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A B S T R A C T

In Lake Erie, a wide variety of statistical and process-based models have significantly advanced our under-
standing of the major causal linkages/ecosystem processes underlying the local water quality problems. In this
study, our aim is to identify knowledge gaps, monitoring assessment objectives, and management re-
commendations that should be critically reviewed through the iterative monitoring-modelling-assessment cycles
of adaptive management. In the watershed, the presence of multiple SWAT applications provides assurance that
a wide array of physical, chemical, and biological processes with distinct characterizations are used to reproduce
the patterns of flow and nutrient export in agricultural lands. While there are models with more advanced
mechanistic representation of certain facets of the hydrological cycle (surface runoff, groundwater and sediment
erosion) or better equipped to depict urban settings, we believe that greater insights will be gained by revisiting
several influential assumptions (tile drainage, fertilizer/manure application rates, land-use/landcover data) and
recalibrating the existing SWAT models to capture both baseline and event-flow conditions and daily nutrient
concentration (not loading) variability in multiple locations rather than a single downstream site. It is also
critical to redesign land-use management scenarios by accommodating recent conceptual and technical ad-
vancements of their life-cycle effectiveness, the variability in their starting operational efficiency, and differ-
ential response to storm events or seasonality, as well as the role of legacy phosphorus. In the receiving wa-
terbody, the development of data-driven models to establish causal linkages between the trophic status of Lake
Erie and external phosphorus loading represents a pragmatic means to draw forecasts regarding the phyto-
plankton community response to different management actions. Two critical next steps to further augment the
empirical modelling work is the iterative updating as more data are acquired through monitoring and the in-
troduction of additional explanatory variables that are likely associated with the occurrence of cyanobacteria-
dominated blooms. The majority of the process-based models are not constrained by the available data, and
therefore their primary value is their use as heuristic tools to advance our understanding of Lake Erie. The
validation of their predictive power should become one of the overarching objectives of the iterative monitoring-
modelling-assessment cycles. With respect to the projected responses of the system to nutrient loading reduction,
we express our skepticism with the optimistic predictions of the extent and duration of hypoxia, given our
limited knowledge of the sediment diagenesis processes in the central basin along with the lack of data related to
the vertical profiles of organic matter and phosphorus fractionation or sedimentation/burial rates. Our study also
questions the adequacy of the coarse spatiotemporal (seasonal/annual, basin- or lake-wide) scales characterizing
the philosophy of both water quality management objectives and modelling enterprise in Lake Erie, as this
strategy seems somewhat disconnected from the ecosystem services targeted. We conclude by emphasizing that
the valuation of ecosystem services should be integrated into the decision-making process, as we track the
evolution of the system over time.
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1. Introduction

The rigorous analysis of decision problems in water quality man-
agement requires specification of ecosystem indicators that reliably
reflect the prevailing conditions; an objective function to evaluate
benefits and costs of alternative management strategies; predictive
models formulated in terms of variables relevant to management ob-
jectives; a finite set of alternative management actions, including any
conditional constraints on their use; and a monitoring program to
follow system evolution and responses to management (Walters and
Holling, 1990; Walters, 1986). In this context, one of the major chal-
lenges arises from the uncertainty in the predictions of management
outcomes. This uncertainty may stem from incomplete control of
management actions, errors in measurements and sampling, environ-
mental variability, or incomplete knowledge of system behavior.
Failure to recognize and account for these sources of uncertainty may
lead to catastrophic environmental and economic losses. Consequently,
there has been a growing interest in the policy practice of adaptive
management, as it provides an iterative implementation strategy re-
commended to address the uncertainty associated with ecological
forecasts and to minimize the impact of inefficient management plans
(Allen et al., 2011; Williams et al., 2011). Adaptive implementation or
“learning while doing” augments initial forecasts of management ac-
tions with post-implementation monitoring, and the resulting integra-
tion of monitoring and modelling provides the basis for revised man-
agement actions. As such, adaptive implementation is often considered
the only defensible environmental management strategy, as a hedge
against unknown forecast errors that can undermine the restoration
practices and may result in misallocation of the taxpayers' money
(Williams and Brown, 2014).

Environmental models play a critical role in the adaptive manage-
ment process, as they can be used to evaluate the degree of our
knowledge of the system being managed and to identify the outstanding
questions we must address through monitoring and research. In Lake
Erie, a unique combination of statistical and mathematical models have
been developed to evaluate the relationships among watershed phy-
siography, land-use patterns, and phosphorus loading, to understand
ecological interactions, to elucidate the role of specific facets of the
ecosystem functioning (internal loading, dreissenids), and to predict the
response of the lake to external nutrient-loading reductions. In our
companion paper (Arhonditsis et al., 2019), we presented a technical
analysis by identifying strengths and weaknesses of the existing models.
In particular, it was shown that the current modelling work in the
Maumee River watershed, is not ready yet (i) to provide reliable pre-
dictions regarding the long-term achievability of the phosphorus
loading targets, and (ii) to evaluate the impact of individual episodic
events that can carry significant nutrient loads and presumably mod-
ulate the downstream water quality conditions. We also underscored
the importance of revisiting several influential assumptions (fertilizer/
manure application rates, land-use/land-cover data, tile drainage) and
recalibrate the existing watershed models to capture both baseline and
event-flow conditions and daily nutrient concentration (not loading)
variability in multiple locations rather than a single downstream site
(Arhonditsis et al., 2019; Kim et al., 2019). Another challenging aspect
is the proper consideration of legacy phosphorus (P), e.g., initialization
that accommodates the spatial soil P variability, sufficient model spin-
up period, parameter specification that reproduces the gradual P ac-
cumulation in the soils, and its ability to reproduce the critical hydro-
logical and transformation mechanisms modulating the dissolved re-
active phosphorus (DRP) loading in the Lake Erie basin.

Similar to the general trends in the international aquatic biogeo-
chemical modelling literature (Arhonditsis and Brett, 2004), the ability
of the local models to reproduce the spatio-temporal dynamics in Lake
Erie declined from physical, chemical to biological variables (see Fig. 5
and Appendix A in Arhonditsis et al., 2019). Temperature and dissolved
oxygen variability were successfully reproduced, but less so the

ambient nutrient levels. Model performance against individual phyto-
plankton functional groups (e.g., cyanobacteria) was not up to par with
those presented for chlorophyll a concentrations and zooplankton
abundance (Shimoda et al., 2019). To further reduce the predictive
uncertainty, Arhonditsis et al. (2019) argued that there is a rich re-
search agenda that should be put in place with the next iteration of the
adaptive management cycle, in order to improve our understanding of
several facets of phytoplankton ecology, such as the degree of reliance
of phytoplankton growth upon internal nutrient sources (e.g., micro-
bially mediated regeneration, dreissenid or zooplankton excreted ma-
terial in nearshore and offshore waters, respectively), the internal P
loading from the sediments, the role of nitrogen, the trophic interac-
tions with zooplankton, the degree and timing of the sediment response
or the likelihood of unexpected feedback loops that could delay the
realization of the anticipated outcomes, and factors that determine
Cladophora growth in the nearshore zone of the eastern basin in Lake
Erie (Fig. 1).

Consistent with the scientific process of progressive learning, the
present study aims to assist with the next iteration of the modelling
framework by pinpointing essential augmentations and research/mon-
itoring priorities to effectively integrate watershed and aquatic eco-
system processes. We also discuss the optimal resolution in time and
space required for the comprehensive skill assessment of the existing
modelling work, as well as for the establishment of nutrient loading
targets and ecosystem response indicators in Lake Erie. Viewing eco-
systems as providers of economically valuable benefits to humans, we
strongly recommend the development of a rigorous framework that
quantifies in monetary terms the importance of a well-functioning
ecosystem. Our thesis is that this could be a critically important strategy
to gain leeway and keep the investments to the environment going,
especially if the water quality improvements in Lake Erie are not rea-
lized in a timely manner.

2. Building an integrated modelling framework in the context of
adaptive management implementation: what are the
recommended next steps?

2.1. Selection of the optimal scale to evaluate model performance in time
and space

Recognizing that we can never have all the empirical information
that necessitates to develop a completely constrained model, there is
always a trade-off between knowing “much about little” or “little about
much” in the environmental modelling practice. In Lake Erie, most of
the existing work opted for the latter strategy, whereby complex
mathematical tools have been used to advance our understanding of the
mechanisms operating both in the watershed and receiving waterbody
(Arhonditsis et al., 2019; Kim et al., 2019; Shimoda et al., 2019). In a
recent critique, Kim et al. (2014) argued that the majority of these
process-based models are profoundly over-parameterized with un-
proven ability to provide robust predictive statements. Regarding the
latter assertion, the skill assessment results presented by Scavia et al.
(2016a,b, 2017) were particularly favorable with respect to their ability
to capture the magnitude of important eutrophication indicators, such
as phosphorus loading, phytoplankton biomass, and hypoxia severity,
at an aggregated spatiotemporal (seasonal/annual time scale, basin- or
lake-wide) resolution.

In principle, the selected coarse scales for evaluating model per-
formance in time and space are defensible, as they are consistent with
those used for the established nutrient loading targets and water quality
indicators in Lake Erie (Scavia et al., 2016a,b). Nonetheless, given that
the majority of these models are based on daily (or sub-daily) simula-
tions within one- to three-dimensional spatial domains, it would seem
that the bar of what constitutes an acceptable model performance has
been lowered significantly. There are compelling reasons why this
practice is problematic and should be revisited during the next iteration
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of the modelling framework. From a technical standpoint, evaluating
model goodness-of-fit with a coarser resolution not only entails the risk
to obfuscate multiple daily or location-specific errors/biases that cancel
each other out when seasonally or spatially averaged, but may also
detract the attention from the much-needed critical evaluation of the
process characterizations derived after the calibration of (prone-to-
overfitting) complex models. In particular, many of the assumptions
made or parameter values assigned could be adequate to describe
spatially or temporally aggregated patterns, but could also be the cul-
prits for the misrepresentation of important aspects of the intra- or
inter-annual and spatial variability (e.g., magnitude of the spring fre-
shet, timing of algal blooms, and response of the nearshore zone to
extreme precipitation events). Our independent model-fit reassessment
exercise on a daily scale reinforced the importance of the latter issue by
showing the distinctly inferior performance of both watershed and
aquatic ecosystem models (Arhonditsis et al., 2019; Kim et al., 2019), as
well as their inability to capture critical short-term or event-based fa-
cets of the simulated terrestrial and aquatic biogeochemical cycles.

2.2. Synthesis of predictions from multiple models

In Lake Erie, the development of an ensemble of models offers the
unique ability to evaluate competing hypotheses regarding the relative
importance of hydrological processes and mechanisms of nutrient fate
and transport within a watershed context, or the plausibility of alter-
native aquatic ecosystem conceptualizations; especially when complex
over-parameterized models are in place with inadequate empirical in-
formation to pose meaningful constraints. The propagation of this un-
certainty through the environmental forecasts, i.e., scenarios of best
management practices (BMPs) and load-response curves, was based on
the generation of the uncertainty envelope from individual model
predictions, without the introduction of weighting factors that consider
their goodness-of-fit, bias, or model complexity (Scavia et al., 2016b).
Counter to this practice, there are viewpoints in the literature ad-
vocating the development of weighting schemes to objectively

synthesize ecological forecasts from multiple models (Raftery et al.,
2005; Roulston and Smith, 2003; Wilks, 2002). One of the critical de-
cisions involves the establishment of standards for the calibration and
validation domains that will allow to rigorously evaluate the ability of a
model for extrapolative tasks, i.e., forecast conditions distinctly dif-
ferent from those currently prevailing in the modelled system. Another
criterion focuses on the goodness-of-fit of individual models as a
weighting factor to determine their corresponding influence on the
ensemble predictions.

A promising advancement towards a rigorous synthesis of multiple
model predictions is the Bayesian averaging framework used by Scavia
et al. (2017), whereby the weights of each of the SWAT models for the
Maumee River watershed were based on their predictive performance
either for total phosphorus (TP) or DRP loading over a selected vali-
dation dataset. In the same context, Ramin et al. (2012) advocated the
consideration of the performance over all model endpoints, for which
observed data exist, rather than individual modelled variables that are
more closely related to the question being asked. In doing so, we ensure
that the models included in an ensemble environmental forecast should
have balanced performance over their entire structure. To put in an-
other way, we ought to penalize the likelihood of calibration bias,
whereby the maximization of the fit for a specific variable (e.g., nu-
trients or total phytoplankton biomass) may be accompanied by high
error for other variables (e.g., individual phytoplankton functional
groups or zooplankton), and thus avoid deriving forecasts founded
upon models with misleadingly high weights that conceal fundamen-
tally flawed representations of system behaviour. Other criteria for the
development of ensemble weighting schemes are the consideration of
penalties for model complexity that will favor parsimonious models
(McDonald and Urban, 2010), and performance assessments that do not
exclusively consider model endpoints but also evaluate the plausibility
of the values assigned to major processes pertaining to water budget,
nutrient cycles, and critical ecological pathways against empirical es-
timates; whenever these values exist (Wellen et al., 2015; Arhonditsis
and Brett, 2004). Regarding the latter factor, it is also important to

Fig. 1. Knowledge gaps and sources of uncertainty to guide monitoring and improve modelling in Lake Erie (See also Table 1).
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reiterate one of the key points from our companion paper that no
consistent information has been reported in the Lake Erie modelling
literature regarding the relative magnitude of modelled biogeochemical
fluxes (Arhonditsis et al., 2019), and therefore it is difficult to evaluate
how “diverse” the model ensembles for the watershed or receiving
waterbody are or to what extent the individual models replicate the
same characterization of the system functioning.

2.3. Improving the credibility of the load-response curves

Several important structural augmentations of the existing model-
ling tools could increase both their heuristic and predictive values as
long as commensurate empirical knowledge to constrain the mathe-
matics becomes available from Lake Erie. If we strive to establish pre-
dictive linkages between the magnitude and timing of the response of
the sediments and different loading regimes, the study of the sediment
diagenesis processes is essential in understanding the control of redox
chemistry on the vertical profiles of biodegradable organic matter and P
binding forms (Gudimov et al., 2016). While their simple form is con-
venient, it must be noted that the expressions of sediment oxygen de-
mand (SOD) as a function of dissolved oxygen (DO), temperature, or
even total phosphorus (TP) loading are primarily conceptual without
adequate ground-truthing in the literature and therefore carry little
predictive power. Empirical information is also needed to constrain the
submodels/differential equations related to dreissenids, Cladophora,
and zooplankton. While some progress has been made in representing
the role of dreissenid mussels in the system (Karatayev et al., 2017;
Verhamme et al., 2016), little work has been done to adapt the existing
Cladophora submodel to the nearshore zone and even less so to depict
the phytoplankton-zooplankton interactions in Lake Erie (Table 1).
Likewise, with the shift in focus to the average conditions of the off-
shore waters, the nearshore zone has received less attention from the

existing modelling work in Lake Erie. These areas are intermediate
zones in that they can receive polluted inland waters from watersheds
with significant agricultural, urban and/or industrial activities while
mixing with offshore waters, having different biological and chemical
characteristics. Coastal upwelling events during the early summer ap-
pear to modulate offshore-nearshore mass exchanges, whereby nu-
trients and hypoxic waters are injected from the hypolimnion into the
nearshore Lake Erie (Valipour et al., 2016). Surface waves can also
resuspend bottom sediments in the shallow waters, and as they tend to
be repositories of both nutrients and contaminants, resuspension events
are highly important in predicting water quality. Thus, there is a need
for an integrated watershed-receiving waterbody modelling framework
to shed light on the interactions of surface/subsurface hydrological
inflows with in-lake hydrodynamics that shape to a large degree the
dispersal of pollutants and consequently the spatial extent and magni-
tude of associated ecological impacts in the different basins of Lake Erie
(Schwab et al., 2009).

2.4. Challenges and prospects in forecasting HABs

Another critical challenge revolves around the establishment of
robust phytoplankton group-specific parameterizations to support pre-
dictions in a wide array of spatiotemporal domains, given the un-
certainty with the derivation of distinct functional groups from fairly
heterogeneous algal assemblages and our knowledge gaps of cyano-
bacteria ecology (Shimoda and Arhonditsis, 2016). The ability of the
current generation of plankton models to reproduce succession patterns
and structural shifts in phytoplankton communities has not been proven
yet, and thus efforts to predict cyanobacteria-dominated HABs (or
cHABs) with process-based models are often characterized as attempts
to “run before we can walk” (Anderson, 2005). Although we do not
agree with these skeptical views, we do believe that the inclusion of

Table 1
Major knowledge gaps and sources of uncertainty to guide monitoring and improve modelling in Lake Erie (Arhonditsis et al., 2019; Shimoda et al., 2019).

Knowledge gaps

Phytoplankton • Winter productivity under ice needs to be further examined to establish the causal linkages with spring phytoplankton dynamics and summer
hypoxic conditions.

Cyanobacteria/HABs • Increased soluble reactive phosphorus (SRP) loading since mid-1990s appears to correlate with more frequent and severe harmful algal blooms
(HABs). Accurate fractionation of exogenous phosphorus loads (P bioavailability) is needed to confirm the relationship with algal blooms.

• Regular monitoring of cyanotoxin data (Microcystin-LR) in the nearshore zone.

• Quantitative characterization of the selective rejection of cyanobacteria by dreissenids
Hypoxia • It is critical to understand the intensive microbiological, geochemical, and physical processes occurring within the top few centimeters of the

sediment and determine the fraction of organic matter and nutrients released into the overlying water. Field, experimental (e.g., porewater
analysis, phosphorus fractionation, organic matter profiles), and modelling (e.g., primary and secondary redox reactions, mineral precipitation
dissolution reactions, acid dissociation reactions, and P binding form reactions) work should be designed to shed light on the mechanisms of
organic matter mobilization in the sediments and to identify process controls under a variety of conditions.

Dreissenids • Empirical information on selective rejection of cyanobacteria by dreissenids and revisit of the mathematical representation of dreissenid
feeding.

• Empirical data on the spatial distribution of zebra and quagga mussels is needed, since the two species differ significantly with regard to
filtration and excretion rates.

• Empirical data on the year-to-year variability of dreissenid population density and size distribution is critical to realistically predict their impact
on water quality.

• The role of dreissenids on N mineralization and the modification of the N:P ratios remains understudied
Cladophora • Local modelling efforts in Lake Erie will greatly benefit from a high-resolution monitoring of the nearshore zone to establish the causal linkages

between the abiotic conditions (e.g., phosphate, light, temperature) in the surrounding environment and the internal P content and sloughing
rates in Cladophora mats.

Sediment-related processes • Empirical information is needed to distinguish the relative importance of oxic and anoxic release of P from the sediments in the western basin of
Lake Erie in order to validate model predictions.

• Empirical information is needed to quantify the contribution of particulate matter resuspension to the P concentrations in the water column (all
models except WLEEM do not consider this process separately from P chemical release).

Refinement of monitoring framework

• Monitoring programs should be extended until the end of September to obtain a better characterization of hypoxia, given that the maximum
hypoxic area in the nearshore zone has been projected to occur in September (Bocaniov and Scavia, 2016).

• Monitoring programs should target nearshore areas, which occupy a significant portion of the area of the central basin and represent an
important habitat for many aquatic species as well as a source of drinking water (Bocaniov and Scavia, 2016).

• Whole-year phytoplankton and zooplankton sampling to quantitatively characterize the seasonal succession patterns, as well as the likelihood of
top-down control.
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empirical cause-effect relationships in the model ensemble to link the
nutrient loading variability with the magnitude of the summer harmful
algal bloom offers a reliable complementary framework to track the
anticipated response of the system (Bertani et al., 2016; Stumpf et al.,
2016). Building upon the Bayesian foundation of some of these em-
pirical tools, the next steps should involve their sequential updating as
more data are acquired through monitoring, as well as the considera-
tion of additional predictors to accommodate the role of other nutrients,
light availability, water column stability, and water temperature. The
latter augmentation not only will improve our predictive power, but
will also allow to establish hierarchical linkages between the year-to-
year variability captured by the Bertani et al.'s (2016) and Stumpf
et al.'s (2016) studies and within-year conditions that ultimately lead to
cHAB formation (Shimoda et al., 2016).

3. Do we need other models to complement the SWAT framework
in the Maumee River watershed?

In terms of the diversity of the watershed modelling framework,

SWAT has been the only process-based model used to evaluate alter-
native agricultural management practices in the Maumee River wa-
tershed. Notwithstanding its conceptual and operational advantages, an
important question arising is to what extent are we missing profound
advancements of our understanding of watershed processes that other
models can offer? To address the latter question, we compared SWAT
against eight commonly used watershed models, i.e., the Annualized
AGricultural Non-Point Source Pollution Model (AnnAGNPS; Bingner
et al., 2018), Distributed Large Basin Runoff Model (DLBRM; He and
DeMarchi, 2010), Dynamic Watershed SimulationModel (DWSM; Borah
et al., 1999, 2001), Generalized Watershed Loading Function (GWLF;
Borah et al., 2006), Hydrologiska Byråns Vattenbalansavdelning-In-
tegrated Catchment (HBV-INCA; Crossman et al., 2013), Hydrological
Simulation Program-Fortran (HSPF; Canale et al., 2010), MIKE SHE
(Refsgaard and Storm, 1995), and Storm Water Management Model
(SWMM; Rossman and Huber, 2016), regarding their strategies to
capture surface runoff, groundwater, sediment transport, nutrient cy-
cling, and channel routing (Fig. 2). For the purpose of the present study,
we only provide the distinct differences among the modelling strategies

Fig. 2. Comparison of SWAT against other process-based watershed models in terms of the representation of selected watershed processes (surface runoff,
groundwater, sediment transport, phosphorus cycle, channel routing, and BMP simulations). The abbreviations stand for SWAT: Soil Water Assessment Tool;
AnnAGNPS: Annualized AGricultural Non-Point Source Pollution Model; DWSM: Distributed-Parameter Large Basin Runoff Model; DLBRM:; GWLFDistributed Large
Basin Runoff Model: Generalized Watershed Loading Functions; DWSM: Dynamic Watershed Simulation Model; HBV: Hydrologiska Byråns Vattenbalansavdelning;
INCA: Integrated Catchment Model; HSPF: Hydrologic Simulation Program FORTRAN; ARM: Agricultural Runoff Management Model; NPS: Non-point Source Runoff
Model; SWMM: The Storm Water Management Model; SCS-CN: The Soil Conservation Service Curve Number method; GA: Green-Ampt infiltration method; MUSLE:
Modified Universal Soil Loss Equation.
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that are available in the literature, but detailed description of the var-
ious models can be found in Dong et al. (2019).

To quantify the potential magnitude of surface runoff, SWAT uses
the empirical Soil Conservation Service Curve Number (SCS-CN)
method based on the antecedent moisture condition and the hydrologic
soil group of a particular location at a given day. The SCS-CN method
lumps rainfall interception, depression storage, and soil infiltration as
the initial abstractions, which are assumed to account for 20% of the
potential maximum retention. The surface runoff is estimated by sub-
tracting that amount from the rainfall total volume, and therefore the
total precipitation volume should exceed the initial abstraction before
any runoff is generated. Because of the limitations of the SCS-CN
method in estimating cumulative runoff depth and peak flows (Borah
et al., 2007), SWAT also provides a sub-daily simplified model, the
Green-Ampt (GA) infiltration method, by postulating a uniform move-
ment of water from the surface down through the deep soil with a sharp
wetting front. The HBV and DLBRM models use the linear-reservoir
concept to represent the rainfall-runoff process at the watershed scale,
based on the assumption that the overland flow is linearly correlated
with the water storage. HSPF uses the Philip's equation, which is a sub-
daily method simplified from the Richards' equation (Richards, 1931).
The latter approach is considered by theMIKE SHEmodel and describes
the vertical movement of water through the soil profile using Darcy's
law. The flow rate through porous media is proportional to the hy-
draulic conductivity, which in turn is estimated from the soil water
content (Baver et al., 1972). Compared to other models, the Richards'
equation could more accurately quantify vertical water percolation and
dynamic unsaturated flow based on various soil properties.

In terms of the representation of subsurface process, SWAT in-
corporates a kinematic storage model to simulate lateral flow in the
unsaturated zone. The saturated zone is conceptualized as an un-
confined-shallow aquifer and confined-deep aquifer. Groundwater
flowing into the main channel is assumed to be linearly correlated with
hydraulic conductivity and the changes of the water table height. By
contrast, a simple linear reservoir model is used in DLBRM, HBV, HSPF,
and GWLF, whereby interflow and groundwater are linearly propor-
tional to moisture content of the unsaturated zone and saturated zone,
respectively. Conceptually similar with the division of shallow and deep
aquifers in SWAT, HSPF divides the saturated zone into two storage
reservoirs: active and inactive groundwater. AnnAGNPS also uses a
simple empirical method, the Darcy's equation, assuming that lateral
flow is linearly related to saturated hydraulic conductivity and hy-
draulic gradient. Compared to subsurface modelling in SWAT, both the
linear reservoir model and the Darcy's equation are simpler re-
presentations of the subsurface system. Conversely, MIKE SHE provides
a physically based 3-D saturated zone model to explicitly represent the
vertical and spatial characteristics of the subsurface profile. MIKE SHE
incorporates a 3-D Finite Difference Method numerical engine, which is
theoretically similar to MODFLOW (MODular 3-D Finite-Difference
Ground-Water FLOW Model) (McDonald and Harbaugh, 2003). The
subsurface modelling in SWAT could be complemented with MIKE SHE
by tracking the vertical solute transport and providing a comprehen-
sive, fully dynamic depiction of the hydrological interplay between
surface and subsurface layers.

One of the commonly used strategies to quantify soil erosion, the
Modified Universal Soil Loss Equation (MUSLE), is used in SWAT.
MUSLE is developed from the original USLE method by replacing the
rainfall-erosivity (R) factor with a runoff-energy factor (Smith et al.,
1984). The Revised USLE (RUSLE) used in AnnAGNPS is another
modification by converting the soil-erodibility (K) factor to a time-
varying parameter (Renard et al., 1991). Counter to these USLE-based
empirical approaches, DWSM, HBV-INCA, HSPF, and MIKE SHE offer
physically based methods that explicitly accommodate the physical
detachment/reattachment and transport processes. The European Soil
Erosion Model (EUROSEM) used inMIKE SHE considers soil detachment
affected by both raindrop and leaf drainage, which enables the explicit

representation of the effects of vegetation heights. By contrast, HSPF,
INCA and DWSM erosion models ignore the effects of leaf drip. Thus,
the sediment erosion module in MIKE SHE introduces an advanced re-
presentation of our contemporary understanding of the soil erosion
process, which could be used to complement the empirical MUSLE
method in SWAT. Soil P simulation with SWAT is based on the Erosion
Productivity Impact Calculator (EPIC) model (Sharpley and Williams,
1990), which includes three organic P pools (fresh, active and stable)
and three inorganic pools (solution, active, and stable). In SWAT, fer-
tilizer, manure, and residues are the input sources of soil P, which could
be removed by plant uptake, water flow, and soil erosion. The plant P
uptake is dependent upon plant growth, simulated as a function of the
leaf area growth, light interception, and biomass production. One of the
strengths of the EPIC model used in SWAT is the explicit simulation of
the daily plant growth, whereas other models, like INCA and HSPF,
represent plant growth either through a seasonal plant-growth index, or
a simple empirical first-order kinetics equation. SWAT also takes into
account the residue decay and mineralization, which is not considered
with HSPF and INCA and may thus limit their ability to evaluate the
importance of legacy P. SWAT provides two options in simulating soil P
routines: (a) the conventional EPIC model based on the assumption of a
constant equilibrium adsorption/desorption concentration, and (b) a
dynamic approach that allows the P sorption coefficient to vary with
solution P (Vadas and White, 2010). Similarly, to represent the long-
term soil P dynamics, HSPF adjusts the adsorption rates by soil tem-
perature, whereas INCA varies the equilibrium inorganic P concentra-
tion based on the mass of P in the labile soil pool. The consideration of
dynamic P subroutines can be quite critical when evaluating the long-
term watershed responses to various agricultural management strate-
gies.

Existing submodels of water routing in channels could be divided
into four main categories spanning a wide range of complexity: the
dynamic wave; the diffusive wave; the kinematic wave; and the non-
linear reservoir models. The dynamic wave model used in MIKE SHE
and SWMM is the most complex, physically based approach founded
upon the continuity and momentum equations (Tayfur et al., 1993).
The diffusive wave model uses simplified momentum equations by
downplaying the role of local and convective acceleration. SWAT uses
the kinematic wave model, which incorporates the most simplified
momentum equation by omitting the pressure gradient and acceleration
terms (Miller, 1984). The non-linear reservoir model divides the
channel segments into a series of reservoirs with uniform water surface.
Since SWAT omits pressurized flow and backwater effects, it is not
capable of simulating pipe flows, whereas a fully dynamic wave equa-
tion to model water routing would be applicable to both open channels
and closed pipes.

Considering the different strengths of the watershed models re-
viewed, SWAT could be complemented by the modules of other wa-
tershed models, especially for surface runoff, groundwater and sedi-
ment-erosion processes. For the hydrological and sediment processes,
MIKE SHE seems to be more up-to-date with respect to the mechanisms
considered, assuming that local empirical knowledge is available to
constrain the additional parameters. SWAT has the advantage to ex-
plicitly simulate the daily plant growth, but it could be improved by
considering the dynamic P equilibrium concentration. MIKE SHE and
SWMM are superior to SWAT in channel routing because of their cap-
ability to simulate pipe flows. SWAT is suitable for agricultural BMPs
(e.g., terracing, contouring, strip cropping, tillage operations, crop ro-
tations, and fertilizer application), while the urban BMP modules in
SWMM (e.g., rain gardens, green roofs, infiltration trenches, permeable
pavement, and vegetative swales) offer a useful alternative (Dong et al.,
2019).

Another challenge with the existing SWAT applications in the
Maumee River watershed was the consistent event-flow under-
estimation, which can be potentially ameliorated by the use of an al-
ternative runoff estimator, such as a Green-Ampt method, instead of the
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conventional SCS-CN method (King et al., 1999; James et al., 1992). It
is also important to recognize that the characterization of surface runoff
and subsurface processes during flow events is largely unknown in the
area, and therefore the design of high-frequency, event-based, water-
quality sampling coupled with stable-isotope analysis (18O and 2H)
should be one of the priorities in our efforts to rectify the mis-
representation of extreme flow conditions (Kim et al., 2019; Klaus and
McDonnell, 2013). In the same context, recent advancements in hy-
drology suggest that baseline conditions and extreme events may be
associated with distinct flow mechanisms, and thus two major strategies
have been proposed to accommodate threshold behavior in watershed
models (Zehe and Sivapalan, 2009). The first strategy is the introduc-
tion of a two-domain conceptualization of soil-water movement into
numerical watershed models, whereby flow through the soil matrix or
macropore flow is responsible for small- and large-runoff events, re-
spectively (Zehe et al., 2001). The second approach postulates that the
watershed operates in multiple states or modes of behavior, and the
identification of which can be explicitly accommodated through the
model calibration process (Ali et al., 2013). A characteristic example of
this strategy is the Bayesian hierarchical framework used to calibrate
the SWAT model in Hamilton Harbour (Ontario, Canada), which en-
abled the identification of precipitation thresholds that trigger shifts to
alternative watershed states, as well as state-specific parameters to
depict extreme states with higher propensity for runoff generation
(Wellen et al., 2014a, 2014b).

Together with the process-based modelling work in the Maumee
River watershed, it is also critical to have simpler statistical models in
place that not only provide predictive statements confined within the
bounds of data-based parameter estimation, but can also constrain
processes/fluxes parameterized by mechanistic models or even validate
the corresponding forecasts drawn. A characteristic example of the
potential benefits of a data-driven model is the use of SPARROW to
validate the predicted spatial distribution of phosphorus loads in the
Maumee River watershed by the five SWAT applications (Scavia et al.,
2016c). SPARROW is a hybrid mechanistic-statistical model, with em-
pirically based parameters (i.e., land-to-water delivery coefficients,
nutrient export from different land uses, in-stream attenuation rates,
reservoir settling velocities) to estimate nutrient loading from a series of
hydrologically linked catchments and thus to delineate areas of high

risk in many Great Lakes watersheds (Kim et al., 2017; Wellen et al.,
2014a, 2014b). Interestingly, the SPARROW spatial projections were
not in complete agreement with the SWAT-ensemble predictions of
nutrient-export hot-spots in the northwestern part of the Maumee River
watershed (see Table 1 in Arhonditsis et al., 2019), and were instead
suggestive of an extensive area in the southern/southwestern Maumee
River watershed with TP loading estimates distinctly higher than
150 kg km−2 yr−1 (Scavia et al., 2016c). Thus, we can infer that the
SPARROW spatial nutrient export projections are influenced from the
explicit consideration of farm fertilizers, and livestock wastes of un-
confined animals on farms, pastures, and rangelands, as well as those in
concentrated animal feeding operations (Robertson and Saad, 2011). In
the same context, Kim et al. (2019) used the Base Flow Index (BFI) map
as an independent source of information to reconcile these projected
discrepancies in the Maumee River watershed attributes (Fig. 3). BFI is
a measure of the ratio of long-term baseflow to total stream flow, re-
presenting the slow continuous contribution of groundwater to river
flow, and therefore low (high) BFI values suggests higher (lower)
likelihood of surface runoff which in turn can lead to higher (lower)
suspended solid and particulate phosphorus loads. The consistently
lower values of the empirically obtained baseflow index in the
southern/southwestern Maumee River watershed appear to be closer to
the SPARROW rather than the SWAT spatial predictions (Fig. 3 vs
Table 1 in Arhonditsis et al., 2019). While the latter result may not be
an evidence for unequivocally ground-truthing either of the two
models, it does highlight the need for the current members of the
SWAT-ensemble to be recalibrated against data from multiple sites
across the watershed, as well as to revisit some of the fundamental
assumptions regarding the fertilizer/manure application rates in the
croplands or the spatial drainage of soils (Arhonditsis et al., 2019).

The existing SPARROW application in Lake Erie is part of the re-
gional model developed for the Upper Midwest (Great Lakes and Upper
Mississippi, Ohio, and Red River Basins orMRB3model as referred to in
Robertson and Saad, 2011), which comprised 810 sites of TP empirical
loading estimates. Lake Erie accounted for< 6% of those sites, while
the median and 90% percentile of the local loading estimates were 30%
and 70% lower than the corresponding values in the entire dataset,
respectively (Material S3 in Supporting Information section of
Robertson and Saad, 2011). The use of “cross-sectional” datasets over

Fig. 3. Comparison between TP loading predictions of SPARROW (left) and observed baseflow index (right). Low (high) index values suggests higher (lower)
likelihood of surface runoff which in turn can lead to higher (lower) suspended solid and particulate phosphorus loads.
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broader regions has been one of the pillars of the SPARROW modelling
enterprise, as this practice is deemed more suitable in unravelling the
complex patterns within a watershed context while the significant
loading range across the calibration locations typically leads to well-
identified parameters and a larger application domain (Alexander et al.,
2004). To mitigate the impact of potential outliers or non-re-
presentative calibration data, USGS has implemented a number of
procedures, including subjective data censorship of daily records for
both flow and nutrient concentrations in case they hamper obtaining a
satisfactory Fluxmaster regression fit (Schwarz et al., 2006); water
quality monitoring stations with a number of records below a certain
number are filtered out from further consideration; and stations with
Fluxmaster model errors> 50% are omitted from SPARROW calibra-
tion datasets (Robertson and Saad, 2013). These practices can neither
address the problem of datasets that disproportionately consist of
baseline- rather than event-flow samples (Long et al., 2014, 2015;
Richards et al., 2013), nor do they overcome the fact that the as-
sumption of regionally common parameters could introduce watershed-
specific bias in the characterization of fundamental processes, such as
nutrient export from different land-uses, land-to-water delivery, and in-
stream attenuation rates. An appealing alternative that could rectify

many of these problems will be the development of a Great Lakes
SPARROW model that narrows the focus of the original MRB3 model,
while maintaining its “global” character (Fig. 4). Importantly, the rigid
common parameter estimates over the entire spatial model domain can
be relaxed by the use of a hierarchical structure to estimate watershed-
specific parameters, and thus accommodate the spatial variability
within the Great Lakes basin. In addition, rather than the stringent data
censoring currently implemented, the SPARROW practice should be-
come more inclusive and instead the calibration datasets could be
coupled with measurement-error models to characterize our degree of
confidence on their quality or to accommodate the serial correlation
among nested subwatersheds (Kim et al., 2017; Wellen et al., 2012,
2014a,b; Balin et al., 2010; Carroll et al., 2006). This is an important
exercise that will consolidate the presence of an empirical modelling
tool to guide the delineation of nutrient hot-spots alongside the process-
based modelling work.

4. Risks and uncertainties with the implementation of best
management practices: what does the literature suggest?

A variety of costly BMPs have been designed to mitigate pollution

Fig. 4. The case of a Great Lakes hierarchical SPARROW: The problem of parameter estimation is viewed as a hierarchy. At the bottom of the hierarchy are the
parameters β for individual catchments j. In the next level, the spatial heterogeneity is accommodated by introducing i(=6) “regional” distributions, associated with
the basins of each waterbody of the Great Lakes system (Superior, Huron, Michigan, Ontario, Erie, Georgian Bay), which are used to draw values for the vectors
βi=[βi1, βi2, …, βij]. Similarly, in the upper stage, the regional parameters βig are specified probabilistically in terms of the global population parameters or hyper-
parameters μ and σ that correspond to the wider Great Lakes area. Coupled with the mechanistic tools for the Maumee River watershed, empirical (SPARROW-like)
models geared to depict catchment-specific (rather than continental or regional) nutrient loading conditions can offer a multitude of complementary benefits, such as
validate the spatial delineation of hot-spots with higher propensity for nutrient export, narrow down the uncertainty of processes/fluxes parameterized by me-
chanistic models, and obtain predictive statements constrained within the bounds of data-based parameter estimation.
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from diffuse sources in agricultural and urban areas (Leitão et al., 2018;
Edwards et al., 2016; Dietz, 2007; Sharpley et al., 2006). Although their
implementation has been based on the stipulation that both their short-
and long-term effectiveness are guaranteed, emerging evidence is sug-
gestive of moderate water quality improvements in many watersheds
and broad variability in their performances, often much lower com-
pared to the specs of the original design from BMP experimental studies
(Jarvie et al., 2013; Kleinman et al., 2011). This form of scenario un-
certainty can be attributed to a number of factors, such as suboptimal
design, lack of landowner participation (Fig. 5a, b), erroneous selection
of BMPs (Fig. 5c), failure to address non-point pollution sources, in-
adequate coverage of the watershed, lag time between BMP im-
plementation and distinct improvements of downstream conditions,
different efficiency between particulate and soluble nutrient forms
(Fig. 5d, e), and variability induced by extreme events and other
weather-related anomalies (Liu et al., 2017; Meals et al., 2010). In Lake

Erie, Smith et al. (2018) noted that the majority of local farmers apply P
fertilizers at or below the current recommendations, and are erro-
neously singled out as the main culprit for the recent re-eutrophication.
It was asserted that agronomic changes (e.g., no-tillage adoption, crop
cultivar advances) in the surrounding watersheds and the lack of ap-
propriate fertility guidance and practices to protect water quality could
instead be primarily responsible for the recent trends in nutrient bio-
geochemical cycles (Smith et al., 2018). The same study also questioned
whether the “law of unintended consequences” has received sufficient
consideration in the local decision-making process, as environmental
interventions can conceivably have long-term damaging effects on
ecosystem services given our limited knowledge of complex ecosystem
interactions (Smith et al., 2018; May and Spears, 2012).

In the same context, Osmond et al. (2012) raised concerns that
many important empirical findings from past conservation practices
across North America have not been incorporated into current BMP

Fig. 5. (a) Areal nutrient balance for USA and Canada, where dotted lines indicate cumulative P inputs of fertilizer and manure and dashed line represent P uptake by
crops (Bouwman et al., 2013); (b) areal nutrient balance for Ontario, Canada, with estimated P accumulation in soil for 1973–2013 (International Plant Nutrition
Institute, 2013); (c) scatterplot of reported BMP effectiveness for SRP and TP for filter strips and conservation tillage (Gitau et al., 2005), in which negative values
indicate that the BMP acts as a P source; (d) and (e) illustrate the probability distributions of BMP effectiveness on SRP and TP reduction for reduced tillage and
wetland restoration, respectively (Igras, 2016).
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guides. For example, earlier work in the area cautioned that the focus
on sediment erosion control (no-till conservation, buffer strips, and fall
fertilization) may entail a trade-off effect with elevated losses of bioa-
vailable phosphorus (Gebhardt et al., 1985; Logan et al., 1979) and
indeed recent studies by Jarvie et al. (2017) and Baker et al. (2017)
have attributed the re-appearance of HABs to the unintended con-
sequences from conservation decisions adopted 20–50 years ago
(Fig. 6). More recently, Liu et al. (2017, 2018) identified that BMP
performance assessments are predominantly based on short-term ex-
perimental studies, whereas long-term monitoring has registered vari-
able performance trends. For example, Mitsch et al. (2012) has ob-
served a gradual degradation of constructed wetlands in terms of their
effectiveness for SRP removal within 15 years of monitoring, while
Kieta et al. (2018) reported limited efficiency of vegetative buffer strips
in Great Lakes basin, where the majority of nutrients are transported
with spring freshet during the non-growing season. Similarly, Li and
Babcock (2014) reported long-term orthophosphate areal export rates
from green roofs comparable to those of highly intensive agricultural
areas. In order to minimize the discrepancy between expected and ac-
tual environmental effects, Liu et al. (2018) proposed a framework to
incorporate BMP life-cycle effectiveness into watershed management
plans by explicit accounting for: (i) the variability in starting efficiency
of each BMP type to reduce the severity of runoff and pollutant con-
centrations due to local condition differences and installation practices;
(ii) intrinsic variability of operational performance due to watershed
geophysical conditions, differential response to storm events, and sea-
sonality; (iii) non-linearity of BMP effectiveness in response to different
loading regimes as well as the expected decline in performance over
time, which in turn enforces the need for regular maintenance; and (iv)
lagged manifestation of water quality improvements after BMP

adoption due to nutrient spiraling downstream or recycling in receiving
water bodies (Fig. 6).

Promoting watershed management plans often requires financial
incentives, such as tax credits, cost-sharing, reimbursements, insurance,
and certification price premiums (Tuholske and Kilbert, 2015). The
aforementioned discrepancy in timing between BMP implementation
and water quality improvement can make the financial incentives un-
appealing, if we opt for the “pay-per-performance” practice. Failure of
selected BMPs to achieve loading reduction targets should be viewed
cumulatively as direct budget losses, environmental capital deprecia-
tion, and socio-economic values at risk (Wolf et al., 2017; Farber et al.,
2002). The consideration of BMP uncertainties into scenario analysis
would introduce financial risk assessment in strategic agro-environ-
mental management decisions by weighting the amount of the proposed
financial incentives with non-attainment risks of nutrient reduction
goals (Palm-Forster et al., 2016). The Chesapeake Bay Program (CBP)
protocol can serve as an exemplary case of comprehensive validation
guidance of BMP effectiveness based on rigorous assessment of both
treatment risks (known probabilities associated with BMP performance)
and uncertainty (lack of knowledge surrounding these probabilities).
The CBP protocol is based on transparency and inclusivity, and as such
it considers detailed literature review, expert elicitation, data collection
from local BMPs, and rigorous analysis (CBP, 2015).

To the best of our knowledge, none of the current watershed models
accounts for the life-cycle non-stationarity or overall uncertainty in
BMP effectiveness. In particular, SWWM5 does consider concentration-
dependent removal of pollutants with specific BMPs during peak and
base flows, but still relies on deterministic values of statistically sig-
nificant median influent- and effluent-event concentrations (Rossman
and Huber, 2016). Other major ecohydrological models, such as SWAT

Fig. 6. Risks and uncertainties with the BMP implementation of Best Management Practices in the Maumee River watershed. Our study highlights the importance of
designing land-use management scenarios that accommodate recent conceptual and technical advancements of the life-cycle effectiveness of various BMPs, the
variability in their starting operational efficiency, and differential response to storm events or seasonality.
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and HSPF, are either based on a deterministic (pre-specified constant)
nutrient removal effectiveness or on empirical relationships of variable
statistical power (Dorioz et al., 2006). In particular, SWAT considers the
impact of vegetative filter strips on dissolved phosphorus removal as a
linear function of surface runoff reduction. Nonetheless, the corre-
sponding regression model explains< 30% of the observed variability,
while the empirical reduction efficiency ranges from 43% to −31%
near zero runoff reduction (Dillaha et al., 1989). As a first step to ac-
commodate BMP uncertainty, we thus propose a moderate enhance-
ment with a stochastic time-invariant representation of BMP effective-
ness in watershed models (Griffin, 1995), followed by the introduction
of time-variant probability distributions for BMP life-cycle performance
(Liu et al., 2018). The proposed stochastic augmentation would allow
sampling over the uncertainty of BMP scenarios with Monte Carlo si-
mulations, thereby providing a pragmatic tool to assess the likelihood
of the achievability of the proposed nutrient-loading reduction goals.
These probabilities can then be subjected to sequential updating
through the iterative monitoring-modelling-assessment cycles of adap-
tive management, whereby our degree of confidence on the success of a
selected BMP strategy can be refined.

5. Integration of economic values of ecosystem services with the
Lake Erie modelling framework: an optional augmentation or an
emerging imperative?

Ecosystem services are the benefits that humans directly or in-
directly gain from ecosystem functions (Costanza et al., 1997). Viewing
ecosystems as providers of economically valuable benefits to humans,
the concept of ecosystem services effectively links their structural and
functional integrity with human welfare. Lake Erie, in particular, pro-
vides numerous valuable benefits by supplying drinking water for ap-
proximately 11 million people, supporting a $50 billion industrial
sector that encompasses tourism, boating, shipping, and fisheries, pro-
viding over 240,000 jobs to both the American and Canadian econo-
mies, and offering habitat for ecologically, culturally, and economically
important biotic communities (Lake Erie Improvement Association,
2012). There is, however, a pressing need to collectively protect eco-
system services that are at risk in the current degraded state of Lake
Erie. Given that environmental policy affects both the ecosystem state
and the provision of services that human societies benefit from, we
argue that the efficacy of local restoration efforts will be significantly
enhanced by a rigorous framework that quantifies the economic bene-
fits from a well-functioning ecosystem. Rather than solely acknowl-
edging their vulnerabilities, the actual quantification of the value of
ecosystem services is critical when considering trade-offs among di-
verse policies.

The rationale behind ecosystem valuation is to explicitly describe
how human decisions affect ecosystem service values and to express
these changes in monetary units that allow for their incorporation in
the decision-making process (Pascual et al., 2010). Current markets
provide information about the value of a limited subset of ecosystem
services that are priced as commodities (Pascual et al., 2010), which
poses challenges in our ability to estimate values of a comprehensive set
of ecosystem services typically considered in the decision-making pro-
cess (Millennium Ecosystem Assessment, 2005). To best communicate
the trade-offs among policy choices, ecosystem service valuation must
examine the marginal improvement in ecosystem services attributable
to a policy change. For example, Isely et al. (2018) estimated that a $10
million investment to restore the Muskegon Lake Area of Concern
would have a return on investment of approximately 6:1, or in other
words, an added $50 million in environmental value over a 20-year
period due to increased property prices and a more attractive recrea-
tional environment. Although extensive resources and capital are re-
quired to conduct ecosystem service valuation, the outcome of such an
exercise places a premium on the communication of policy trade-offs in
economic terms (commercial goods/services or non-market values such

as the average consumer's willingness to pay), thereby increasing sta-
keholder engagement and societal relevance of conservation actions
(Egoh et al., 2007).

Economic values of ecosystem services can help policy-makers de-
termine the optimal degree of investment and action needed at each
time step by defining the monetary trade-offs from different courses of
management action (Fig. 7a). At the beginning of each restoration ef-
fort, the total returns and benefits are typically commensurate with the
costs and investments, but this pattern may not hold true after a certain
point, where we get diminishing (and ultimately negative) returns and
marginal benefits. Viewed from this perspective, the question arising is
how likely is it to experience environmental improvements propor-
tional to the socioeconomic investments required (steep linear segment
in Fig. 7a), given the presence of a wide array of feedback loops, eco-
logical unknowns, and external factors (i.e., internal loading, dreissenid
mussels, different trends between TP and DRP loading, changing cli-
mate and increased frequency of extreme events) in Lake Erie? Even
more so, our analysis also highlights an additional layer of complexity
that we need to factor in during the decision making process; namely, as
we opt for drastic (and likely more costly) management actions that
differ significantly from current conditions (right end of Fig. 7a), the
forecasting error increases significantly (see Fig. 6c, d in Arhonditsis
et al., 2019) and so does the likelihood of realizing benefits that are
distinctly lower than our original investments. Do we have enough
leeway to keep the investments to the environment going? While these
assertions seem to paint a pessimistic picture about the challenges and
associated risks with the next steps in Lake Erie, it is important to delve
into (somewhat underappreciated) ideas, such as the Total Economic
Value (TEV) of the ecosystem, the degree of our knowledge of the
monetary value of ecosystem services in Lake Erie, and the mismatch
between the scales where environmental goals are being set and the
spatiotemporal domain that predominantly influences the perception of
the public (Kim et al., 2018; Ramin et al., 2018).

To facilitate ecosystem service valuation, the TEV framework can
relate a wide array of ecosystem services to human well-being in
monetary terms (Fig. 7b). Direct use values are derived from the uses
made of Lake Erie's resources and services, such as drinking water and
the natural environment for recreation, while indirect use values are
associated with Lake Erie's natural functions, such as nutrient removal
and ability to provide fish habitat, refugia, and nursery. TEV typology
also helps to identify non-use values that are unrelated to present or
future uses, but instead reflect the value associated with the Lake Erie's
existence: option, bequest, and existence values (Gilpin, 2000). Option
value is the willingness-to-pay a certain amount today to ensure the
available use of a benefit provided by Lake Erie in the future. Bequest
value refers to the willingness-to-pay to preserve Lake Erie for the
benefit of other people, both in the present and future. Existence value
is the value attached to knowing that Lake Erie and its benefits exist,
even if the individual does not intend to ever actively use them. The
Great Lakes, including Lake Erie, provide a wide array of ecosystem
services, although they have yet to be comprehensively inventoried
(Steinman et al., 2017). Efforts have been underway to rigorously assess
the status of ecosystem services and facilitate future valuation studies in
Lake Erie. Allan et al. (2017) mapped the distribution of ecosystem
services in the Lake Erie basin, while Annis et al. (2017) delineated
optimal areas for the conservation of multiple ecosystem services in the
nearshore zone of western Lake Erie.

In this context, research on ecosystem service valuation in Lake Erie
has concentrated in water quality improvements, erosion risk reduc-
tion, recreation, and recreational fishing (see Table 2 for details on the
methods used for these valuation studies). Brox et al. (1996) conducted
a contingent valuation survey to estimate the willingness to pay up to
be $4.50 per household per month (19% of the average water bill) for
residential water quality improvements. Likewise, Kriesel et al. (1993)
found that the closer a lakefront property was to Lake Erie, the more the
homeowner was willing to pay for to reduce the risk of damage from
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shoreline erosion. Building upon this finding, Dorfman et al. (1996)
predicted that owners of high-risk properties would pay an average of
$37,826 to effectively eliminate erosion risk, a fairly high amount given
that the average selling property price in the study sample was
$127,800 at that time. To estimate the value of reducing beach ad-
visories in Lake Erie, Murray et al. (2001) surveyed visitors at 15 Lake
Erie beaches in the summer of 1998 and estimated the average seasonal
benefits of reducing one advisory to be $28 per visitor per year, while
Chen (2013) more recently projected that day trips to a public Great
Lakes beach (including Lake Erie) were valued at $32–39 per visitor.
Importantly, Palm-Forster et al. (2016) estimated that a full-season
closure for a single public beach in Lake Erie would result anywhere
from $1.96 to $2.21 million depending on the valuation method used.
Along the same line of evidence, Hayder and Beauchamp (2014) esti-
mated that in 2018, the Great Lakes (including Lake Erie) provided
approximately $7.76 billion in recreational benefits (recreational
boating, wildlife viewing, and beach and lakefront use) and that value
would increase to $354 billion after 50 years. In the same context, Kelch

et al. (2006) found that angling in Lake Erie was valued at $36–46 per
trip and also showed that an annual $0.6 million stocking program
could result in a river steelhead fishery of $12–$15 million per year in
Ohio. According to Sohngen et al. (2015a), angling trips in Lake Erie
could be valued up to $88 per trip or total expenditures in the economy
that amount to $67.1 million per year, while Wolf et al. (2017) esti-
mated that fishing-license sales drop between 10% and 13% when algal
conditions exceed the World Health Organization's risk-advisory
threshold of 20,000 cyanobacteria cells mL-1. The latter study con-
cluded that a wide-scale, summer-long algal bloom in Lake Erie would
reduce fishing licenses issued by 3600 and fishing expenditures by
$2.25–5.58 million.

Ecosystem service valuation can facilitate the active involvement of
stakeholders and allow for new insights and knowledge to be passed
into the decision-making process. This can be particularly helpful in
Lake Erie given its complex ecology and diverse stakeholder groups
with divergent goals, priorities, and values (Egoh et al., 2007). In-
tegrating scientific knowledge with ecosystem service values can

Fig. 7. (a) Benefits accrued resulting from costs invested in an environmental restoration project. At the beginning of each restoration effort, the total returns and
benefits are typically commensurate with the costs and investments, but this pattern may not hold true after a certain point, where we get diminishing (and ultimately
negative) returns and marginal benefits. (b) Breakdown of Lake Erie's ecosystem services using the Total Economic Value (TEV) framework.
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promote knowledge co-production and co-learning among technical
experts, stakeholders, and decision-makers (Laniak et al., 2013). For-
tunately, the wealth of watershed and aquatic ecosystem models in
Lake Erie offers an excellent foundation upon which relationships
among human actions, water quality trends, multiple ecosystem goods
and services, and associated changes in values can be depicted (Fig. 8).
A characteristic example of the insights that could be gained by such an
integrated modelling framework was the study presented by Roy et al.
(2010, 2011), which examined the likelihood to find an optimal bal-
ance between the conflicting interests of two societal groups, “food
producers” and “recreational water users”, in Sandusky Bay. The latter
group includes coastal homeowners, recreational lake users, and local
firms that serve recreational lake users, whereas the former represents
agricultural operations that generate revenues by activities that in-
creased lake eutrophication. The proposed addition of a socioeconomic
component to the existing integrated watershed-receiving waterbody
models will allow the rigorous evaluation of conservation actions and
identification of options that allocate financial incentives (direct pay-
ments, tax credits, insurance, and stewardship certification benefits)
cost-effectively by funding practices with high predicted environmental
benefits per dollar invested (Palm-Forster et al., 2017).

Consistent with our criticism regarding the skill assessment of the
existing modelling work against aggregated spatiotemporal (seasonal/
annual, basin- or lake-wide) resolutions (Arhonditsis et al., 2019), we
also question the adequacy of the coarse scales selected to establish
nutrient loading targets and water quality indicators in Lake Erie
(Scavia et al., 2016b). This strategy is neither reflective of the range of
spatiotemporal dynamics typically experienced in the system nor does it
allow us to evaluate our progress with ecosystem services at the degree
of granularity required to assess the public sentiment. It would seem
paradoxical to expect a single-valued standard, based on monitoring
and modelling of offshore waters, to capture the water quality condi-
tions in nearshore areas of high public exposure (e.g., beaches). The
degree of public satisfaction is primarily determined by the prevailing
conditions at a particular recreational site and given date, and not by

the average water quality over the entire basin (or lake) and growing
season. In our view, the problems with the outdated practice to basing
the water quality assessment on the offshore zone with a coarse time
scale are twofold: (i) we cannot effectively track the progress with the
response of the system, as it is not clear to what extent an incremental
improvement in the open waters is translated into distinct changes in
the nearshore; and (ii) the environment targets and decisions are im-
plicitly disconnected from our aspiration to protect ecosystem services
and gauge public satisfaction at the appropriate resolution. In the
context of adaptive management, we believe that the critical next steps
involve the determination of appropriate metrics and scales of expres-
sion along with the design of a monitoring program that will allow us to
effectively track the progress of the system in both time and space
(Table 1). Depending on the ERI considered, there are different areas for
future augmentation in order to more comprehensively monitor the
response of Lake Erie. In particular, the assessment of the trophic status
may be more appropriate to revolve around extreme (or maximum al-
lowable) phytoplankton or TP levels and must explicitly accommodate
all the sources of uncertainty by permitting a realistic frequency of
violations (Kim et al., 2018; Arhonditsis et al., 2016). Rather than any
type of data averaging, we advocate the assessment of compliance
against the proposed probabilistic criteria using daily snapshots col-
lected regularly from different sites during the growing season. The
development of the “cyanobacteria index” is certainly useful, but given
the technical limitations of the satellite images, we also need other
cHAB proxy variables that will be collected regularly from the system,
including toxins, e.g., Microcystin-LR (Kelly et al., 2019). The estab-
lished thresholds for drinking water (1.5 μg L−1) and recreational pur-
poses (20 μg L−1) offer easily defensible targets to track the frequency
of compliance of Lake Erie in time and space. Regarding the hypoxia
and Cladophora ERIs, given our limited mechanistic and quantitative
understanding of the primary driving factors, we also propose the de-
velopment of systematic records for variables that represent direct
causal factors of the actual problem, such as phosphorus content in the
Cladophora tissues, characterization of the organic matter and

Fig. 8. Relationships among human actions, water quality changes, multiple ecosystem goods and services, and associated changes in values in Lake Erie. The
proposed addition of a socioeconomic component to the existing integrated watershed-receiving waterbody models will allow the rigorous evaluation of conservation
actions and identification of options that allocate financial incentives cost-effectively by funding practices with high predicted environmental benefits per dollar
invested. (Modified from Keeler et al., 2012)
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phosphorus fractionation in the sediments, is the most prudent strategy
to move forward.

6. Conclusions

With a wealth of models developed, the next steps of the modelling
enterprise should be strategically designed to serve the aspiration of a
sustainable resource management in Lake Erie. Rather than “re-
inventing the wheel” by building new models that bear significant si-
milarity to the ones that are already in place (Mooij et al., 2010), it is
critical to craft augmentations that will effectively complement the
existing work. In particular, the presence of multiple SWAT applications
provides assurance that a wide array of physical, chemical, and biolo-
gical processes with distinct characterizations are considered to re-
produce the patterns of flow and nutrient export in agricultural settings,
like the Maumee River watershed. As noted in our companion paper
(Arhonditsis et al., 2019), even though there are models with me-
chanistically more advanced representation of certain facets of the
hydrological cycle (surface runoff, groundwater and sediment erosion)
or better equipped to depict urban environments (e.g., MIKE SHE,
SWMM), we believe that greater insights will be gained by revisiting
several influential assumptions (tile drainage, fertilizer/manure appli-
cation rates, land-use/land-cover data) and recalibrating the existing
applications to capture both baseline and event-flow conditions and
daily nutrient concentration (not loading) variability in multiple loca-
tions rather than a single downstream site. Of equal importance is to
redesign the land-use management scenarios to accommodate recent
conceptual and technical advancements of the life-cycle effectiveness of
various BMPs, the variability in their starting operational efficiency,
and differential response to storm events or seasonality. One of the focal
points should also be the role of legacy P along with the hydrological
and biotransformation mechanisms that modulate DRP loading trends.
The assessment of the flow-concentration patterns for N species and the
characterization of processes associated with the nitrogen cycle are still
missing in the Lake Erie basin, even though nitrogen could be one of the
regulatory factors of the downstream water quality conditions; espe-
cially with respect to the composition of the algal community
(Arhonditsis et al., 2019; Kim et al., 2019). Coupled with the me-
chanistic tools for the Maumee River watershed, empirical (SPARROW-
like) models geared to depict basin-specific (rather than continental or
regional) nutrient loading conditions can offer a multitude of com-
plementary benefits, such as validate the spatial delineation of hot-
spots with higher propensity for nutrient export, narrow down the
uncertainty of processes/fluxes parameterized by mechanistic models,
and obtain predictive statements constrained within the bounds of data-
based parameter estimation.

Counter to the watershed modelling framework for the Maumee
River watershed, the multi-model approach for Lake Erie included both
data-oriented and process-based models to examine the ERI achiev-
ability under different nutrient loading conditions. The former models
(UM-GLERL and NOOA Western Basin HAB models) established causal
linkages between cHAB proxies and external phosphorus loading. Their
foundation upon statistical parameter estimation allows for rigorous
predictive uncertainty assessment, and thus they represent a pragmatic
means to draw forecasts regarding the severity of cHABs. Two critical
next steps to further augment the empirical modelling work is the
iterative updating as more data are acquired through monitoring and
the introduction of additional explanatory variables that likely favor
the occurrence of cyanobacteria-dominated blooms. After all, while the
availability of phosphorus may hierarchically be one of the primary
conditions for cyanobacteria dominance, there are several other factors
(e.g., nitrogen, iron, light availability, water column stability, and
water temperature) that can ultimately determine the winners of the
inter-specific competition within the phytoplankton assemblage (Kelly
et al., 2019). Because the majority of the process-based models
(ELCOM-CAEDYM, WLEEM, EcoLE) are far from being constrained by

the available data, their primary use has been (and should continue to
be) as heuristic tools to advance our understanding of the lake func-
tioning (e.g., potential role of dreissenids, relative importance of me-
teorological forcing vis-à-vis nutrient availability on the severity of
hypoxia), whereas their predictive power is still under question
(Arhonditsis et al., 2019).

With respect to the load-response curves presented by Scavia et al.
(2016a,b), the forecasting exercise related to the overall summer phy-
toplankton biomass in the western basin has a lot of potential to assist
the local management efforts. The next augmentations should focus on
the development of more reliable empirical model(s) that will connect
chlorophyll a with a suite of significant predictors, and the advance-
ment of the representation of several factors that could modulate the
phytoplankton response to external nutrient loading reductions, such as
the degree of reliance of phytoplankton growth upon internal nutrient
sources (e.g., microbially mediated regeneration, P loading from the
sediments), or the strength of top-down control (Arhonditsis et al.,
2019). The coupling of empirical and process-based models to predict
the cHAB likelihood of occurrence under reduced loading conditions
offers a robust foundation to evaluate competing hypotheses and ad-
vance our knowledge on the suite of factors that may trigger cyano-
bacteria dominance in Lake Erie. However, as our companion paper
underscored, it is important to recognize that the reported range of
cumulative Maumee March–July loads of 890–1150 MT for achieving
the cHAB target is likely narrow and does not capture the actual un-
certainty with this ERI (Arhonditsis et al., 2019). We also remain
skeptical with the optimistic projections of the extent and duration of
hypoxia, given our limited knowledge of the sediment diagenesis pro-
cesses in the central basin and the lack of data related to the vertical
profiles of organic matter and phosphorus fractionation or sedimenta-
tion/burial rates. Without this piece of information is practically im-
possible to quantitatively characterize feedback loops of elevated in-
ternal loading and sediment oxygen demand, even when the prevailing
conditions in the water column are improved, and thus offer strategic
foresights into the likelihood to experience a delayed response of the
sediments to reduced nutrient loading. It is important to keep in mind
that one of the pillars of adaptive management is resilience thinking by
monitoring existing problems, highlighting emerging threats, and re-
defining the research agenda (Cook et al., 2014; Johnson et al., 2013).
In terms of the beach fouling by Cladophora blooms, the current mod-
elling efforts have been insightful but further enhancement of their
predictive value requires a high-resolution study of the northeastern
nearshore zone to elucidate the relationships among abiotic conditions,
internal P content, and sloughing rates in the local mats.

From a management standpoint, it is important to note that the
complex mechanistic models are an absolutely worthwhile activity and
will continue to assist the on-going management efforts in a meaningful
way. Consistent with Anderson et al. (2006) views, we believe that
prediction is not everything. Even if the structure of complex mathe-
matical models reduces their forecasting power or even the ability to
conduct rigorous uncertainty analysis, they still offer excellent plat-
forms to gain insights into the direct, indirect, and synergistic effects of
the ecological mechanisms forming the foundation of system behavior
(Arhonditsis, 2009). For example, the virtual 3-D environment created
by ELCOM-CAEDYM and/or WLEEM can offer a convenient platform to
reconcile the coarse-scale (practically offshore) predictions, required to
assess the ERI achievability, with the granularity that necessitates to
elucidate nearshore processes and associated ecosystem services. Even
more so, their dynamic integration with the watershed modelling fra-
mework will allow to trace the fate of nutrients and suspended solids
transported by the Maumee River (and other major tributaries), and
generate hypotheses about their impact on the timing and locations
where structural shifts in the algal assemblage may occur. Furthermore,
being an integral part of the iterative monitoring-modelling-assessment
cycles, the foundation of the mechanistic modelling work in Lake Erie
can be optimized through reduction of the uncertainty of critical
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ecological processes or refinement of their structure (e.g., mathematical
reformulation of highly sensitive terms, exclusion of irrelevant me-
chanisms and inclusion of missing ones), thereby augmenting their
ability to support ecological forecasts (Arhonditsis et al., 2007). It is
thus critical that one of the priorities of the research agenda should be
to maintain the ensemble character of the modelling work in Lake Erie.
The wide variety of models that have been developed to understand the
major causal linkages/ecosystem processes underlying the local water
quality problems are a unique feature that should be embraced and
further consolidated.

Our analysis questioned the adequacy of the coarse spatiotemporal
(seasonal/annual, basin- or lake-wide) scales characterizing both the
modelling enterprise and water quality management objectives in Lake
Erie. More than anything else, this strategy seems somewhat dis-
connected from the ecosystem services targeted under Annex 4 of
GLWQA. In the same context, we argued that ecosystem service va-
luation can facilitate the decision-making process by identifying cost-
effective restoration actions, as we track the evolution of the system
over time. While adaptive management and ecosystem service valua-
tion are not typically used together to support the decision-making
process, they are exceptionally complementary. Both approaches assess
ecological systems empirically and are policy-oriented as they describe
management implications for stakeholders (Epanchin-Niell et al.,
2018). To advance the operationalization of this integrative approach
will however require greater interaction among different types of ex-
perts of methods, models, and data in social, economic, and environ-
mental sciences. Applying an integrated adaptive management-eco-
system services framework places a premium on articulating policy
trade-offs, and therefore has the potential to facilitate the management
decisions in the face of uncertainty.
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