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a b s t r a c t

Mechanistic models rely on specification of parameters representing biophysical traits and process rates
such as phytoplankton, zooplankton and seagrass growth and respiration rates, organism sizes, stoi-
chiometry, light, temperature and nutrient responses, nutrient-specific excretion rates and detrital
stoichiometry and decay rates. Choosing suitable values for these parameters is difficult. Current practise
is problematic. This paper presents a resource designed to facilitate an evidence-based approach to
parameterisation of aquatic ecosystem models. An online tool is provided which collates relevant,
published biological trait and biogeochemical rate observations from many sources and allows users to
explore, filter and convert these data in a consistent, reproducible way, to find parameter values and
calculate probability distributions. Using this information within a traditional or Bayesian paradigm
should provide improved understanding of the uncertainty and predictive capacity of aquatic ecosystem
models and provide insight into current sources of structural error in models.

© 2017 Elsevier Ltd. All rights reserved.
Software and data availability

Software and data described in this paper are available from the
Parameter Library Exploration Interface at http://shiny.csiro.au/
CDM/parameterlibrary/latest/
1. Introduction

Aquatic ecosystem modelling has a long history of use to shed
.

light on ecosystem function (e.g. Scheffer et al., 2001) and provide
input to policy and management decisions to improve water
quality, limit the impact of pollutants and toxicants, specify fish
catches, inform management of catchments and riparian vegeta-
tion, and control eutrophication (e.g. Wang et al., 2012).

Although there are several approaches to simulation of envi-
ronmental systems (Robson, 2014), process-based models,
including complex mechanistic models, have been enduringly
popular. These models aim to mimic the roles of individual pro-
cesses through mathematical descriptions with realistic parame-
terisations. The premise is that mathematical representations of
individual processes combine to collectively offer a faithful
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depiction of ecosystem dynamics. The appeal of this approach is
that by simulating systems in terms of real, ideally measurable
physical, geochemical and biological processes, mechanistic
models offer the prospect of greater insight into system function
than other types of models, as well as the promise of defensible
extrapolation beyond historical conditions to predict future
changes. The degree to which a mechanistic model can deliver on
these promises depends not only on the accuracy of the concep-
tual understanding of the system represented by the equations
used to build the model, but also on the accuracy of its
parameterisation.

2. Current state of the art

Parameterisation of aquatic ecosystem models has historically
been a difficult and labour-intensive task. Parameter values are
typically required for a range of model components, defining traits
and responses of phytoplankton, zooplankton and other aquatic
biota, characteristics of sediments and detrital material, physical
and chemical process rates, and, more recently, bacterial traits and
processes. Although mathematical methods have long been avail-
able to automate parameter estimation and calibration, these have
not been rapidly or universally adopted in this field due to
computational constraints or data limitations (Shimoda and
Arhonditsis, 2016).

Traditional approaches to setting parameter values have been
either to combine (where available) local measurements of flux
rates and component responses for the study site with literature
values for parameters that have not been measured locally (e.g.
Mao et al., 2015; Murray and Parslow, 1999; Robson and
Hamilton, 2004); or to begin with the values that have been
set during a previous application of the model or a similar model,
and to calibrate from there to achieve an acceptable model-data
match (e.g. Skerratt et al., 2013). Issues with these approaches
are:

� It is often difficult to find relevant parameter values in the
literature. While phytoplankton growth rates are commonly
measured, there are relatively few available measurements
relevant to some other biogeochemical processes (e.g.
zooplankton mortality).

� It can be difficult to ascertain how relevant a particular literature
value might be. For instance, is a published maximum growth
rate for aMicrocystis aeruginosa strain isolated from a temperate
lake relevant to a simulation of Microcystis aeruginosa in a
subtropical estuary?

� It can be difficult or time-consuming to convert from experi-
mental results published in the literature to the specific pa-
rameters required, under the required conditions and in the
required units.

� The process is usually poorly documented, so that the evidence
from which a parameter value was derived cannot readily be
traced, and the strength of that evidence cannot be assessed.

� Parameter uncertainty is poorly understood. While a sensitivity
analysis might tell us the degree to which variation in the
parameter value affects model results, we retain little informa-
tion about the degree of confidence we have in the “correct”
value of that parameter. If calibration of the model results in a
shift away from an initially hypothesised parameter value, it is
difficult to assess whether this shift is reasonable, or whether
the calibration is compensating for an error in another param-
eter or a structural error in the model.

Many of these issues arise from the fact that ecosystem models
are usually representing aggregate processes, but the ultimate
determinants of these processes are the traits of individual or-
ganisms. Models may not represent how these traits change as the
environment causes changes in community structure.

In practise, there is considerable inconsistency in the parameter
values used to represent process rates in similar models applied
across systems or even within the same system. A characteristic
example can be found in the Lake Erie modelling work reviewed by
Kim et al. (2014) and Shimoda and Arhonditsis (2016), where
equivalent phytoplankton functional groups have been charac-
terised as having low (<2 day�1) or high (3 day�1) maximum
growth rates, depending on the model considered.

There are a range of reasons for this variability in parameter
values. In the case of phytoplankton growth rates, for example, we
may consider:

� The maximum growth rate of a phytoplankton group typically
aims to characterise the average patterns of diverse assemblages
of functionally similar phytoplankton species and strains. The
actual composition of these assemblages will vary in time and
space.

� Different ways of clustering species into functional, phyloge-
netic or morphological groups might result in different model
parameters even with the same initial information.

� The maximum growth rate of a particular phytoplankton strain
depends on its history and the conditions to which it is adapted.

� The concept of a phytoplankton growth rate is a simplification of
several physiological processes, each of which may vary sepa-
rately: these include carbon fixation (photosynthesis), chloro-
phyll production and cell division. Some of the variability in the
“maximum growth rate” parameter will be due to actual vari-
ability in carbon to chlorophyll ratios.

� Different approaches to calibration of models and different goal
metrics will yield different optimal parameter values.

� Some models are over-parameterised relative to the available
data, so that no single optimal calibrated parameter set exists.

� Different models embody different conceptualisations of the
system, and every model has some degree of structural error.
Variations in assigned values may compensate for structural
errors. For example, a lowmaximumphytoplankton growth rate
may compensate for a missing loss term such as viral lysis, while
a high maximum growth rate may compensate for a missing
source term such as germination of akinetes.

Hence, some of the variability in parameter values is appro-
priate in terms of our physical and physiological understanding
of the system, while some of the variability may be due to errors
in the structure or calibration of models. Insofar as we implicitly
acknowledge this when we develop a model, we treat parameters
not strictly as measurable physiological properties, but rather as
mathematical “properties of convenience.” While treating pa-
rameters in this way may produce good model predictions in
some circumstances, it reduces the connection between models
and the processes they claim to represent, the predictive capa-
bility of the model, and our ability to anticipate the circum-
stances in which our models may fail (Kruk et al., 2011; Ramin
et al., 2011).

3. Collation of parameter values

There have been several efforts to collate and tabulate param-
eter values from across the literature. Some of these have been
broadly focused on the most commonly used parameters in aquatic
ecosystem models (e.g. Bowie et al., 1985) or eco-chemistry
(Jorgensen et al., 2000), while others have comprehensively
reviewed the literature for a narrower range of parameters relating
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to a particular component or process of an aquatic ecosystem (e.g.
phytoplankton: Edwards et al., 2015; Eppley, 1985; zooplankton:
H�ebert et al., 2016; phytoplankton: Hoogenhout and Amesz, 1965;
seagrass: Lee et al., 2007; coral: Madin et al., 2016), in some cases
synthesising this information to derive insight into allometric and
ecological functional relationships (Droop et al., 1982; Edwards
et al., 2012, 2015; Enriquez et al., 1993; Hansen et al., 1997;
Hebert et al., 2016; Kruk et al., 2010; Litchman et al., 2007). These
sources have been, and remain, a very valuable resource for
modellers.

A natural progression from the disparate reporting of parameter
values is to collate them into a probabilistic form. Collated process
rates or parameter values from diverse studies may be summarised
in the form of a probability distribution whereby some parametric
distribution is fitted to the reported values. If a Bayesian nomen-
clature is adopted, these distributions are typically referred to as
“prior probability” distributions (e.g. Arhonditsis et al., 2008; Jones
et al., 2010; Zhang and Arhonditsis, 2009). Bruggeman (2011)
considers phytoplankton traits in a probabilistic form, predicting
unknown values from known values for related species and
phylogenetic relationships between species.

In this paper, we build on this legacy by:

� Bringing together parameter values from a wide range of sour-
ces, including past review papers as well as individual peer-
reviewed experimental and observational research papers.

� Introducing an online tool (http://shiny.csiro.au/CDM/
parameterlibrary/latest/) to facilitate exploration and visual-
isation of these data, allowing the data to be downloaded,
filtered, combined, and manipulated in various common ways.

� Presenting parameter data in a form that facilitates its use
within a Bayesian framework, for instance, allowing the user to
easily fit probability distributions and calculate key statistics
such as the 5th, 50th and 95th percentiles.

� Introducing a community initiative to maintain and expand this
database so that it will continue to grow and become more
useful in a wider range of modelling contexts over time.

� Presenting some guidelines for a more evidence-based
approach to parameter specification in aquatic ecosystem
models.

While the database is not yet comprehensive, the current
version comprises 4834 observations relating to traits and re-
sponses of marine and freshwater phytoplankton, zooplankton,
detritus, seagrasses, coral and microphytobenthos. Such a data
synthesis effort not only identifies some of the recurrent knowl-
edge gaps in the literature but it is our hope that it will also
encourage aquatic researchers to contribute to this collaborative
project by disclosing and sharing measurements. As such, we have
focused on several key parameters that are relevant to both marine
and freshwater modelling, selecting parameters for inclusion on
the basis that they are directly relevant to current modelling
projects.

For each parameter, we have found measured values in the
literature, drawing on previous reviewswhere appropriate, but also
checking original sources where possible to minimise propagation
of errors from reviews, and bringing in new data from more recent
studies. We have included only parameter estimates derived from
peer-reviewed experimental or observational studies, not param-
eter values derived from calibration of models. Although a review
of (posterior) parameter values actually used in modelling would
be an interesting topic for another study, introducing calibrated
model values to this database might bias the distributions away
from the empirical evidence base.
4. Online interface

We have implemented a preliminary online user interface to
allow further exploration of the parameter library, which can be
found at http://shiny.csiro.au/CDM/parameterlibrary/latest/. A
screenshot is presented as Fig. 1. In addition to calculating and
visualising probability distributions (gamma, normal, log-normal
or uniform) fitted to each parameter, the interface allows users to
filter datasets where relevant information exists in the database. In
most cases, there is an option to restrict the dataset to include only
data-points for which we have independently checked that the
value given can be found in the original data source (in other cases,
we have relied on a third party such as a review article).

The user can view or download a plot and statistical description
of the parameter distribution as well as the relevant raw data,
including the full reference and DOI of the source publication and
the review article (if any) in which it was found and the name and
contact details of the personwho contributed each data point to the
database.

Histograms show the actual distribution of observations. The
number of bins used in each histogram depends on the total
number of observational values included: wider bins are used
when fewer measurements are available to provide a visual indi-
cation of the strength of evidence.

The online tool also provides an option, labelled “reduce to
median of each:” that allows the user to consolidate replicated
measurements to avoid over-weighting results for species (or other
filter options) which are over-represented in the data-set. For
instance, a user may choose to consolidate by species, inwhich case
a single (median) value is used for each species for which there is
more than one data-point.

The user can choose the assumptions that are made about the
temperature response of biogeochemical rates, choosing between
(a) no temperature correction, (b) a Q10 or Arrhenius response
curve or (c) the response curve implemented in CAEDYM (Robson
and Hamilton, 2004; after Griffin et al., 2001), which allows inhi-
bition at higher temperatures.

The Arrhenius and Q10 response curves are equivalent. In the

“Arrhenius” option, KT ¼ K20v

�
T

T�20

�

, where KT is the value of a
parameter at a specified temperature, T (

�
C), K20 is the value of that

parameter at 20 �C and v is a specified constant (Goldman and
Carpenter, 1974). In the “Q10” option, (e.g. Volta et al., 2014), Q is
specified as a multiplier applied to a parameter value for each 10 �C
increase in temperature.

In its current (beta) form, the online database contains a rela-
tively small selection of the data available in the literature, and in
some cases, the initial sources are skewed towards particular con-
texts relevant to the current projects of the authors. With com-
munity contributions, the depth and breadth of parameter coverage
will be improved over time. This may potentially include physical
parameters such as particle sizes and roughness lengths and
aggregate biogeochemical process rates such as sediment oxygen
demand and oxygen transfer rates as well as the type of biological
rates and traits considered so far.

In addition to making use of the available filter options, we
encourage users of the online tool to explore the original data
sources to get a feel for the conditions under which measurements
were made and form their own judgement about the relevance of
these conditions to their own studies. In some circumstances, it
might be appropriate to recalculate prior distributions, giving more
weight to measurements made using more reliable techniques, or
in field versus laboratory conditions, or on the basis of other
considerations.

http://shiny.csiro.au/CDM/parameterlibrary/latest/
http://shiny.csiro.au/CDM/parameterlibrary/latest/
http://shiny.csiro.au/CDM/parameterlibrary/latest/


Fig. 1. Screen capture showing the preliminary parameter library exploration interface available at http://shiny.csiro.au/CDM/parameterlibrary/latest.
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5. Summary of parameter data

Table 1 summarises the data included in the parameter library
as at May 2017. We anticipate that wewill add to this resource over
time, drawing on community contributions.

5.1. Detritus

Our initial detritus dataset currently includes measured values
for detrital composition (%C, %N and %P), C:N and C:P, reminerali-
sation/decay rates, and decay rates of labile and refractory fractions
where rates presented in observational papers were calculated for
two fractions. A key resourcewas the work of Enriquez et al. (1993),
who collated many of the pre-1993 data. Several filters are offered,
Table 1
Overview of the number of data points and related sources available to date (i.e. May 20

Ecological compartment Parameters

Coral Uptake rate constant

Detritus Percent N, P, C
C to N, C to P ratios
Decay rate (K)
Decay rate of labile fraction (K1)
Decay rate of refractory fraction (K2)
Bacterial growth rate

Zooplankton Body mass
Body length
Individual volumes
Corporal content N, P, C
Growth efficiency
Growth rates (umax)
Maximum specific growth rates
Maximum ingestion rates
Maximum clearance rates
Excretion rates N, P
Individual hourly O2 consumption rates
Individual hourly respiration rates
Individual Ash free dry weight
Individual respiration rates
Estimated Zm_Q
Hourly respiration rates
Specific Respiration rates

Phytoplankton Cell volume
Cell surface area
Cell length mLD
Maximum growth rate
Any growth rate
Respiration rates
Carbon per cell
Growth rate for NH4, NO3, PO4 limited growth
Max growth rate for NH4, NO3, PO4 limited gr
Km for NH4, NO3, PO4 limited growth
K for NH4, NO3, PO4 uptake
Vmax for NH4, NO3, PO4 uptake
Vmax to C for NH4, NO3, PO4 uptake
Qmin for NH4, NO3, PO4 limited growth
Qmin to C for NH4, NO3, PO4 limited growth
Qmax for NH4, NO3, PO4 limited growth
Qmax to C for NH4, NO3, PO4 limited growth

Phytoplankton PI Alpha, Beta, Pmax
AlphaB, BetaB, PmaxB
Errors for AlphaB, BetaB, PmaxB
Ek, EkB
Intercept

Microphyto-benthos Growth rates

Seagrasses Photosynthesis-irradiance curves (Pmax)
Compensation irradiance (Ic)
Saturation irradiance (Ik)
Photosynthetic quantum efficiency (alpha)
Optimal temperature for growth
including detritus source (aquatic or terrestrial material), plant
type of source material (amphibious plant, freshwater angiosperm,
grass, macroalgae, mangrove, phytoplankton, seagrass, sedge or
shrub), genus, species, plant fraction (many categories including
leaf, stem or roots), conditions (e.g. buried, high intertidal, low
intertidal, subtidal, water), climate (e.g. coastal Mediterranean,
Temperate, Tropical Wet and Dry), geographic location and type of
water body (e.g. lake, river, wetland, bay, estuary, sea).

5.2. Zooplankton and other grazers

The database currently includes measured zooplankton growth
rates and individual animal volumes and lengths, growth efficiency,
ingestion, clearance and respiration rates, and nutrient-specific
17) for each parameter collected for distinct aquatic ecological compartments.

Total data points Number of original sources

54 1

174, 84, 116 55, 30, 36
162, 49 40, 18
224 63
12 7
12 7
4 1

830 52
109 15
20 10
753, 661, 672 14, 28, 19
40 34
72 42
72 42
60 41
60 41
451, 154 12, 6
792 26
78 1
78 1
78 1
78 1
78 1
78 1

827 40
734 4
711 3
1044 227
35 19
30 4
17 13
6, 22, 49 5, 13, 28

owth 50, 51, 117 19, 29, 41
20, 31, 79 6, 15, 27
12, 80, 139 10, 22, 44
26, 78, 144 13, 22, 48
10, 6, 7 4, 5, 5
19, 68, 162 15, 38, 76
4, 11, 22 3, 9, 13
14, 18, 61 3, 7, 27
0, 2, 11 0, 2, 6

410, 234, 410 11 (22)
1672, 1060, 1671 11 (22)
638, 393, 638 11 (22)
410, 515 6 (8)
1363 7 (15)

35 19

132 40
99 29
99 32
105 31
37 27
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excretion artes from a range of freshwater, marine and estuarine
studies. Key resources included H�ebert et al. (2016) for crustacean
sizes and Gsell et al. (2016) for rotatorians. For zooplankton respi-
ration rates, 78 measured values were extracted from Ikeda (1974),
and the remainder of the respiration data (i.e. 714 observations)
comes from the data compilation of H�ebert et al. (2016). Other key
review articles and data collations for zooplankton included
(Hansen et al., 1991, 1997; Hebert et al., 2016).

In addition to zooplankton, the dataset currently includes
parameter values to define coral uptake rates of 6 distinct particle
types including heterotrophic bacteria, picophytoplankton (syn-
echococcus, picoeukaryotes), nanoeukaryotes, micro-
phytoplankton, and particulate organic nitrogen. These data were
taken from values measured by Ribes et al. (2003).

The database does not yet include other animals such as benthic
macroinvertebrates. This is an area for future expansion and we
would welcome assistance.

5.3. Phytoplankton and benthic microalgae

For phytoplankton maximum growth rates, we draw upon
several important synthesis papers and data papers on this topic,
including (Edwards et al., 2015; Hoogenhout and Amesz, 1965;
Kruk et al., 2010). These can be filtered by morphologically based
functional group (as defined by Kruk et al., 2010), by type of water
(fresh, euryhaline, estuarine, marine, hypersaline), source of strain
(e.g. lake, river, estuary, ocean, sewage treatment lagoon, laboratory
culture), phylogenetic domain, class, genus or species. We also have
data for a range of parameters relating to phytoplankton nutrient
uptake, nutrient use, and carbon content per cell (derived largely
from Edwards et al., 2015).

For phytoplankton respiration, we have 30 data points from 4
literature sources.

Phytoplankton photosynthesis-irradiance (P vs. I) curve pa-
rameters have been measured across diverse oceanographic con-
ditions (freshwater photosynthesis-irradiance data have not yet
been collated). Data are taken so far from 22 distinct oceanographic
voyages covering regions of the Southern Ocean, the Tasman Sea,
Great Barrier Reef, Equatorial waters, and Australian coastal waters.
The relatively high number of data points for each parameter is due
to the multiple depths sampled for each studied location.

Microphytobenthos (benthic microalgae) parameter data are
Fig. 2. Suggested use of the parameter database and inform
currently limited to a few sources, including growth rates for 31
species of microphytobenthos in 5 taxonomic groups.

5.4. Seagrasses

For seagrasses, the database currently contains parameters to
describe photosynthesis-irradiance curves and parameters to
describe optimal temperatures for seagrass growth. The majority of
these are sourced from the review presented by Lee et al. (2007).

6. Making effective use of parameter prior distributions

The simplest approach to using the information presented via
this online resource may be to select the subsample of data most
relevant to the application at hand, plot a distribution, and calibrate
within the range suggested by the 5th and 95th percentiles. After
calibration, the final parameter set can be compared with the ex-
pected prior distributions. If more than a few calibrated parameter
values fall close to the outer limits of the expected distribution, this
may warrant further investigation, as it may be suggestive of a
structural error in the model or a systematic error in the observa-
tional data (Fig. 2).

If multiple models applied to different systems consistently
produce calibrated values outside or near the outer limits of the
expected distributions, this may indicate either a common problem
in model conceptualisation or a problem in the way that the rele-
vant biophysical metric or rate has been measured or reported in
the literature. If the problem is a common structural error in
models, then a focus on improving this component of our models
may yield substantial improvements in predictive performance.
Conversely, if the problem lies in the biophysical rate data, it may
indicate either that more measurements are required to properly
characterise this parameter (perhaps using a wider variety of spe-
cies from a wider variety of aquatic systems or systems more
relevant to the contexts of model application) or that better ormore
consistent measurement protocols are needed to ensure that
measurements are relevant to real-world conditions.

For example, Fig. 3 compares the distribution of observed
maximum growth rates of freshwater diatomswith the distribution
of calibrated values found in 72 published models from the litera-
ture (Shimoda and Arhonditsis, 2016). Although all 72 models use
growth rates that are within the range of observed values, values at
ation provided in this paper in a modelling process.



Fig. 3. Comparison between the distribution of maximum growth rates of diatoms
from 143 observations in the parameter database, adjusted to 20 �C assuming a rate
that doubles with every 10 �C increase in temperature (line) with maximum growth
rates used for diatoms in 72 models from the published literature (Shimoda and
Arhonditsis, 2016). The green bar shows the 25th to 75th percentile of the model
values; the line extending from the bar shows the full range of values. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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either extreme are either too high or too low to be likely. Further,
the preponderance of values used in models are above the median
of observed rates. This suggest that either there is a systematic bias
in measured rates, or a systematic bias in the models: for example,
it may be that most of these models over-estimate a loss term (such
as settling to sediments) or are missing an important source term
for diatoms, so an elevated growth rate is compensating for this
error. Both possibilities present opportunities for further investi-
gation, which might lead to an improved next generation of
models.

A more powerful approach is to use the parameter priors within
a Bayesian modelling framework. The field of physical-statistical
modelling (Berliner, 2003; Parslow et al., 2013) describes the
combination of mechanistic models with statistical methods. The
Bayesian Hierarchical Modelling (BHM) framework (see Cressie and
Wikle, 2011, for a thorough introduction to the subject) can be used
to account for multiple sources uncertainty using conditional
probability distributions, to simultaneously provide estimates of
parameter values and estimates of uncertainty associated with
those values andwith the resultingmodel predictions. According to
Bayes law, the posterior distribution for a BHM is given by:

½X; qjY � � ½Y jX; q�½Xjq�½q� (1)

where X are the state variables of the model, q are the parameters
and Y are the observations. The square brackets, ½q� denotes the
probability distribution of q, and ½Xjq� is the conditional probability
of X given q. The key elements of eqn. (1) are: ½q�, the prior model,
½Xjq�, the process model and ½YjX; q�, the data model. In many cases,
there is no analytical solution to the posterior, and therefore
sampling-based methods such as Bayesian Monte Carlo Markov
Chain (MCMC) analysis must be used (Andrieu et al., 2010; Jones
et al., 2010; Murray et al., 2013; Saloranta et al., 2008).

The formal inclusion of prior knowledge of parameters within a
BHM occurs via the prescription of ½q�. In the absence of adequate
information, the prior over ½q� may take a very uninformative form.
In the most extreme case, ½q� could be sampled from a uniform
distribution spanning ½�∞;∞ �. However, even subjective infor-
mation using expert opinion has been shown to reduce uncertainty
by placing finite bounds. From the results presented in this paper,
there is substantial information available to place parametric dis-
tributions on some parameters, rendering them inmany cases to be
quite informative.

To date, there have been a handful of studies that have exploited
the various components of the BHM framework within aquatic and
marine biogeochemical modelling. Dowd et al. (2014) reviewed
recent developments applications. With the exception of Parslow
et al. (2013), very few studies have included a rigorous derivation
of prior distributions. Parslow et al. (2013) derive a number of
model-dependent prior distributions, however there is a need to
extend this to model-independent parameterisations that cover a
broad range of parameterisation and environments.

7. Future development

The beta version of the parameter database presented here and
currently available online is a static resource, manually updated. It
is our intention (subject to funding) to maintain and update this to
provide a modern data service. This will include not only expansion
of the database itself and improvement of the online user interface,
but also improvement of the underlying data structure, consider-
ation of issues of semantics, inter-operability, provenance and data
delivery, and provision of an API that will allow third parties to
access the data in novel ways. This will, for instance, allow mod-
ellers to embed calls to the database within automated calibration
and data assimilation routines, or to develop tools to extract
tailored datasets, apply specified transformations to the data, and
automatically produce parameter files in the format needed by a
specific model.

It is anticipated that a future version of the online interface will
allow registered users to create accounts, save selected filters or
transformations, share generated prior distributions by generating
unique addresses to the results, and e most importantly e

contribute by uploading their own new data points or datasets. In
the meantime, we encourage anyone interested in contributing to
contact the authors.

Future work will also include an analysis of the distribution of
parameter values actually used in models and posterior distribu-
tions obtained by applying Bayesian hierarchical methods in com-
bination with the prior distributions made available through the
online tool. This should provide insight into potential structural
issues in the current generation of models as well as priorities for
additional observational measurements.

The current version of the database considers point values from
various sources, but does not take into account uncertainty esti-
mates given by some sources. This is not straightforward, due to the
variability in the type of ranges given by primary sources (confi-
dence intervals, standard errors, standard deviations and absolute
ranges), but is something that should be addressed in future to
minimise loss of information.

8. Conclusion

By presenting physiological trait and biogeochemical process
rate information through an online tool that not only synthesises
observations from multiple sources but also supports consistent
and reproducable processing of these data (for instance, by
applying a consistent temperature correction function to observed
metabolic rates), we facilitate more evidence-based Bayesian
parameterisation of aquatic systems models as well as improved
model evaluation and development processes.
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