.1 kg P km−2 yr−1

fromnon-igneous/sedimentary landswhichwas close to our β3 posteri-
or estimates (Dillon and Kirchner, 1975).

Concerning TP export from urban sites, β4 was highest
(119– 126 kg P km−2 yr−1) among all the land-use specific coefficients
(Table 2 and Fig. 2). This result seems to deviate from Beaulac and
Reckhow's review (1982) andMoore et al.'s (2004) New England SPAR-
ROW, in which the TP export coefficients were typically higher in crop-
lands than in urban areas due to higher nutrient subsidies. However,
Alexander et al. (2004) found three times higher TP export coefficients
(363 kg P km−2 yr−1) in urban than in agricultural lands across the en-
tire United States, and so did Wellen et al. (2014a) in the Hamilton
Harbour watershed. Thus, our analysis renders support to the
hypothesis that urban TP fluxes represent the most significant non-
point sources, in terms of areal export, in the Bay of Quinte watershed.
Lastly, our TP export posteriors from septic tanks (β5) were consistently
lower (≈1 kg P tank−1 yr−1) than other phosphorus sources (Table 2
and Fig. 2). Interestingly, Reckhow and Simpson (1980) presented sim-
ilar septic tank TP export of 1.0– 2.2 kg P tank−1 yr−1 (0.4–
0.9 kg P capita−1 yr−1). Thus, if we focus on the annual impact of TP ex-
port from septic tanks,we can infer that their total contributionmay not
be significant in the Bay of Quinte watershed. However, given that the
septic tank density is simply estimated using demographic data in
unserviced areas (e.g., cottage areas) which STPs do not cover, our anal-
ysis cannot capture the seasonal variability of the associated loading
resulting from the intense use of cottages in summer.

Regarding the TP settling rates in lakes/reservoirs within the Bay of
Quinte watershed, our posterior estimates differed significantly from
previous SPARROW studies. The two configurations provided evidence
of lake/reservoir settling rates (Kr), ranging between 2.95 and
4.98 m yr−1 (Table 2 and Fig. 2), which were substantially lower than
our literature-based prior value of 12.84 ± 4.76 m yr−1 (Table 1).
Given that Kr is estimated as a function of the areal hydraulic loading
of lakes/reservoirs, which in turn varies according to their morphomet-
ric characteristics (Brett and Benjamin, 2008), the considerable variabil-
ity of the reported Kr values in the SPARROW literature is not surprising.
For example, Alexander et al. (2004) reported a reservoir settling rate of
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14.3m yr−1 across the entire United States, whileMoore et al. (2004) Kr

estimate was 109 m yr−1 in the New England watershed. Likewise, the
SPARROW application in the Hamilton Harbour watershed (Wellen et
al., 2012, 2014a), provided higher posterior Kr estimates
(≈12– 13 m yr−1) than the present ones. By contrast, Robertson and
Saad (2011) work with the Laurentian Great Lakes watershed, resulted
in a Kr approximately equal to 4.83 m yr−1, which is very close to our
Model II's estimate (4.98 m yr−1).

In-steam attenuation rates (Ks) across our two SPARROWconfigura-
tions ranged between 0.2 and 3.7% per kilometer (Table 2 and Fig. 2).
Similar to our Kr findings, our mean Ks posteriors were significantly
lower than the prior value assigned. Characterization of in-stream at-
tenuation according to stream size (or class) is fairly common in the
SPARROW literature. Most notably, Alexander et al. (2002) estimated
a high attenuation rate of 43% km−1 within small streams in the
Waikato River basin in New Zealand, but calculated a negative attenua-
tion rate of−0.06% km−1 at large streams, indicative of phosphorus ex-
port/release in the latter locations. Wellen et al. (2012) similarly
estimated ≈13% and 3% TP loss rates per km−1 in small and large
streams of the Hamilton Harbour watershed, respectively. Consistent
with this pattern, the corresponding Ks values with our Model II were
3.7% and 1.1% km−1, respectively. Generally, both theoretical and em-
pirical work on stream ecology corroborates this inverse relationship
between stream attenuation and stream size (Stream Solute
Workshop, 1990; Alexander et al., 2000). Donner et al. (2004) also
showed that in-stream removal tends to be lower under conditions of
higher rainfall (or runoff) and vice versa. Along the same line of reason-
ing, Wellen et al. (2012) has demonstrated that stream attenuation co-
efficients are quite variable in time. Namely, the inter-annual variability
of the average discharge, a function of stream stage, can explain more
than half of the variability of SPARROW stream attenuation estimates
in higher-order streams.

The mechanisms that modulate the nutrient attenuation variability
across stream size are still debated in the literature. There are studies
generally referring to a tighter coupling of smaller streams with their
streambeds, whereby biological and chemical removal processes in
the sediments have greater access to the nutrients in the water column
(Alexander et al., 2004). The longer hydraulic residence time of smaller
streams allows these processes to operate for longer times. Recentwork
further suggests that stream stage explains the inter-annual variation of
nutrient attenuation at a particular site over time, implying that the cou-
pling between the streambed and water column changes from year-to-
year (Basu et al., 2011). Others argue that thewater column in headwa-
ter streams (with low flow, but high velocity due to steeper channel
slopes encountered in the headwater areas)will not have tight coupling
with the streambed. Even though the depth of water is relatively small,
the flow conditions are quite turbulent (steeper slope and resultant
high velocity), thereby making streambed erosion more likely rather
than sediment settling. However, when the stream reaches the flatter
downstreamportion (close to the outflowpoint), theflowgets to be sig-
nificantly high, but the velocity becomes relatively small due to flatter
channel slope and larger flow section, i.e., larger depth of water and
width of channel. The relatively quiescent conditions would be expect-
ed to enhance the sedimentation process.We believe that themore like-
ly scenario here is that most of the larger settleable particles (pebbles,
sand, and grit) are removed from the water column within the up-
stream and middle stream portions of the river, leaving only the non-
settleable colloidal particles to remain in the water column, when it
reaches the downstream end of the tributaries. However, the relatively
quiescent flow conditions would not be enough to settle out these col-
loidal-type particles. Regardless of the actual mechanisms, our study
overall shows that smaller streams, mainly located in the upper catch-
ments of the Bay of Quinte watershed, are generally characterized by
lower volumes of flowing water and higher in-stream attenuation,
whereas stream attenuation declines in larger flow downstream loca-
tions (Fig. S4).
3.2. Degree-of-updating and identification patterns of SPARROW
parameters

Parameter identifiability is another important issue in determining
the optimalmodel complexity aswell as its planning reliability. Factoring
the “principle of parsimony” into our exercise (Spriet, 1985), we may be
able to identify the optimalmodel complexity depending on the quantity
and quality of available data (Wellen et al., 2014a). We first focused on
the width of the parameter posteriors of the two SPARROW configura-
tions. Land-to-stream delivery coefficients (α) were well identified,
given the significantly lower standard deviations (SD: 0.063–
0.065 h cm−1) relative to the correspondingmean values, i.e., coefficient
of variation; CV = [SD/mean] × 100 ≈ 34–37% (Table 2). Likewise, the
generic TP export coefficient from agricultural land, β1, was character-
ized by a standard deviation of 13 kg P km−2 yr−1 and thus a 38% coef-
ficient of variation. With Model II, the crop-specific TP-export
coefficients, γ1–5, exhibited fairly low variability: 32 kg P km−2 yr−1

(CV = 42%) for wheat; 65 kg P km−2 yr−1 (CV = 51%) for oat;
26 kg P km−2 yr−1 (CV = 59%) for corn; 11 kg P km−2 yr−1 (CV =
37%) for alfalfa; and 38 kg P km−2 yr−1 (CV = 53%) for fallow land. Re-
garding the rest land-use TP export coefficients, forest (β2), pasture (β3),
and urban (β4) coefficients also showed narrowuncertainty bounds (CV:
30– 33%, 46– 50%, and 69– 70%, respectively) between the two model
configurations. Concerning the lake/reservoir settling rates (Kr), Model
II (CV = 31%) was characterized by slightly lower uncertainty relative
to Model I (CV= 45%). In a similar manner, the two in-stream size-spe-
cific attenuation rates demonstrated significantly lower uncertaintywith
Model II (CV = 59% for Ks1 and 64% for Ks2), relative to the generic in-
stream attenuation rate (Ks) which was poorly identified (CV = 200%).

Using the normalized delta indices (Δ), we quantified the degree of
change in the shape of prior and posterior parameter distributions
(Fig. 3). The land-to-stream delivery coefficient (α) showed the highest
Δ (≈86%)with both SPARROWmodels, while theurbanTP-export coef-
ficient (β4) exhibited one the lowest Δ values (≈37%). Given that α is
one of the well-identified parameters (Table 2), as well as the only pa-
rameter assigned a non-informative prior distribution (Table 1), the
highest Δ for this coefficient is plausible. By contrast, the lowest Δ for
β4, may suggest that the phosphorus fluxes from urban areas obtained
from the prior literature closely resemble to those in the Bay of Quinte
watershed (Table 2). The generic agricultural coefficient (β1) showed a
fairly high Δ value ≈70% (Fig. 3a), reflecting the fact that not only the
prior mean (310 kg P km−2 yr−1

, Table 1) was almost ten-times higher
than the corresponding posterior mean (34 kg P km−2 yr−1

, Table 2),
but also that the β1's CV was reduced through the prior-to-posterior
cycle from N100% to 38% (Tables 1–2). Except for corn (γ3) (≈65%)
and alfalfa (γ4) (≈57%), none of the crop-specific TP export coefficients
demonstratedΔ values N50%. In particular, the posteriors for fallow (γ5)
and oat (γ2) areas were fairly similar to the distributions assigned prior
to the model calibration (Table S1; Fig. 3b and Fig. S2). Among the rest
land-use export coefficients (β2–5), the estimates of the TP fluxes from
forested areas (β2) were characterized by the highest Δ values
(≈72%). Likewise, the in-stream attenuation rates demonstrated very
high Δ values (≈76%) and, notably, the corresponding value in large
streams (Ks1 ≈ 65%) was lower than in small streams (Ks2 ≈ 76%). On
a final note, lake/reservoir settling rates (Kr) did not differ significantly
with respect to their Δ values (≈64%) between the two SPARROW con-
figurations examined. Overall, the parameter posterior patterns suggest
that the additional complexity of Model II not only offered additional in-
sights into the watershed process characterization, but was also sup-
ported by the information value of the calibration TP loading dataset.

3.3. SPARROW goodness-of-fit and predicted TP loads in the Bay of Quinte
watershed

Environmental policy making and successful management imple-
mentation require robust models for linking land-use practices to in-



Fig. 3. Distributional changes between the prior and posterior parameters with (a) Model I and (b) Model II, using Normalized Delta Index (Δ).
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stream nutrient concentrations and then reproducing the interplay
among physical, chemical, and biological processes that controls cultur-
al eutrophication (Arhonditsis et al., 2016). In contemporary modelling
practice, model assessment is often accompanied by uncertainty esti-
mation to establish its credibility for management purposes (Rode et
al., 2010). Predictive uncertainty is closely associated with data quali-
ty/quantity, knowledge gaps, and model structure imperfection (Qian
et al., 2005; Lek, 2007; Wellen et al., 2014a). In our SPARROW exercise,
the uncertainty bounds of predicted TP loading gradually widened with
the consideration of additional sources of error, such as the parametric
uncertainty (Fig. 4a); both parametric and structural uncertainty (Fig.
4b), and parametric/structural uncertainty along with the data error
Fig. 4. Observed versus predicted TP loads with uncertainty bounds using Model II. The unc
parametric, structural, and data-measurement error.
or uncertainty of the loading estimates used to calibrate the model
(Fig. 4c).

We visualized the spatial TP load patterns over the entire Bay of
Quinte watershed based on SPARROW Model II (Fig. 5). Observed and
predicted TP loads were very close to each other (Fig. 5a and c), al-
though the year-to-year variability of the measured loadings (Fig. 5b)
was clearly greater than the predictive uncertainty of the corresponding
long-term mean annual values (Fig. 5d). Mean annual TP loads were
generally larger in the Trent River basin with an upstream-to-down-
stream gradient from low to high TP loads. The latter locations were
also characterized by greater predictive uncertainty. The goodness-of-
fit between observed and predicted TP loading values from the
ertainty was based on (a) parametric error, (b) parametric and structural error, and (c)



Fig. 5.Mean annual TP loading estimates in the Bay of Quinte watershed: (a) mean observed TP loads, (b) standard deviation of observed TP loads, (c) mean predicted TP loads, and (d)
standard deviation of predicted TP loads.
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SPARROW model was excellent in the logarithmic scale (r2 N 0.95), al-
though there were four sites with error N10 tonnes yr−1 when the
SPARROW predictions were back-transformed to the original scale.
The greater predictive errors were found in the lower basin, primarily
near the lower Trent River where TP loads are the largest among the
tributaries (Fig. S5). Another interesting finding was the substantial
error found in the -predominantly agricultural- Napanee River (Fig.
S5), which is characterized by the highest TP concentrations and fairly
strong TP-flow relationship (Kim et al., 2013). Importantly, empirical
evidence and model predictions suggest that the interplay between
inflowing nutrient loads from Napanee River and local circulation pat-
terns shapes the biogeochemical processes in the northeastern segment
of the receiving waterbody, thereby modulating the severity of eutro-
phication phenomena (e.g., frequency of harmful algal blooms) relative
to the rest of the Upper Bay of Quinte (Kim et al., 2013). Taking together
the distinctly higher predictive loading uncertainty in sub-watersheds
near the Bay along with the tight watershed-receiving waterbody cou-
pling, our analysis highlights the importance of obtaining more reliable
TP loading estimates from non-point sources in ungauged watershed,
urban runoff, and extremeprecipitation events (Long et al., 2014, 2015).

We used the spatial distribution of net (instead of the cumulative)
TP loading that ultimately inflows into the receivingwaterbody to iden-
tify the most influential subwatersheds (Fig. 6). The percentage of net
loading was mostly greater in the downstream catchment of the
major tributaries. Specifically, the lower Trent, Moira and Salmon
River basins accounted for N15% of total annual TP loading into the
Bay of Quinte (Fig. 6a). By contrast, the relative contribution of the
ungaugedwatersheds close to the baywas significantly lower primarily
due to their small areal extent. On the other hand, the variability of the
relative contribution of the different subwatersheds was higher in the
Trent River basin (SD N 67%) than the rest of the tributaries. Interesting-
ly, the Trent River's upper catchment also exhibited high variability of
the percentage net TP loads (Fig. 6b). We attribute this pattern to the
flow rates in this area (e.g., Gull River, which is the headstream of the
Trent River) that are highly regulated by dam operation (Kim et al.,
2016).

To delineate “hot spots” in a watershed context, McMahon et al.
(2003) and Wellen et al. (2014a) introduced four criteria or measures
of impairment uncertainty: (i) sites characterized by midrange likeli-
hood of impairment (i.e., the probability of exceeding threshold nutri-
ent values is lying within the 25–75% range); (ii) sites where model
predictions have unacceptably high variance; (iii) locations where
data uncertainty drives model residuals; and (iv) locations where
modelled loads showed the greatest reduction in the width of their
95% credible intervals when higher quality datasets are obtained. In
this study, we used the coefficient of variation values of the relative con-
tributions along with the net contribution normalized by the corre-
sponding subwatershed areas to identify the hot-spots in the Bay of
Quinte watershed. Similar to our previous assertions, the highest CVs
(N32%) were found in the upper catchment of Trent River (Fig. 6c).
Counter to the SD pattern, however, the ungauged watershed close to
the bay were characterized by fairly high CVs (Fig. 6c). This trend was



2 The Wilton Creek equivalent approach, originally introduced Minns et al. (1986), as-
sumes that the daily load from an un-gauged subwatershed equals the daily load from
Wilton Creek weighted by the ratio of the area of the ungauged site to the Wilton Creek
area.

Fig. 6. Percentage contribution of the annual net TP loads to the Bay of Quinte: (a) average, (b) standard deviation, (c) coefficient of variation, and (d) areal average.
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more pronounced when we considered the normalized relative TP load
contributions (Fig. 6d). Unlike the CV value, the normalized percentage
TP loads were low in the upper catchment of Trent River, but were dis-
tinctly higher in the lower part of thewatershed, especially near the bay
(Fig. 6d). Notably, the present results are very consistent with Kim et
al.'s (2016) SOM analysis, who noted that the ungauged subwatersheds
close to the waterbody demonstrated the highest areal TP export (i.e.,
TP yield) over the entire Bay of Quinte watershed.

To improve the granularity of our analysis, we further conducted
post-hoc simulations with Model II that accounted for the interplay
among crop-types, management practices, and soil hydrological groups
(also referred to as Model III). The mean annual TP export is presented
whenwe consider both point and non-point sources (Fig. 7a) and solely
non-point sources (Fig. 7b) within the individual reaches. The distinctly
higher export rates in reaches adjacent to the Bay of Quinte emerge
again as a dominant pattern, with TP fluxes varying between 70 and
400 kg km−2 yr−1.When designing the appropriate beneficialmanage-
ment practices (BMPs) in the area, this quantification of the nutrients
lost from different sites with finer resolution is certainly useful, but
equally important is to identify the actualmechanisms of nutrient trans-
port. For example, summer storm events can be a significant source of
runoff, with nutrient export occurring mainly in particulate form
through soil erosion (Sims et al., 1998). Thus, many BMPs are intended
to minimize soil disturbance, such as conservation tillage, or to trap
eroded soil particles before they can enter the receiving waterbody,
such as buffer strips (Kleinman et al., 2009). Nonetheless, the same
methods may increase nutrient loss in dissolved form, as the lack of
soil inversion can result in nutrient accumulation at the soil surface, in-
cluding nutrients added through fertilizer or manure implementation
(Ginting et al., 1998; Hansen et al., 2000; Tiessen et al., 2010). On the
other hand, the slower snowmelt rates are not as erosive (Panuska et
al., 2008) or tend to favour the transport ofmaterials with lower specific
gravity, such as organic matter, relative to rainfall runoff (Panuska and
Karthikeyan, 2010). If we also consider that frozen soils restrict particle
detachment and minimize infiltration, then snowmelt runoff is expect-
ed to have lower suspended solid concentrations and higher nutrients
in dissolved forms that may also be transported for longer distances
(Hansen et al., 2000; Owens et al., 2011). These differences in nutrient
transport processes between snowmelt and rainfall runoff can have pro-
found implications for both seasonal and year-to-year loading variabil-
ity. Shedding light on the relative importance of these mechanisms is
critical for controlling nutrient inflows into the Bay of Quinte through
BMP implementation.

Finally, we compared the values derived from the SPARROW poste-
rior simulations with five and forty-five export coefficient from the
croplands with those based on the Wilton Creek Equivalent2 (WCE) in
order to establish reliable TP loading estimates from the ungauged
catchments of thewatershed. The comparison is presentedwith respect
to the loading contributions of the ungauged areas in all the seven spa-
tial segments of the eutrophication model adopted in Kim et al. (2013).
SPARROW estimates were consistently higher than the WCE ones
throughout thewater-body (Fig. 8 & Table S2). In total, themean annual
TP loading was more than two-fold with SPARROW (≈31.9 tons yr−1

and ≈43.8 tons yr−1 in Models II and III, respectively) relative to WCE
(≈15.3 tons yr−1). Regarding the uncertainty of these contributions,
the ungauged subwatersheds displayed SD values N0.38 ln tons P yr−1

(1.46 tons P yr−1) using SPARROW, while the WCE had SD values of



Fig. 7.Mean annual TP export derived from (a) point andnon-point sources, and (b) non-point source, derived from thepost-hoc simulationswithModel II that accounted for the interplay
among crop-types, management practices, and soil hydrological groups (also referred to as Model III).
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lower than −0.32 ln tons P yr−1 (b0.72 tons P yr−1). That is, the TP
loading uncertainty (or variability) in the ungauged watershed is at
least twice as high as the uncertainty deriving from theWCE. Taken to-
gether the SPARROW-derived higher mean value (Fig. 8) and greater
uncertainty of TP loading pertaining to the ungauged areas (Figs. 5d
and 6c), we conclude that the WCE-based external TP loading used to
force the existing eutrophication models in the Bay of Quinte clearly in-
troduced an underestimation bias and downplayed the uncertainty of
the corresponding predictions (Minns and Moore, 2004; Kim et al.,
2013; Zhang et al., 2013); see also Fig. 9 in Kim et al. (2013).

4. Conclusions/synthesis

There is a considerable knowledge gap about the complex interplay
among hydrological factors, morphological/geological features, and
Fig. 8.Comparison of themean annual TP loading estimates from the ungaugedwatershed
using theWilton Creek Equivalent approach and two SPARROW configurations (Models II
and III).
spatial patterns that modulates the attenuation rates of nutrient and
contaminants within a watershed context. In this study, our SPARROW
exercise aimed at elucidating phosphorus export and delivery rates in
agricultural and urban land areas, so planning decisions that least im-
pact the Bay of Quinte can be better informed. The posterior process
characterization indicated that (i) urban areas experience fairly high
areal phosphorus export fluxes with an approximate annual estimate
of 120 kg of TP per km2; (ii) the contribution of phosphorus from agri-
cultural land uses can vary considerably among the various crop types
(30–127 TP kg per km2), but is generally lower than the impact of
urban sites. This finding appears to contradict the popular notion that
nutrient export rates from urban areas are below those of agricultural
lands due to lower anthropogenic nutrient subsidies, such as fertilizer
implementation (Moore et al., 2004; Soldat and Petrovic, 2008; Soldat
et al., 2009). In particular, other studies in Southern Ontario have
found that urban total phosphorus export rates to be comparable (or
even higher) than agricultural total phosphorus export rates (Winter
and Duthie, 2000;Wellen et al., 2014a, 2014b), although the latter loca-
tions exhibit significant variability depending on the crop types, soil
types, fertilizer applications (e.g., rate and timing) and tillage methods
(e.g., conservational or conventional) (Beaulac and Reckhow, 1982;
Djodjic et al., 2004; Van Es et al., 2004; Soldat and Petrovic, 2008;
Tiessen et al., 2010); (iii) the crop-specific export coefficient values
were on par with those typically reported in the literature (Harmel et
al., 2008), but the confounding effects of the uncertainty associated
with the delineation of the areal coverage of the various crop types
may be responsible for some counterintuitive results (e.g., nutrient
fluxes from oat farms greater than those from corn fields); (iv) fallow
areas are responsible for approximately 70 kg of TP per km2 on an annu-
al basis; and (v) the attenuation rate in low flow streams (3.7% of TP per
kilometer) appears to be distinctly greater than in those with high flow
(1.1% of TP per kilometer).

In the context of watershed management, the identification of “hot-
spots” (or critical areas of the catchmentwhere practical activities could
be of interest) has been based on different stipulations. For example,
hot-spots along the flow paths have been defined on the basis of the
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rate of change of solute concentrations over time or space (McClain et
al., 2003; Vidon et al., 2010). Others describe hot-spots with respect to
processes (e.g., organic matter mineralization, denitrification) linked
to biogeochemical cycles (Groffman et al., 2009a, 2009b; Andrews et
al., 2011). In this study, the delineation of hot-spots revolved around
the concept of predictive uncertainty of phosphorus export from differ-
ent sub-basins around the Bay of Quinte watershed. This strategy
pinpointed many locations close to the waterbody that may potentially
be responsible for significant nutrient fluxes, due to their landscape at-
tributes and soil characteristics. Of particular note is the fact that several
of these catchments have not beenmonitored yet; thus, our predictions
(especially, those with the improved granularity at the reach level) can
be used as pointers formaximizing the value of information of addition-
al monitoring by determining locations where data collection efforts
should focus on (Arhonditsis et al., 2007).

The present study used a simple empirical modelling construct to
obtain a first approximation of annual estimates of nutrient loads,
yields, and delivery rates at landscape scale in the Bay of Quinte. None-
theless, recent evidence from tributaries in Southern Ontario suggests
that the study of watershed processes with a coarse spatiotemporal res-
olution may not be the most meaningful way to assist environmental
management. Specifically, it has been shown that a significant fraction
of the inflowing phosphorus is generated during a small number of
brief but intense precipitation events (Long et al., 2014, 2015). Daily
TP loads may vary by three orders of magnitude between wet and dry
conditions, with storm events and spring freshets driving peak daily
loads in urban and agricultural watersheds, respectively (Long et al.,
2014, 2015). Thus, the characterization of TP concentrations during
high flow conditions is essential in establishing accurate concentration
versus flow relationships and subsequently nutrient load estimates.
Along the same line of evidence, a recent examination of the daily
flows in both urbanized and agricultural catchments supports the idea
of a single threshold separating two states of response to precipitation
(Wellen et al., 2014b). Precipitation depth above a certain threshold
(≈15 mm over a 2 or 3-day period) triggers an extreme state, which
is characterized by a qualitatively different response of the watershed
to precipitation (Wellen et al., 2014b). In light of our recent work estab-
lishing the significant role of eventflows in the nutrient load determina-
tion, we believe that there is a need for critical planning information
about the optimal restoration and/ormitigation strategies for alleviating
the impact of episodic precipitation events. In this regard, several
emerging issues that need to be addressed are the impact of distur-
bances associated with intense summer storm events on system stabil-
ity; the threat to ecosystem integrity, if the frequency of such
meteorological events increases aswe gradually shift towards awarmer
climatic regime; and the likelihood that increasing urbanization in the
watershed will accentuate the impact of these episodic events.

On a final note, Long et al. (2014, 2015) offered insights into the po-
tential impacts of climate change on nutrient export patterns from the
Southern Ontario watersheds. TP loading may change from a bimodal
delivery pattern (quiescent period followed by intense spring freshet)
in cold winters, to an export characterized by intermittent inputs of TP
during warm winters, reflective of precipitation patterns and subse-
quent tributary response observed during any other time of the year.
While this empirical evidence is on par with recent modelling projec-
tions (Gombault et al., 2015), other hypotheses suggest that elevated
winter air temperature would likely lead to increased surface perme-
ability (as opposed to an impermeable frozen surface), resulting in a
greater potential for infiltration and/or recharge and not necessarily to
an increase in runoff and/or erosion events. There is also speculation
that a significant winter recharge is likely to occur (in addition to the
traditional spring and fall recharge episodes), along with a decrease in
evaporation and/or evapotranspiration due to increased humidity and
cloud cover (Valipour, 2016). In this context, one of the priorities for
properly characterizing water and nutrient cycles in the area is the ad-
vancement of our understanding of the predominant processes in the
surface water-groundwater flow interface. Integration of hydrological
with aquatic ecosystem processes will then allow examining Shimoda
et al.'s (2011) hypothesis that the nutrient loadings imported during ex-
treme precipitation events can induce broader changes in the system.
Namely, the profound changes on the biogeochemistry and trophic
functioning of the littoral zone induced by episodic pulses (summer
storms) can potentially alter the contemporary algal growth and species
competition patterns which in turn can be gradually propagated down-
stream to the Bay of Quinte. This is one of the critical pieces of informa-
tion to determine the likelihood of delisting the system as an Area of
Concern for the Beneficial Use Impairment “Eutrophication or Undesir-
able Algae” and, most importantly, to credibly predict its future resil-
ience in an ever-changing environment.
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FIGURES LEGENDS  

 

Figure S1: Relationship between catchment areas and mean annual flow rates in the Bay of Quinte 

watershed (N=48). 

 

Figure S2: Spatial distribution of the three management practices considered (a) no tillage, (b) surface 

tillage, and (c) soil tillage in the Bay of Quinte watershed. 

 

Figure S3: Prior distributions of the TP export coefficients (tons km-2 yr-1) for the combinations of crop 

types, management practices, and hydrologic soil groups. 

 

Figure S4: Spatial distribution of flow (or stream) classes in the Bay of Quinte watershed.  

 

Figure S5: Predictive errors of SPARROW (Model II) in the Bay of Quinte watershed. Green triangles 

indicate the locations of 26 sewage treatment plants. 
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Figure S3 (continued)  



 

Figure S3 (continued)  
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Table S1: SPARROW TP export coefficients (tons km-2 year-1) used for the post-hoc simulations with Model II that accounted for the 

interplay among crop-types, management practices, and soil hydrological groups (also referred to as Model III). 

Parameter Mean S.D. Interpretation 

Wheat export coefficients 

TP export coefficient from wheat areas with well drained 

soils and no tillage 
0.067 0.009 

67 kg of TP per km2 are released from wheat areas with well drained soils and no tillage on 

an annual basis. 

TP export coefficient from wheat areas with imperfectly 

and poorly drained soils and no tillage 
0.111 0.028 

111 kg of TP per km2 are released from wheat areas with imperfectly and poorly drained soils 

and no tillage on an annual basis. 

TP export coefficient from wheat areas with very poorly 

drained soils and no tillage 
0.022 0.012 

22 kg of TP per km2 are released from wheat areas with very poorly drained soils and no 

tillage on an annual basis.  

TP export coefficient from wheat areas with well drained 

soils and surface tillage 
0.157 0.128 

157 kg of TP per km2 are released from wheat areas with well drained soils and surface 

tillage on an annual basis. 

TP export coefficient from wheat areas with imperfectly 

and poorly drained soils and surface tillage 
0.078 0.019 

78 kg of TP per km2 are released from wheat areas with imperfectly and poorly drained soils 

and surface tillage on an annual basis. 

TP export coefficient from wheat areas with very poorly 

drained soils and surface tillage 
0.025 0.005 

25 kg of TP per km2 are released from wheat areas with very poorly drained soils and surface 

tillage on an annual basis. 

TP export coefficient from wheat areas with well drained 

soils and no tillage 
0.126 0.533 

126 kg of TP per km2 are released from wheat areas with well drained soils and soil tillage on 

an annual basis. 

TP export coefficient from wheat areas with imperfectly 

and poorly drained soils and soil tillage 
0.248 0.080 

248 kg of TP per km2 are released from wheat areas with imperfectly and poorly drained soils 

and soil tillage on an annual basis. 

TP export coefficient from wheat areas with very poorly 

drained soils and soil tillage 
0.167 0.026 

167 kg of TP per km2 are released from wheat areas with very poorly drained soils and soil 

tillage on an annual basis. 

Oat export coefficients 

TP export coefficient from oat areas with well drained 

soils and no tillage 
0.170 0.154 

170 kg of TP per km2 are released from oat areas with well drained soils and no tillage on an 

annual basis. 

TP export coefficient from oat areas with imperfectly and 

poorly drained soils and no tillage 
0.172 0.157 

172 kg of TP per km2 are released from oat areas with imperfectly and poorly drained soils 

and no tillage on an annual basis. 

TP export coefficient from oat areas with very poorly 

drained soils and no tillage 
0.171 0.157 

171 kg of TP per km2 are released from oat areas with very poorly drained soils and no tillage 

on an annual basis. 

TP export coefficient from oat areas with well drained 

soils and surface tillage 
0.173 0.168 

173 kg of TP per km2 are released from oat areas with well drained soils and surface tillage 

on an annual basis. 

TP export coefficient from oat areas with imperfectly and 

poorly drained soils and surface tillage 
0.171 0.154 

171 kg of TP per km2 are released from oat areas with imperfectly and poorly drained soils 

and surface tillage on an annual basis. 

TP export coefficient from oat areas with very poorly 

drained soils and surface tillage 
0.173 0.159 

173 kg of TP per km2 are released from oat areas with very poorly drained soils and surface 

tillage on an annual basis. 

TP export coefficient from oat areas with well drained 

soils and no tillage 
0.179 0.065 

179 kg of TP per km2 are released from oat areas with well drained soils and soil tillage on an 

annual basis. 

TP export coefficient from oat areas with imperfectly and 

poorly drained soils and soil tillage 
0.029 0.008 

29 kg of TP per km2 are released from oat areas with imperfectly and poorly drained soils and 

soil tillage on an annual basis. 

TP export coefficient from oat areas with very poorly 

drained soils and soil tillage 
0.171 0.156 

171 kg of TP per km2 are released from oat areas with very poorly drained soils and soil 

tillage on an annual basis. 



Oat export coefficients 

TP export coefficient from corn areas with well drained 

soils and no tillage 
0.007 0.009 

7 kg of TP per km2 are released from corn areas with well drained soils and no tillage on an 

annual basis. 

TP export coefficient from corn areas with imperfectly 

and poorly drained soils and no tillage 
0.113 0.007 

113 kg of TP per km2 are released from corn areas with imperfectly and poorly drained soils 

and no tillage on an annual basis. 

TP export coefficient from corn areas with very poorly 

drained soils and no tillage 
0.074 0.135 

74 kg of TP per km2 are released from corn areas with very poorly drained soils and no tillage 

on an annual basis. 

TP export coefficient from corn areas with well drained 

soils and surface tillage 
0.041 0.077 

41 kg of TP per km2 are released from corn areas with well drained soils and surface tillage 

on an annual basis. 

TP export coefficient from corn areas with imperfectly 

and poorly drained soils and surface tillage 
0.089 0.004 

89 kg of TP per km2 are released from corn areas with imperfectly and poorly drained soils 

and surface tillage on an annual basis. 

TP export coefficient from corn areas with very poorly 

drained soils and surface tillage 
0.079 0.158 

79 kg of TP per km2 are released from corn areas with very poorly drained soils and surface 

tillage on an annual basis. 

TP export coefficient from corn areas with well drained 

soils and no tillage 
0.086 0.112 

86 kg of TP per km2 are released from corn areas with well drained soils and soil tillage on an 

annual basis. 

TP export coefficient from corn areas with imperfectly 

and poorly drained soils and soil tillage 
0.133 0.104 

133 kg of TP per km2 are released from corn areas with imperfectly and poorly drained soils 

and soil tillage on an annual basis. 

TP export coefficient from corn areas with very poorly 

drained soils and soil tillage 
0.077 0.145 

77 kg of TP per km2 are released from corn areas with very poorly drained soils and soil 

tillage on an annual basis. 

Oat export coefficients 

TP export coefficient from alfalfa areas with well drained 

soils and no tillage 
0.044 0.064 

44 kg of TP per km2 are released from alfalfa areas with well drained soils and no tillage on 

an annual basis. 

TP export coefficient from alfalfa areas with imperfectly 

and poorly drained soils and no tillage 
0.043 0.069 

43 kg of TP per km2 are released from alfalfa areas with imperfectly and poorly drained soils 

and no tillage on an annual basis. 

TP export coefficient from alfalfa areas with very poorly 

drained soils and no tillage 
0.044 0.061 

44 kg of TP per km2 are released from alfalfa areas with very poorly drained soils and no 

tillage on an annual basis. 

TP export coefficient from alfalfa areas with well drained 

soils and surface tillage 
0.042 0.061 

42 kg of TP per km2 are released from alfalfa areas with well drained soils and surface tillage 

on an annual basis. 

TP export coefficient from alfalfa areas with imperfectly 

and poorly drained soils and surface tillage 
0.043 0.062 

43 kg of TP per km2 are released from alfalfa areas with imperfectly and poorly drained soils 

and surface tillage on an annual basis. 

TP export coefficient from alfalfa areas with very poorly 

drained soils and surface tillage 
0.043 0.065 

43 kg of TP per km2 are released from alfalfa areas with very poorly drained soils and surface 

tillage on an annual basis. 

TP export coefficient from alfalfa areas with well drained 

soils and no tillage 
0.043 0.067 

43 kg of TP per km2 are released from alfalfa areas with well drained soils and soil tillage on 

an annual basis. 

TP export coefficient from alfalfa areas with imperfectly 

and poorly drained soils and soil tillage 
0.043 0.062 

43 kg of TP per km2 are released from alfalfa areas with imperfectly and poorly drained soils 

and soil tillage on an annual basis. 

TP export coefficient from alfalfa areas with very poorly 

drained soils and soil tillage 
0.049 0.064 

49 kg of TP per km2 are released from alfalfa areas with very poorly drained soils and soil 

tillage on an annual basis. 

Fallow export coefficients 

TP export coefficient from fallow lands with well drained 

soils and no tillage 
0.163 0.037 

163 kg of TP per km2 are released from fallow lands with well drained soils and no tillage on 

an annual basis. 

TP export coefficient from fallow lands with imperfectly 

and poorly drained soils and no tillage 
0.151 0.298 

151 kg of TP per km2 are released from fallow lands with imperfectly and poorly drained 

soils and no tillage on an annual basis. 



TP export coefficient from fallow lands with very poorly 

drained soils and no tillage 
0.028 0.014 

28 kg of TP per km2 are released from fallow lands with very poorly drained soils and no 

tillage on an annual basis. 

TP export coefficient from fallow lands with well drained 

soils and surface tillage 
0.218 0.094 

218 kg of TP per km2 are released from fallow lands with well drained soils and surface 

tillage on an annual basis. 

TP export coefficient from fallow lands with imperfectly 

and poorly drained soils and surface tillage 
0.60 0.394 

600 kg of TP per km2 are released from fallow lands with imperfectly and poorly drained 

soils and surface tillage on an annual basis. 

TP export coefficient from fallow lands with very poorly 

drained soils and surface tillage 
0.050 0.015 

50 kg of TP per km2 are released from fallow lands with very poorly drained soils and surface 

tillage on an annual basis. 

TP export coefficient from fallow lands with well drained 

soils and no tillage 
3.499 0.982 

3.5 tons of TP per km2 are released from fallow lands with well drained soils and soil tillage 

on an annual basis. 

TP export coefficient from fallow lands with imperfectly 

and poorly drained soils and soil tillage 
0.156 0.444 

156 kg of TP per km2 are released from fallow lands with imperfectly and poorly drained 

soils and soil tillage on an annual basis. 

TP export coefficient from fallow lands with very poorly 

drained soils and soil tillage 
0.158 0.358 

158 kg of TP per km2 are released from fallow lands with very poorly drained soils and soil 

tillage on an annual basis. 



Table S2: Mean annual TP loading estimates from the Wilton Creek Equivalent and two SPARROW 

configurations (Models II and III). Sites refer to the spatial segmentation used by Kim et al. study (2013). 

 

 
TP loading (tons yr-1) 

Site WCE Model II Model III 

Upper Bay U1 1.8 4.9 5.6 

 
U2 6.4 9.7 14.9 

 
U3 0.1 1.5 1.9 

Middle Bay M1 0.4 1.1 1.8 

 
M2 2.4 4.1 7.1 

 
M3 0.4 0.7 1.1 

Lower Bay Le 3.5 9.5 11.1 

 


