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a b s t r a c t

Freshwater ecosystems can experience harmful algal blooms, which negatively impact recreational uses,
aesthetics, taste, and odor in drinking water. Cyanobacterial toxins can have dire repercussions on
aquatic wildlife and human health, and the most ubiquitous worldwide are the hepatotoxic compounds
known as microcystins. The factors that influence the occurrence and magnitude of cyanobacteria
blooms and toxin production vary in space and time and remain poorly understood. It is within this
context that we present a suite of statistical models, parameterized with Bayesian inference techniques,
to link the retrospective analysis of important environmental factors with the probability of exceedance
of threshold microcystin levels. Our modelling framework is applied to the Bay of Quinte, Lake Ontario,
Canada; a systemwith a long history of eutrophication problems. Collectively, 16.1% of the samples of the
system collected during the study period (2003e2016) exceeded the drinking water guideline of
1.5 mgL�1, while approximately 3% of recorded values exceeded the recommended recreational threshold
of 20 mgL�1. Using a segmented regression model with a stochastic breakpoint of microcystin concen-
trations estimated at 0.54 mg L�1, we demonstrate that the environmental conditions associated with
increased probability of exceedance of the drinking water standard are chlorophyll a concentration
�7 mg L�1, water temperature �20 �C, ammonium concentration �40 mgL�1, total phosphorus concen-
tration �25 mg L�1, and wind speed �37 km h�1. Considering the multitude of factors that can influence
the ambient levels of toxins, our study argues that the adoption of probabilistic water quality criteria
offers a pragmatic approach to accommodate the associated uncertainty by permitting a realistic fre-
quency of violations. In this context, we present a framework to evaluate the confidence of compliance
with probabilistic standards that stipulate less than 10% violations of microcystin threshold ambient
levels.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Cyanobacteria-dominated harmful algal blooms (cHABs) are a
growing concern in freshwater ecosystems globally (Scholz et al.,
2017). Often manifested as dense surface scums, cHABs may be

responsible for significant environmental and socioeconomic im-
pacts (Dodds et al., 2009; Watson et al., 2015), particularly due to
the production of cyanotoxins which can have adverse health ef-
fects on those utilizing surface waters for drinking water and rec-
reational activities (Carmichael and Boyer, 2016). The most
ubiquitous cyanotoxins in freshwater ecosystems worldwide are
the family of hepatotoxic compounds known as microcystins (MCs)
(WHO, 2003). Several cyanobacterial taxa can synthesize MCs,
particularly the major bloom-forming genera, Microcystis, Doli-
chosphermum, formerly called Anabaena, and Planktothrix (Pick,
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2016). Grouped according to their amino-acid composition and
methylation, MCs comprise ~90 variants with varying levels of
toxicity; themost toxic of which areMC-LR andMC-LA (Sivonen and
Jones,1999).MCs are highly resistant to degradation and can persist
in the water column several weeks after a visible cyanobacterial
bloom (Zastepa et al., 2014). Conventional drinking water treat-
ment methods (i.e., chlorination, coagulation, boil-water advi-
sories) are often ineffective in eliminating MCs, and therefore costs
for additional water purification measures can be significantly
increased (Zamyadi et al., 2012). MCs pose human and animal
health risks, through ingestion of contaminated drinking water or
consumption of contaminated fish/shellfish (Watson et al., 2015).
Many regulatory bodies have implemented water quality guide-
lines for MC concentrations (mostly based on the specific variant
MC-LR) to protect human and animal health, ranging from 0.3 to
1.6 mg L�1 for drinking water (WHO, 2011; U.S. EPA, 2015; HC, 2017),
and �20 mg L�1 for recreational uses (HC, 2017).

Research into the environmental factors that influence cyano-
toxin production has intensified over the past decade (Heisler et al.,
2008; Pick, 2016). Similar to the ambient conditions influencing
cyanobacterial blooms (i.e., nutrients, light, temperature, water
column stability, grazing pressure), frequently identified environ-
mental factors co-varying with ambient toxin levels have included,
alone or in combination, elevated cyanobacterial (particularly
Microcystis) biomass, chlorophyll a and nutrient concentrations,
surface water temperature, wind speed and/or direction (Francy
et al., 2016; Harris and Graham, 2017; Jacoby et al., 2000; Kotak
et al., 2000; Wood et al., 2017). Likewise, total nitrogen to total
phosphorus (TN:TP) ratio has been hypothesized to be a significant
regulatory factor (Orihel et al., 2012; Scott et al., 2013; Jacoby et al.,
2015), and so has the relative abundance of different nitrogen (N)
species that may also modulate the toxicity of MC variants pro-
duced (Monchamp et al., 2014; Scott et al., 2014). Nonetheless,
despite all the active research, the causal relationships and mech-
anisms leading to high MC events still remain elusive (Scholz et al.,
2017; Harris and Graham, 2017). The dynamic response of cyano-
bacteria to changes in environmental conditions results in blooms
that are highly variable in space and time (Stumpf et al., 2012). It
has also been reported that the genetic capacity of cyanobacteria to
produce toxins varies among taxa or even within strains of the
same species (Rinta-Kanto et al., 2009), while both toxic and non-
toxic genotypes can coexist within the same population and
actively compete for the same natural resources (Kardinaal et al.,
2007).

Understanding the site-specific mechanisms that drive the
variability of MC concentrations is important to the water quality
assessment process and ultimately to the development of effective
water management policies. In this context, a major challenge is to
interpret the data from a limited amount of samples and determine
whether an apparent violation of toxin threshold levels warrants
classifying a system as impaired or actions taken to address water
quality degradation have brought about the desired improvements
(Smith et al., 2001; Zhang and Arhonditsis, 2008). Considering the
multitude of factors that can modulate the ambient levels of toxins,
the adoption of probabilistic criteria offers a pragmatic approach to
accommodate the associated uncertainty by permitting a realistic
frequency of violations; that is, a system in question will be clas-
sified as impaired only if more than 10% of the samples collected
exceed a critical toxin concentration. Another important step to
establish an operational procedure is the coupling of predictive
models with uncertainty analysis that will allow a shift in the focus
from the mean model predictions to the tails of the derived error
distributions. In doing so, we can draw predictive statements about
the fraction of MC events that exceed a pre-specified critical risk
level (Borsuk et al., 2002; Zhang and Arhonditsis, 2008; Ramin

et al., 2011). To date, less than a handful of studies have attemp-
ted to connect the prevailing environmental conditions with the
likelihood of violations of water quality guidelines forMC threshold
concentrations (Yuan et al., 2014; Hollister and Kreakie, 2016;
Taranu et al., 2017).

It is within this context that we present a Bayesian modelling
framework to identify thresholds of environmental factors influ-
encing high MC events, while providing a probabilistic assessment
of the risk of encountering violations. Our analysis aims to shed
light on the nature of the relationships between MCs and several
potentially important predictor variables, accounting for the
nutrient concentrations, temperature, and meteorological condi-
tions. Special emphasis is given to the chlorophyll a concentration,
which is a frequently used surrogate variable of total phyto-
plankton biomass and is considered one of the most reliable pre-
dictors of toxin concentrations. We also illustrate a methodological
framework to evaluate the confidence of compliance with candi-
date probabilistic standards that stipulate less than 10% violations
of potential MC thresholds with different sample sizes and prior
beliefs based on our empirical knowledge (Fig. 1). To showcase this
modelling framework, we used data collected from the Bay of
Quinte (Lake Ontario, Ontario, Canada), a system that has been
experiencing water quality issues, and where the elimination of
cHABs represents one of the major challenges of eutrophication
management (Arhonditsis et al., 2016).

2. Materials and methods

Study site and probabilistic standards: The Bay of Quinte is a Z-
shaped embayment located on the northeastern shore of Lake
Ontario, Ontario, Canada (Fig. 1). Surrounded by a >18000 km2

watershed, the Bay of Quinte has a total surface area of 254 km2

that is divided into three segments: the upper bay is large and
shallow (136 km2, mean and maximum depth of 3.5m and 8m,
respectively); the middle bay is smaller but deeper (49 km2, mean
depth 5.2m, maximum depth 17m) and represents an intermedi-
ate zone between the upper and lower bay, which is a deep and
fjord-like system (72 km2, mean depth 24.4m, maximum depth
66m) directly connected with Lake Ontario. As a result of decades
of cultural eutrophication, the Bay of Quinte has been experiencing
significant water quality problems, including the frequent occur-
rence of spatially extensive algal blooms and predominance of toxic
cyanobacteria; most notably, the emergence of the MC-producing

Fig. 1. The logic of the modelling framework used to evaluate the degree of impair-
ment of the Bay of Quinte, regarding the frequency of violations of MC drinking water
and recreational guidelines.
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Microcystis aeruginosa after the invasion of zebra (Dreissena poly-
morpha) and quagga (D. bugensis) mussels in the mid-1990s
(Nicholls et al., 2002). Consequently, eutrophication management
in the area has primarily focused on the eradication of harmful algal
blooms and restoration of optimal water quality conditions through
reduction of external nutrient loading. Nonetheless, recent empir-
ical and modelling evidence highlighted internal recycling as
another key factor that shapes phosphorus dynamics in the Bay of
Quinte (Kim et al., 2013; Doan et al., 2018). While the flow from
Trent River is the predominant driver of water quality in the
innermost area of the system (Fig. 2), the sediments in the upper
and middle bay release a significant amount of phosphorus and the
corresponding fluxes are modulated by the macrophyte and
dreissenid activity (Kim et al., 2013). From a management
perspective, the presence of an active nutrient regeneration
mechanism suggests that the benefits of additional reductions of
the external point and non-point loading may not be realized
within a reasonable time frame (i.e., 5e10 years). In fact,
Arhonditsis et al. (2016) showed that the restoration pace of the
system could be slow, with no clear evidence of an establishment of
an alternative stable state (Janse et al., 2010), even if the riverine
total phosphorus concentrations reach levels significantly lower
than their contemporary values, <25 mg TP L�1.

Water quality targets are based on an aggregated spatiotem-
poral (i.e., seasonal and system-wide) scale and are currently set at
30 mg L�1 and 10e12 mg L�1 for total phosphorus (TP) and chloro-
phyll a (hereafter chl a) concentrations, respectively (Arhonditsis
et al., 2016). However, the adequacy of the coarse scale selected
to establish water quality standards has been challenged, since it
neither captures the intra-annual variability in the upper bay, nor
does it represent the dynamics in nearshore areas of high public
exposure, e.g., beaches (Kim et al., 2013, 2018; Arhonditsis et al.,
2016). A single-valued water quality standard, monitored in a few
offshore sampling stations, is unlikely to reflect the entire range of
conditions experienced in time and space, including episodic
events, such as excessively high end-of-summer ambient TP levels
or cHABs (Kim et al., 2013). Instead, it has been advocated that the

water quality targets should revolve around extreme (and not
average) values of variables of management interest and must
explicitly accommodate all the sources of uncertainty by permitting
a realistic frequency of standard violations. Namely, Arhonditsis
et al. (2016) have proposed the critical threshold TP level should
be set at a value of 40 mg L�1, which cannot be exceeded in more
than 10e15% of the samples collected from selected monitoring
sites during the growing (MayeOctober) season. Based on empir-
ical evidence that the TP concentrations in the Bay of Quinte follow
a log-normal distribution and that TP values< 15 mg L�1 are typi-
cally registered in only 10% of the collected samples, 10e15%
exceedances of the 40 mg TP L�1 level are approximately equivalent
to a targeted seasonal average of 25e28 mg TP L�1. Similar proba-
bilistic criteria to more comprehensively monitor the progress of
the prevailing conditions with cHABs in the bay have not been
proposed.

Dataset description: We compiled concurrent MC, water qual-
ity, andmeteorological data from several monitoring programs. The
Bay of Quinte Harmful Algal Blooms (BQHABs) initiative and Envi-
ronment and Climate Change Canada (ECCC) have monitored water
quality since 2003 (Watson et al., 2011). The Bay of Quinte Algae
Watch (BQAW) program intensively sampled MCs and selected
chemical and physical parameters over the course of a 4-year
period (2010e2013). Under these programs, water samples, water
columnprofiles, totalMCs, and related site datawere collected from
various locations throughout the Bay of Quinte (i.e., beaches, em-
bayments, offshore waters, downstream sites of wastewater treat-
ment plant discharges, macrophyte beds, and river mouths). For all
programs, total MCs were analyzed using an enzyme-linked
immunosorbent assay (ELISA) and protein phosphatase inhibition
assay (PPIA) (Watson et al., 2007). A suite of water quality param-
eters were measured from selected water samples and analyzed
following standard methods at the National Laboratory for Envi-
ronmental Testing in Burlington, Ontario (Watson et al., 2007,
2011).

Data collected from the BQHABs, BQAW, and ECCC surveys were
combined with information from the Drinking Water Surveillance

Fig. 2. Map of the Bay of Quinte, Lake Ontario (Ontario, Canada), and sampling stations collected by various agencies. Abbreviations in the legend stand for: Environment Canada
(EC), Remedial Action Plan (RAP), Department of Fisheries and Oceans (DFO), Ministry of Natural Resources (MNR).
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Program (DWSP) (https://www.ontario.ca/data/drinking-water-
surveillance-program) for the Belleville Drinking Water System
plant. Operated by the Province of Ontario's Ministry of the Envi-
ronment and Climate Change (MOECC), in partnership with mu-
nicipalities, the DWSP is a voluntary program that monitors water
quality at selected municipal drinking water systems in order to
gather information on drinking water quality in Ontario. Rawwater
samples were collected on a weekly basis from June to November
(2011e2013) from inside the water treatment plant prior to addi-
tion of treatment chemicals, and thus the samples represent the
water at the source. A series of microbiological, inorganic and
organic chemical parameters, water temperature, emerging com-
plex contaminants were monitored by drinking water systems staff
and analyzed with standard methods at the MOECC Laboratory
Services Branch (MOE, 2010). Additional data for chl a for the Bel-
leville Drinking Water System plant were reported under the Great
Lakes Intake Program (https://www.ontario.ca/data/lake-water-
quality-drinking-water-intakes).

We compiled meteorological data from the ECCC digital archive
of Canadian climatological data (http://climate.weather.gc.ca/). We
accessed publicly available data from Trenton A weather station
(Climate ID 6158875), which is the closest (<25 km) to the majority
of the monitoring sites shown in Fig. 2, with consistent records
throughout our study period. The first hypothesis examined was
the presence of a lagged relationship between meteorological
forcing and dominance of Microcystis in the summer algal assem-
blage or microcystin production. We examined a number of ex-
pressions that connected the microcystin ambient levels with the
antecedent meteorological conditions (e.g., wind speed, wind di-
rection, precipitation, air temperature, and evapotranspiration),
such as moving time windows that averaged each of the weather-
related variables for up to ten days prior to the measured micro-
cystin concentrations. None of the tested permutations out-
performed the models that considered contemporaneous values of
the meteorological predictors. Given the large number of environ-
mental (water quality and meteorological) predictors available, we
chose to retain a subset based on three criteria: (i) those that had
been found to influence MC concentrations in previous studies on
freshwater systems; (ii) those that are used as primary indicators of
local ecosystem conditions (Munawar et al., 2012); and (iii) data
availability. Thus, our MC statistical models are based on the
following predictors: TP and ammonium (NH4

þ) concentrations,
wind speed, water temperature, and chl a concentrations. In the
absence of water column stratification records, we usedwind speed
(measured as the maximum instantaneous gust recorded over an
elapsed time of 3e5 s during the day, km h�1) as a proxymeasure of
water column stability, assuming that gustier days correspond to
greater water column mixing and lower water column stability
(Kann and Welch, 2005). It is also important to note that the
consideration of multiple predictors for our statistical models
reduced the total sample size (i.e., N¼ 186 across all the locations
monitored over the course of our study), and the data used were
mainly based on offshore waters and less so on beaches, embay-
ments, macrophyte beds, and river mouths.

Bayesian modelling framework: Our first statistical model
(Bernoulli model) examines the likelihood exceedance of an
established drinking water standard for MC, equal to 1.5 mg L�1,
given different combinations of environmental conditions (HC,
2017). This model postulates that the violation of a MC standard
resembles a Bernoulli process, such that the collected samples
represent a sequence of independent identically distributed Ber-
noulli trials (Mahmood et al., 2014; Shimoda et al., 2016). For every
sample collected, the model calculates the likelihood of violating
the MC threshold level independently from the previous or sub-
sequent samples, while the probability p of a certainMC violation is

determined by a series of potentially important causal factors, such
as nutrient concentrations, water temperature, or meteorological
conditions. The causal relationship between the probability of
violation occurrence of the 1.5 mgMC L�1 threshold and environ-
mental conditions was modeled using logistic regression:

MCexceedanceðiÞ
���piðb0;bx; xiÞ � BernoulliðpiÞ

logitðpiÞ¼b0 þ
X

bx,lnðxiÞ

b0; bx � Nð0; 10000Þ

i¼1…М ; x ¼ NHþ
4 ;WT;Wind; TP; Chl a

where MCexceedance(i) denotes the violation (or not) of the MC
threshold (1 or 0) in the ith sample; xi corresponds to the value of
each of the predictors in the same sample; and b0 and bx are the
regression coefficients which were assigned flat (or diffuse) normal
prior distributions with mean 0 and variance 10000; andM (¼186)
is the size of our dataset.

Our second model aimed to examine the strength and mono-
tonicity of the relationship between total MC and chl a concentra-
tions within the domain delineated by our dataset. In particular, we
use segmented (or piecewise) simple regression to identify a
breakpoint in which the independent variable is partitioned into
two intervals and then fit separate linear equations within each
interval. Thus, the model can be summarized as follows:

lnðMCmodiÞ¼b0 þ b1j

�
lnðchl aiÞ � ln

�
chl abreakpoint

��
þ εi

j ¼ 1 if chl ai < chl abreakpoint

j¼2 if chl ai � chl abreakpoint

ln
�
chl abreakpoint

�
� Uð1:6; 2:3Þ

b0; b1j � Nð0; 10000Þ
εi � N

�
0; s2

ε

�

s�2
ε

� Gð0:001; 0:001Þ

i ¼ 1…М

where ln(MCmodi) represents the natural log-transformed predicted
MC concentration in sample i; b0 is the intercept term; b1j denotes
the slope terms for the two segments determined by the chl a
concentration breakpoint or chlabreakpoint; U(1.6, 2.3) is the log-
uniform prior distribution assigned to chlabreakpoint with lower
and upper bounds of 1.6 and 2.3 ln(mg chl a L�1) or 5 and 10 mg chl a
L�1, respectively; εi represents themodel error termwhich is a draw
from a normal distribution with a mean equal to zero and error
variance sε2; N(0,10000) is the normal distributionwithmean 0 and
variance 10000, and G(0.001, 0.001) is the gamma distributionwith
shape and scale parameters of 0.001. These prior distributions are
considered “non-informative” or vague.

Our third statistical formulation employs a segmented multiple
regression model with a stochastic breakpoint set on the response
variable. Specifically, this formulation dissects themultivariate data
into two subsets on the basis of their MC concentrations within
which two linear equations are being estimated. In doing so, we can
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examine to what extent the nature of the relationship of the indi-
vidual predictors changes against low or high MC values and sub-
sequently examine if there are approximate thresholds for each
predictor variable that increases the likelihood of violations of the
drinking water guidelines. The third statistical model can be sum-
marized as follows:

lnðMCmodiÞ¼ b0j þ
X

bxj,lnðxiÞ þ εi

j ¼ 1 if MCi < MCbreakpoint

j¼2 if MCi � MCbreakpoint

ln
�
MCbreakpoint

�
� Uð�1:6; 0Þ

b0j; bxj � Nð0; 10000Þ
εi � N

�
0; s2

ε

�

s�2
ε

� Gð0:001; 0:001Þ

i¼1…N; x ¼ NHþ
4 ;WT;Wind; TP; Chl a

where b0j and b1j denotes the intercept and slope terms for the two
segments determined by the MC concentration breakpoint or
MCbreakpoint; U(-1.6, 0) is the log-uniform prior distribution assigned
toMCbreakpointwith lower and upper bounds of�1.6 and 0 ln(mg L�1)
or 0.2 and 1 mg L�1, respectively. We also used a Tobit configuration
to address the potential for bias due to the fact that ~20% of MC
measured concentrations were below the detection limit
(<0.15 mg L�1). MC values falling below the detection limit were
treated as random draws from a normal distribution parameterized
such that its values were lying between the actual zero and the
detection limit. This approach used a bounded distribution for the
measurements, with an upper bound equal to either the detection
limit or a very large (arbitrary) number, depending on whether or
not the measurement fell below the detection limit. Model codes
and computational aspects of our Bayesian modelling framework
are provided in the Supporting Information section.

Confidence of compliance with probabilistic standards: Probabi-
listic standards stipulate that no more than a stated frequency of
exceedances of a targeted environmental threshold should occur
within a given number of samples collected over a compliance
assessment domain. Simply put, a probabilistic standard requires
that a targeted numerical value of a water quality variable should
not be exceeded more frequently than a selected percentage (e.g.,
10e15%) of all the samples collected from a pre-specified number of
monitoring sites representative of the system dynamics over a time
span of management interest. Hence, the evaluation of compliance
with a water quality standard is subjected to sampling error asso-
ciated with the total number of samples collected, as well as the
decisions made regarding the locations and time frequency of the
monitoring programs (McBride and Ellis, 2001). This uncertainty not
only influences the potential for an error in the inference drawn
regarding the compliance or breach of the probabilistic standard,
but also the nature of the error eType I (falsely inferring a breach of
standard) or II (falsely inferring compliance)e that might occur. In a
Bayesian context, compliance assessment has the potential to
address such issues directly, without the need to consider signifi-
cance levels, Type I and Type II error risks (McBride and Ellis, 2001;
Zhang and Arhonditsis, 2008). In this study, similar to the modelling
framework originally presented by McBride and Ellis (2001), we use
beta-distributed prior information and a binomial likelihood to

produce “confidence-of-compliance” graphs (See Supporting Infor-
mation section). For illustration purposes, we evaluated the confi-
dence of compliance with probabilistic standards that stipulate less
than 10% violations of two MC thresholds (1.5 and 5 mg L�1), when
we consider different sample sizes and prior beliefs.

3. Results

The distribution of MC concentrations recorded from 2003 to
2016 was highly skewed (Fig. 3a). Collectively, 16.1% of MC values
exceeded the drinking water guideline of 1.5 mg L�1, while 3.1% of
observed values exceeded the recommended recreational
threshold of 20 mg L�1. The maximum MC concentration measured
was close to 3mg L�1 in August 2015. Interestingly, a higher pro-
portion of violations of water quality guidelines (both drinking
water and recreational) was observed from 2009 to 2015 than in
other periods (Fig. 3b). There were noMC violations of the drinking
water quality guidelines registered in 2006, 2008, nor in 2016, but it
should also be noted that sample sizes were low (n< 25) in those
years (Fig. 3b). Records of MC violations of drinking water guide-
lines regularly occur from May through October, but the frequency
is more pronounced from mid-summer to early fall (Fig. 3c). Vio-
lations of recreational guidelines mainly occur from July to August,
although frequent violations have also been registered in
September or even in October (Fig. 3c).

The Bernoulli model correctly classified 157 instances, where the
drinking water threshold (1.5 mg L�1) was not violated and the
predicted probability of occurrence was similarly low (p< 0.5).
There were no cases of non-violation that were assigned a high
probability of occurrence (p� 0.5), i.e., no false alarms (Table 1).
However, the model underestimated the number of MC violations
experienced in the system, predicting only 5 cases with high
probability of occurrence (p� 0.5), out of 29 recorded violations
(~17% accuracy). We thus infer that the Bernoulli model is prone to
predicting false negatives (i.e., failure to predict the frequency ofMC
violations that actually occurred) and cannot offer a reliable tool
from a public health perspective in the Bay of Quinte (Table 1). NH4

þ

displayed a negative (�0.33± 0.21) relationshipwith the probability
ofMC violations. In a Bayesian context, the significance of this result
can be assessed with the odds ratio2 for the corresponding regres-
sion coefficient to be negative, which was 16.2:1 in this particular
case. In a similar manner, chl a displayed a strongly positive
(0.89± 0.29) association with MC violations, characterized by an
OR of 930:1 (Table 2). We can also infer that the relationships be-
tween the likelihood of MC violations and water temperature
(�0.32± 0.71) or TP concentrations (�0.22± 0.47) were negative
but the ORs (z2.1:1) suggest that the corresponding coefficients
were marginally discernible from zero. The same pattern held true
with our model intercept (1.59± 4.66), i.e., the likelihood of MC vi-
olations when all four predictor variables tend to low values.
Moreover, the simple piecewise regression model suggests a
breakpoint at the level of 1.97 ln(mg chl a L�1) or 7.1 mg chl a L�1,
where the nature of the relationship between MC and chl a con-
centrations changes from weakly (0.21± 0.23) to strongly
(0.96± 0.15) positive (Fig. 4). Importantly, the latter segment of this
relationship comprises nearly all the daily snapshots from the sys-
tem, when MC violations of the drinking water standard occurred.

The segmented multiple regression model identified a signifi-
cant MC breakpoint at the level of 0.54 mg L�1 (or �0.62± 0.08 in
the logarithmic scale), separating the relationship between envi-
ronmental variables and MC concentrations into two regions

2 The odds ratio (OR) of a regression coefficient being negative/positive is the
ratio of the probability to be below/above zero to the probability above/below zero.
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(Table 2). The comparison of the posterior predicted median MC
values against the measured ones was satisfactory (R2¼ 0.73;
Fig. 5) with a mean standard error of the estimate equal to
0.77± 0.04 ln(mg MC L�1). Below the MC breakpoint of 0.54 mg L�1,
our analysis suggests a fairly strong, positive relationship of chl a
(0.14± 0.08), TP (0.22± 0.15), and water temperature (0.34± 0.25)
with MC concentrations, where the ORs for the corresponding
regression coefficients to be positive were 24.0:1, 13.0:1, and 10.5:1.
In contrast, the signature of wind speed (�0.29± 0.39), and NH4

þ

(�0.08± 0.07) was weakly negative with ORs of a negative rela-
tionship equal to 3.4:1 and 6.9:1, respectively (Table 2). When MC
concentrations exceed the breakpoint of 0.54 mg L�1, our analysis
underscores the strongly positive association with chl a
(OR¼ 3.8.105:1), the negative relationship with the ambient TP
(OR¼ 19.1:1) and NH4

þ (OR¼ 80.8:1) levels, and the weakly nega-
tive (practically non discernible from zero) effects of wind speed
(OR¼ 1.4:1) and water temperature (OR¼ 1.1:1) (Table 2). To
identify approximate thresholds of environmental predictors that
increased the probability of exceedance of the 1.5 mg L�1 MC
drinking water guideline, we selected the values above (or below)
which 80% of the daily snapshots recorded from the Bay of Quinte
are characterized by a greater than 10% probability of exceedance of
that threshold. Overall, our analysis suggests the environmental
conditions that appear to increase the probability of exceedance of
theMC drinking water standard are chl a concentrations �7 mg L�1,
water temperatures �20 �C, NH4

þ concentrations �40 mg L�1, TP
concentrations �25 mg L�1, and wind speeds �37 kmh�1 (Fig. 6).

Fig. 3. (a) Frequency histogram of measured MC concentrations, (b) MC frequency distributions per year, and (c) MC frequency distributions per month (MayeOctober), from all
sampling events (N¼ 1347) conducted on the Bay of Quinte from 2003 to 2016. Dashed lines represent Health Canada drinking water (1.5 mg L�1) and recreational (20 mg L�1) water
quality guidelines, respectively. In (a), 16.1% and 3.1% of all MC observations fell above the drinking water and recreational guidelines, respectively.

Table 1
Contingency table analysis classifying probability results from the Bernoulli model
into binary occurrences of violations of microcystin drinking water guidelines
(1.5 mg L�1). p represents the predicted probability of a microcystin violation.

MC concentration threshold (mg L�1) p< 0.5 p� 0.5 Totals

<1.5 (0) 157 0 157
�1.5 (1) 24 5 29
Totals 181 5 186

Table 2
Posterior (mean± standard deviation) regression coefficients of the Bernoulli and two segmented regression models to predict MC concentrations (mg L�1). Subscripts of the
regression coefficients correspond to the predictor variables used for each model: NH4

þ¼ total ammonium concentration (mg L�1); WT¼water temperature (�C);
Wind¼ speed of maximum wind gust (km h�1); TP¼ total phosphorus concentration (mg L�1); Chl a¼ chlorophyll a concentration (mg L�1).

Model Breakpoint Standard error of
the estimate (s

ε
)

Regression coefficients

b0 bNH4þ bWT bWind bTP bChla

Stochastic
segmented
on Chl a

<1.97± 0.12a 1.16± 0.07 �1.05± 0.13 0.21± 0.23
�1.97± 0.12 0.96± 0.15

Bernoulli 1.59± 4.66 �0.33± 0.21 �0.32± 0.71 �0.79± 1.22 �0.22± 0.47 0.89± 0.29
Stochastic

segmented
on MC

<�0.62± 0.08b 0.77± 0.04 �2.46± 1.60 �0.08± 0.07 0.34± 0.25 �0.29± 0.39 0.22± 0.15 0.14± 0.08
��0.62± 0.08 1.29± 1.92 �0.18± 0.08 �0.02± 0.35 �0.09± 0.46 �0.28± 0.17 0.41± 0.09

a Represents a threshold level of 7.1 mg chl a L�1, where the slope of the MC relationship with chlorophyll a changes.
b Represents a threshold level of 0.54 mgMC L�1, where the nature of the MC relationship against NH4

þ, WT, Wind, TP, and Chl a changes.
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To demonstrate the applicability of our modelling exercise for
risk management decisions, we examined the frequency histogram
of the predicted probability values from the stochastic segmented
model or “the probability of exceedance probabilities” (Fig. 7). In
this histogram, we included a benchmark value of 10% representing
the maximum acceptable probability to violate the 1.5 mgMC L�1

drinking water guideline for each sample collected from the Bay of
Quinte. According to our analysis, only 56.6% of the mean predicted
probabilities ofMC violations were below this benchmark, and thus
the probability of exceedances greater than 10% has been relatively
high (z45%) over the course of the study period. By contrast, when
we apply the same procedure for the likelihood of violations of the
recreational (20 mgMC L�1) water quality guidelines, we found that
98.9% of the mean predicted probabilities of MC violations were
below the 10% benchmark. Employing an intermediate threshold
between the two values established in the water resource man-
agement literature could serve as evidence of excessive risks when
using the system for drinking water supply, as well as an early
warning sign about its suitability for recreational purposes. For

example, if we opt for a 5 mg L�1 target, the distribution of proba-
bilities for MC violations had more than 89% of the daily snapshots
recorded from the Bay of Quinte below the 10% benchmark. It is also
interesting to note that the same threshold was exceeded in 7.2% of
the samples collected from all the sites during the study period.

From an operational standpoint, the number of samples required
during the growing season (end of May-early October) in order to
assess systemcompliancewith targetedMC thresholds canvary from
30 to 216, depending on the number of locations monitored, sam-
pling frequency used, and duration of the period examined (Table 3).
For illustration purposes, we created “confidence-of-compliance”
graphs to evaluate the likelihood of compliance against two proba-
bilistic criteria that stipulate less than 10% violations of two MC
threshold concentrations, i.e., 1.5 and 5 mg L�1, when we consider
different sample sizes and prior beliefs (Fig. 8). Based on empirical
evidence regarding the achievability of the twoMC values in the Bay
of Quinte, the former target was assigned a conservative prior, Be(1,
7.2), whereby we accorded relatively high probabilities to exceed-
ance rates up to 20% (Fig. 8a). The latter MC threshold was given a
more optimistic prior, Be(0.2, 9), with a high probability assigned to
very low exceedance rates (<5%) and practically negligible prior
probabilities thereafter (Fig. 8a). According to the “confidence-of-
compliance” graph (Fig. 8c), after collecting samples from four sites
ona biweeklybasis during twogrowing seasons (n¼ 80; see Table 3),
4 exceedances of the 1.5 mgMC L�1 threshold (point A) suggest our
confidence of compliance that the standard will not be exceeded
more than 10% is 87.0%. Similarly, if we register 6, 8, 10, or 12 viola-
tions of the same MC threshold (points B-E in Fig. 8c), then our
confidence of compliance that the standard will not be violated by
more than 10% will be 64.2%, 35.4%, 14.3%, and 4.2%, respectively.
Intended to offer an early warning sign for the likelihood of
impairment of the recreational guideline, the “confidence-of-
compliance” graph for the 5 mgMC L�1 target paints amore favorable
picture with respect to the frequency of MC violations in the Bay of
Quinte. Even if there are 4 violations, after collecting samples from
four sites on a biweekly basis over the course of two growing sea-
sons, our confidence of compliance with the MC standard will be
97.1% (point A in Fig. 7d). Likewise, 6, 8, 10, and 12 violations of the
5 mgMC L�1 targetwould suggest our confidence of compliancewith
lower than 10% violations of theMC targetwill be 87.4%, 64.1%, 35.5%,
and 15.2% (points B-E in Fig. 8d), respectively. As a final exercise, we
attempted to eliminate any subjectivity with the formulation of our
prior beliefs and instead used empirical knowledge about the fre-
quency of MC violations in the Bay of Quinte, as depicted by the
piecewise-regression model with sole predictor the recorded chl a
concentrations (Fig. 3). In this case, we formulated beta prior dis-
tributions with shape parameters derived from the predicted mean
exceedance rate and the associatedmodel error variance (or residual
variability). It is interesting to note the similarity between the
empirically derived priors and those based solely on our prior
perception without any consideration of the available data (Fig. 7a
and b). According to the MC estimates derived by the chl a data, if
there are again 4 exceedances of the drinking water guideline out of
80 samples collected during two growing seasons, then our confi-
dence of compliance that the standard will not be exceeded bymore
than 10%will be 93.6% (Fig. 8e). In a similarmanner, if we experience
6, 8, 10, or 12 violations of the same MC threshold (points B-E in
Fig. 8e), it would suggest that our confidence of compliance is 76.0%,
47.9%, 22.2%, and 7.7%, respectively. When collecting the same
sample size, our degree of confidence with 4 violations of the
5 mgMC L�1 target will be 96.4% (Fig. 8f). Interestingly, the inference
drawn (degree of confidence of compliance) remains consistently
higher, i.e., 82.5%, 56.2%, 28.6%, and 10.4%, if 6, 8, 10, or 12 violations
of the same MC threshold (points B-E in Fig. 8f) are registered over
the course of two growing seasons.

Fig. 4. Simple piecewise regression model for microcystin (MC) concentrations as a
function of chlorophyll a. The relationship between MC and chl a concentrations
changes at the breakpoint level of 1.97 ln(mg chl a L-1) or 7.1 mg chl a L-1, from poorly
identified (0.21±0.23) to strongly positive (0.96±0.15). The coefficient of determination
(R2) between the posterior predicted median MC values against the measured ones
was 0.35 with a mean standard error of the estimate equal to 1.16±0.07 ln(mg MC L-1)

Fig. 5. Comparison between the measured and mean predicted MC values (R2¼ 0.73)
from the segmented multiple regression model.
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4. Discussion

Owing to the increasing frequency of cyanobacteria-dominated
harmful algal blooms (cHABs), as well as to their potential to inflict
socioeconomic damages and ecological impairments, predicting
their occurrence and magnitude has become an essential man-
agement exercise in many freshwater ecosystems around the
world. In this study, we used different statistical models, parame-
terized with Bayesian inference techniques, to identify critical
levels of key environmental factors that influence the exceedance
risk of specific MC thresholds in the Bay of Quinte (Lake Ontario,
Canada). Our results suggest that chl a concentrations �7 mg L�1, TP
concentrations �25 mg L�1, NH4

þ concentrations �40 mg L�1, water
temperatures �20 �C, and wind speed �37 kmh�1 significantly
increase the likelihood of violation of the drinking water advisory
level. For the Bay of Quinte, these threshold values collectively
reflect meso-eutrophic conditions during periods of warm water
and calmwinds, which were observed on approximately 17% of the
sampling dates (i.e., all sampling dates that met all five conditions)
and typically occur between late July and early September. These
environmental conditions are commonly experienced in the area,
particularly in summer months, which suggests that high MC
concentrations will continue to occur for the foreseeable future
without any additional management interventions.

Identifying reliable predictors of microcystin production: Us-
ing a Bernoulli-logistic regression model, Shimoda et al. (2016)
found that TP concentrations alone failed to predict exceedances
of various levels of MC concentrations, and concluded that more
comprehensive modelling was needed to reliably predict drinking
water violations. Building upon the recommendations of Shimoda
et al. (2016), our application of the Bernoulli-logistic model with
additional environmental variables also failed to reliably predict

the occurrence of MC violations (i.e., false negative predictions). In
contrast, the delineation of two subsets on the basis of MC con-
centrations (0.54 mg L�1), as determined by our segmentedmultiple
regression model, allowed us to effectively accommodate non-
monotonic/non-linear relationships with environmental pre-
dictors and to quantify the uncertainty surrounding the risks of
exceeding MC drinking water guidelines. Thus, even though our
modelling analysis in its current form cannot be used for fore-
casting purposes (i.e., lack of predictors that reflect the antecedent
conditions, breakpoint on the response rather than on the
explanatory variables), it does allow to delineate critical values of
explanatory variables associated with increased probability of ex-
ceedance of the drinking water standard. Moreover, the fact that it
is founded upon explanatory variables that are readily available
from nearly all the monitoring programs in the Great Lakes and
elsewhere (see also the statistical models presented by Shimoda
et al., 2016) provides a plausible framework upon which stronger
causative foundation can be built by designing suitable lab/field
experiments or monitoring programs with finer granularity.

Our modelling analysis identified chl a concentrations, as the
predictor variable with the strongest relationship with MC con-
centrations. Often used as an indicator of phytoplankton standing
biomass in freshwater systems, it includes all toxic and non-toxic
cyanobacteria and other algal taxa. Despite this fact, chl a can be
a significant predictor of MC violations (Harris and Graham, 2017),
MC presence-absence (Taranu et al., 2017), or is positively corre-
lated with MCs (Rinta-Kanto et al., 2009). Likewise, there are also
several attempts to identify chl a thresholds that could be associ-
ated with a higher likelihood of exceedance of selected health
advisory MC levels. For example, Taranu et al. (2017) found that a
high probability of exceeding MC concentrations of 1.6e2.0 mg L�1

occurred at TN concentrations >650 mg L�1 and cyanobacterial

Fig. 6. Scatterplots depicting the relationship between the probability of exceedance of 1.5 mgMC L�1, as predicted from the segmented multiple regression model, against different
chlorophyll a concentrations; water temperature; total phosphorus concentrations; speed of maximum daily wind gust; and ammonium concentrations. The vertical dashed lines
identify approximate thresholds, above (or below) which 80% of the daily snapshots from the Bay of Quinte are characterized by a greater than 10% probability of exceedance of the
1.5 mgMC L�1 drinking water guideline.
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biomass >160mg L�1. Using a conditional probability approach,
Hollister and Kreakie (2016) estimated a 50% chance of exceeding
health advisory MC thresholds of 1 and 2 mg L�1 when chl a con-
centrations reached 68 and 104 mg L�1, respectively. When paired
with low TN concentrations (570 mg L�1), Yuan et al. (2014) found a
10% chance of exceeding the 1 mgMC L�1 level when chl a con-
centrations were 37 mg L�1 (see their Fig. 3), although the same
probability level was also associated with a much lower chl a
threshold (3 mg L�1) when TN concentrations were elevated
(1100 mg L�1). Our chl a threshold is apparently different from these
estimates, but it should also be noted that our analysis is focused on
the variability recorded within a particular system, as opposed to
the cross-sectional (multi-site) character of the aforementioned
modelling work that teased out information from broader regions.
Chl a is used as an important indicator of the Bay of Quinte
ecosystem state, and a remediation target for chl a concentrations

of 10e12 mg L�1 has been established for the restoration of water
quality (Munawar et al., 2012). However, our analysis indicated that
the average exceedance probability of the drinking water guideline
ranges between 20 and 25% at these targeted concentrations (see
also the scatter of the predicted probabilities once the black vertical
line in Fig. 6a is exceeded).

The role of cultural eutrophication in promoting harmful algal
blooms in freshwaters is well-established (Heisler et al., 2008; Pick,
2016), but the causal linkages between exogenous nutrient
enrichment and MC production is an on-going debate (e.g., see
Orihel et al., 2012; Scott et al., 2013). In a similar manner, the
relationship between MCs and external nutrient loading remains
unclear in the Bay of Quinte, as a greater risk of exceedance of the
drinking water guidelines was associated with intermediate TP and
low NH4

þ concentrations. P availability is considered the primary
limiting factor influencing cyanobacterial growth in freshwaters,

Fig. 7. Frequency histograms of mean probability values for MC concentrations to exceed the (a) 1.5 mg L�1, (b) 5 mg L�1, and (c) 20 mg L�1 threshold values, as predicted by the
segmented multiple regression model. The vertical dashed lines represent a tentative benchmark of 10% probability ofMC violations in the Bay of Quinte. In (a) 56.6%, (b) 89.8%, and
(c) 98.9% of all MC observations fell below this tentative benchmark.

Table 3
The number of samples required during the growing season (end of May-early October) in order to assess compliance with the microcystin target of 1.5 mg L�1 at three or four
locations in the Bay of Quinte, with a weekly or biweekly sampling frequency over the course of 1-, 2-, or 3-year periods. The last two rows represent the corresponding
maximum allowable number of samples, in which the targeted criterion can be exceeded and the system will still be classified as non-impaired, i.e., if we permit a <10%
violation frequency.

Sites in the Upper Bay 1-year period 2-year period 3-year period

Biweekly Weekly Biweekly Weekly Biweekly Weekly

3 30 54 60 108 90 162
4 40 72 80 144 120 216
10% 3 5 6 11 9 16
10% 4 7 8 14 12 21
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but the availability of various forms of N could be another impor-
tant factor for the production of N-rich MC and toxicity (Gobler
et al., 2016, and references therein). Elevated N levels have been
associated with higher cellular quotas of MCs in the non-
diazotrophs Microcystis and Planktothrix, and thus N enrichment,
particularly in P-replete environments, may increase MC produc-
tion (Donald et al., 2011). Monchamp et al. (2014) observed
elevated MC concentrations in NH4

þ-depleted waters in Quebec

lakes, regardless of the total cyanobacterial biomass observed.
Along the same line of evidence, Microcystis is known to have high
affinity for NH4

þ, and often displays superior uptake capacity for
rapidly recycled, reduced N under nitrogen limiting conditions
(McCarthy et al., 2009; Glibert et al., 2014). Given the presence of
active nutrient cycling in the Bay of Quinte, mediated by sediment
diagenesis, dreissenids excreta/egesta, and macrophyte decompo-
sition (Arhonditsis et al., 2016; Doan et al., 2018), we hypothesize

Fig. 8. (a) Our prior beliefs on the likelihood of MC violations expressing pessimistic, Be(1, 7.2), and optimistic, Be(0.2, 9), views regarding the likelihood of compliance with two
probabilistic standards that stipulate less than 10% violations of twoMC threshold concentrations, i.e., 1.5 and 5 mg L�1, over time and space, respectively. For the sake of comparison,
the uniform reference prior, Be(1, 1), along with the U-shaped prior derived from “Jeffreys' rule”, Be(0.5, 0.5), are also illustrated. The latter prior implies that extreme probability
values of exceedance (i.e., close to 0 or 1) are more likely than intermediate values. (b) Our prior beliefs on the likelihood of compliance with two probabilistic standards when the
ambient MC levels are estimated by the corresponding chl a data through our simple piecewise regression model (See Supporting Information section). Panels (c) and (d) assess our
confidence that the 1.5 and 5 mgMC L�1 standards will not be exceeded by more than 10% for different sample sizes collected from the Bay of Quinte. Panels (e) and (f) present the
same “confidence-of-compliance” graphs when the ambient MC levels are predicted by the recorded chl a concentrations. Points A-E represent 4, 6, 8, 10, and 12 violations of the
two MC thresholds, after collecting samples from four sites on a biweekly basis during two growing seasons (n¼ 80).
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that once the “internal nutrient pump” begins to replenish the
overlying water, an interplay of increased P sequestration and rapid
uptake of energetically favorable NH4

þ may trigger Microcystis
growth and MC production. Considering the low summer ambient
levels of all inorganic nitrogen forms (NH4

þ, NO2
�, NO3

�) in the Bay of
Quinte, Shimoda et al. (2016) surmised that there are two addi-
tional factors that promote Microcystis dominance: (i) the selective
dreissenid filtration that may be responsible for the reduced bio-
volume of N2-fixers Aphanizomenon spp. and Anabaena spp.; and
(ii) the bioavailability of other nitrogen forms such as urea, which
can enter cells either via light-independent transport or by diffu-
sion, and which produce two NH4

þ per molecule of urea transported
inside the cells. In this case, the need for active uptake of HCO3

/ at
high pH is minimized, and CO2 can be released by intracellular
urease (Valladares et al., 2002; Flores and Herrero, 2005; Donald
et al., 2011).

Although multiple studies have demonstrated the linkages be-
tween increasing water temperature and toxic cyanobacterial
blooms (Jacoby et al., 2000; Wood et al., 2017), fewer have directly
connected temperature to ambientMC levels (Francy et al., 2016). In
our study, we were able to identify a threshold of ~20 �C, above
which the exceedance likelihood of MC drinking water guidelines
increases. The cyanobacterium Microcystis has been found to out-
compete other phytoplankton species at or above 25 �C (Paerl and
Paul, 2012), while the number of genes or transcripts associated
with MC production increase with water temperature (Davis et al.,
2009). Thus, there is growing concern that increases in temperature
due to global climate change will increase the frequency and
magnitude of cHABs and promote the growth of toxic strains of
cyanobacteria (Kosten et al., 2012). These changes have important
implications for future water quality trends, particularly in the Bay
of Quinte. For example, Trumpickas et al. (2009) predicted future
summer surface water temperatures in Lake Ontario to rise by
2.5 �C (above 1971e2000 norms) under the Intergovernmental
Panel on Climate Change A2 emissions scenario, and by 2.25 �C
under the B2 scenario, for the 2041e2070 period. Further, Nicholls
(1999) predicted that an increase in average summer water tem-
perature by 3e4 �C would double the summer average TP concen-
trations. In line with current warming trends, maximum summer
surface waters in the Bay of Quinte have warmed by almost 1 �C
from 1972 to 2008 (Minns et al., 2011). If we also consider that the
mean summer (JuneAug) TP concentrations and surface water
temperatures measured in the upper Bay were approximately
32 mg L�1 and 23 �C, respectively, then it is reasonable to assume
that the likelihood of MC violations will continue to be relatively
high; especially, since the internal nutrient feedback loop is pro-
jected to remain active in the near future (Arhonditsis et al., 2016;
Doan et al., 2018).

To our knowledge, few studies to date have examined the in-
fluence of physical conditions (other than temperature) in pre-
dicting MCs in freshwater lakes. Cyanobacteria can regulate their
buoyancy to take advantage of optimal nutrient and light condi-
tions, and thus could gain a competitive advantage over other
eukaryotic phytoplankton under these conditions (reviewed in
Watson et al., 2015), leading to higher MC concentrations and
increased risk of MC health advisory violations. Jacoby et al. (2000)
found that higher water column stability and decreased lake
flushing were associated with a pronounced and prolonged toxic
bloom ofMicrocystis aeruginosa during summer 1994 in Steilacoom
Lake (Washington, USA), although MC concentrations (per gram of
phytoplankton) were found be unrelated to the prevailing envi-
ronmental conditions except from soluble reactive phosphorus.
More recently, Wood et al. (2017) found that an extended drought
in the shallow eutrophic Lake Rotorua (New Zealand) led to pro-
longed stratification, increased dissolved reactive phosphorus and

inorganic nitrogen concentrations, which interacted with temper-
ature to influence cyanobacterial MC cell quotas. Because direct
measurements of water column stability were unavailable for the
Bay of Quinte, we used wind speed as a representative proxy of
mixing conditions, assuming a negative relationship whereby
higher wind speeds reduce water column stability (Kann and
Welch, 2005). This relationship would be particularly pronounced
for locations in the middle and lower bay, which are deep enough
for stratification to occur throughout the year, and thus wind-
driven mixing could interrupt water column stability to a greater
extent at these locations. Nonetheless, because the hypothesized
strong negative association between wind speed and the proba-
bility of MC violations did not manifest itself in our modelling
analysis, future investigation of the direct role of physical lake dy-
namics, and in particular water column stability, and interactions
with water temperature, is clearly warranted in order to gain a
better understanding of MC production dynamics.

Setting probabilistic criteria for microcystin concentrations:
In the management of impaired waterbodies, the establishment of
probabilistic water quality criteria is often considered an effective
strategy to deal with the inherent uncertainty and/or our imperfect
knowledge of natural systems (e.g., McBride and Ellis, 2001;
Shabman and Smith, 2003; Zhang and Arhonditsis, 2008;
Mahmood et al., 2014; Smith and Canale, 2015). It is within this
context that our statistical framework can assist with the devel-
opment of realistic water quality criteria to track the occurrence of
high MC levels (or other cyanotoxins), as demonstrated by the
derived “probability of exceedance probabilities”. In particular, the
Bayesian nature of our work gives direct answers to questions of
confidence of compliancewith percentile standards (see panels (b)-
(e) in Fig. 8), and as such can effectively guide management de-
cisions and monitoring practices that consider both risks of
reaching false conclusions, i.e., falsely inferring a breach of standard
or falsely inferring compliance (McBride and Ellis, 2001). Instead of
basing inference solely on the exceedance frequency level of a
threshold MC concentration, the estimated probabilities are
regarded as a continuous variable about whichwemake confidence
statements. Simply put, we introduce an extra dimension of un-
certainty by targeting the probability of an acceptable MC exceed-
ance risk (or margin of safety) across all water samples taken
(Zhang and Arhonditsis, 2008; Mahmood et al., 2014). The con-
ceptual advantages of the proposed framework presumably come
at the ''cost'' of having to state one's prior belief as to likely ex-
ceedance rates. Namely, our first two illustrations were based on
the formulation of prior distributions that reflected our subjective
(pessimistic or optimistic) beliefs regarding the likelihood of
compliance with two (1.5 and 5 mgMC L�1) targeted thresholds.
Nonetheless, this issue was rectified with our subsequent examples
in which empirical knowledge from the system was used to char-
acterize our prior beliefs; that is, the mean predictions about the
achievability of the two targets along with the associated error of
the simple piecewise regression model provided the basis for the
specification of the shape parameters of our beta prior. Even more
so, a well-known property of Bayesian analysis is that the results
from classical and Bayesian statistics become more similar at larger
numbers of samples, as the information in the data increasingly
dominates over that in the chosen prior distributions (McBride and
Ellis, 2001; Arhonditsis et al., 2008). Our “confidence-of-compli-
ance” graphs can determine the optimal sample size that will allow
to draw robust inference about the prevailing ambient conditions,
and address any criticism about the potential subjectivity with
methodological practices followed.

From a management viewpoint, our analysis suggests that the
occurrence of cHABs could be a manifestation of the tight control
exerted by the sediments, which act as a net source of phosphorus
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and the corresponding fluxes are likely magnified by the macro-
phyte and dreissenid activity, e.g., nutrient pump effect and pseu-
dofeces production (Kim et al., 2013). According to recent empirical
and modelling evidence (Arhonditsis et al., 2016; Doan et al., 2018),
the presence of significant nutrient regeneration mechanisms is
primarily responsible for the elevated end-of-summer P
(>25e30 mg TP L�1) in the upper Bay of Quinte, which in turn ap-
pears to be the first condition for structural shifts to occur in the
algal assemblage (see also the positive linkage between MC and TP
concentrations below the breakpoint of 0.54 mg L�1). Once ambient
P is no longer a limiting factor, the inter-specific competition for
energetically favorable nitrogen forms coupled with the water
temperature and/or water column stability are some of the factors
that likely shape the development of cHABs and production of
toxins. Thus, while additional reductions of the external point and
non-point nutrient loading are warranted, it is also important to
note that the ability of the sediments to modulate the relative
abundance of bioavailable nitrogen and phosphorus forms in-
dicates that the anticipated benefits may not be realized immedi-
ately and cHABs may still occur in the near future. In view of this
prospect, our analysis reinforces the pragmatic standpoint that the
compliance rules should explicitly accommodate all the sources of
uncertainty, such as insufficient information, lack of knowledge,
natural variability, unaccounted “ecological unknowns”, by adopt-
ing a probabilistic approach that permits a realistic frequency of
violations (10%) and satisfactory level of confidence (>75e80%).
Recognizing that cHABs are inherently episodic events, the
compliance assessment should be based on multiple sites and over
the course of two or three years, as their nonoccurrence in a
particular year does not necessarily guarantee that the problem has
been eradicated. We also recommend the introduction of an addi-
tional intermediate threshold value (e.g., 5 mgMC L�1) between
those used in the drinking (1.5 mgMC L�1) and recreational
(20 mgMC L�1) guidelines that could serve as an early warning sign
for an imminent highly toxic bloom; especially, since the water
quality monitoring takes places in the open waters of the Bay of
Quinte (see monitoring sites Fig. 2), where the initiation of cHABs
frequently takes place.

The question arising is whether the precautionary spirit of our
approach with the introduction of several layers of uncertainty is
constructive, or if it is overly conservative and runs the risk of
perpetuating the management of impaired waterbodies with an
overly alarmist mindset (Arhonditsis et al., 2019). With respect to
the latter issue, the perspective of the public in the Bay of Quinte
area has been positive that it doesmatter. Based on the responses of
more than 1500 local residents and tourists, Ramin et al. (2018)
indicated that the degree of public satisfaction changes between
the beginning and end of summer season, following the gradual
deterioration of the water quality conditions and the occurrence of
harmful algal blooms. Importantly, the same study showed a
distinctly higher degree of satisfaction of the public when chl a
concentrations remain below the 10 mg L�1 threshold or ambient TP
levels are lower than 20e25 mg L�1, which is remarkably close with
the critical levels of the twowater quality variables associated with
elevated risk of MC violations. The fact that the sentiment of the
public is clearly influenced by the prevailing environmental con-
ditions offers ammunition to develop and implement an ambitious
long-term management plan that protects the Bay of Quinte from
excess nutrients associated with urban runoff, sewage treatment
plants, and agricultural land uses (Arhonditsis et al., 2019). Thus,
the presented probabilistic framework is intended to facilitate the
policy-making process in the area, as the local water quality man-
agers have long realized the expectation of a system that 100%
satisfies the water quality standards is overly ambitious (if not
unrealistic), given the currently prevailing conditions. It is

important though to communicate to the public that harmful algal
blooms may still occur in the foreseeable future, and their reduced
frequency within a pre-specified spatiotemporal domain is the
most pragmatic way to evaluate the success of the local restoration
efforts (Kim et al., 2018; Arhonditsis et al., 2019).

5. Conclusions

Using the Bay of Quinte as a model ecosystem, we demonstrated
that the probability of violations of the MC drinking water guide-
line, deemed protective of human and animal health, increased
significantly under specific thresholds of a suite of eutrophication
indicators (i.e., chl a, nutrients) and physical environmental vari-
ables. Our analysis highlights that nutrient management remains
the best option to reduce the frequency of highMC events, through
their link in controlling chl a concentrations and undesirable shifts
in the phytoplankton community composition. In the context of
environmental policy, the uncertainty regarding the achievability
of quality goals, stemming from (i) the (often unknown) important
drivers of ecological degradation; (ii) the need to effectively balance
environmental concerns with socioeconomic values; and (iii) our
desire to have contingency plans to deal with the unexpected,
should be a focal point when making management decisions and
designing restoration/monitoring plans accordingly. The logic of
our modelling framework is founded upon this concept and can be
used to guide the decision-making process in systems that expe-
rience episodic outbreaks of toxic cyanobacteria.
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Bayesian Modelling Framework 

We used Bayesian inference to estimate model parameters because of its ability to include 

prior information (e.g., literature reviews, expert knowledge, metadata, past parameter estimates) 

in the modelling analysis and to explicitly deal with model structural/parametric uncertainty as 

well as missing data and measurement errors (Gelman et al., 2013). Bayesian inference treats 

each parameter θ as a random variable and uses the likelihood function to express the relative 

plausibility of different parameter values given the available data from the system: 

𝑃(𝜃|𝑑𝑎𝑡𝑎) =
𝑃(𝜃)𝑃(𝑑𝑎𝑡𝑎|𝜃)

∫ 𝑃(𝜃)𝑃(𝑑𝑎𝑡𝑎|𝜃)𝑑𝜃
𝜃

 

where P(θ) represents the prior distribution of the model parameter θ, P(data|θ) indicates the 

likelihood of the data observation given the different θ values, and P(θ|data) is the posterior 

probability representing our updated beliefs on the θ values, contingent upon empirical 

knowledge from the system. The denominator is often refer to as the marginal distribution of the 

available data and acts as a scaling constant that normalizes the integral of the area under the 

posterior probability distribution (Gelman et al., 2013). 

Confidence of compliance with probabilistic standards: The calculations associated with 

the “confidence-of-compliance” graphs were based on the following posterior probability density 

function: 

𝑓(𝑥|𝑒, 𝑛) = [
𝐿(𝑒|𝑛, 𝑥)

∫ 𝐿(𝑒|𝑛, 𝑥)𝑔(𝑥)𝑑𝑥
1

0

] 𝑔(𝑥) 

where e is the number of exceedances in n samples; 𝑓(𝑥|𝑒, 𝑛) is the posterior probability density 

function of x for a given value of e and n; 𝐿(𝑒|𝑛, 𝑥) is the likelihood function for any n and x; 

and g(x) is the prior posterior probability density function of x. This equation shows that our 
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prior belief about the true exceedance rate x, described by g(x), is updated by the standardized 

likelihood (the term in brackets) to derive the required posterior probability density f. For a 

sample size equal to n, the likelihood function L is the probability mass function for a particular 

value of e and is described as a binomial process, with x (instead of e) being regarded as a 

parameter: 

𝐿(𝑒|𝑥, 𝑛) = (
𝑛
𝑒

) 𝑥𝑒(1 − 𝑥)𝑛−𝑒 

where (
𝑛
𝑒

) is the binomial coefficient which is cancelled in the standardized likelihood function, 

and thus the posterior probability density is given by: 

𝑓(𝑥|𝑒, 𝑛) = [
𝑥𝑒(1 − 𝑥)𝑛−𝑒

∫ 𝑥𝑒(1 − 𝑥)𝑛−𝑒𝑔(𝑥)𝑑𝑥
1

0

] 𝑔(𝑥) 

Our choice of the prior density g(x) was based on a “conjugate distribution” that guarantees the 

prior and posterior probability densities belong to the same family of distributions, making the 

calculations much simpler. In particular, because the likelihood function follows a binomial 

distribution, we chose g(x) to follow the beta distribution, Be(a, b): 

𝑔(𝑥; 𝑎, 𝑏) =
1

𝐵(𝑎,𝑏)
𝑥𝑎−1(1 − 𝑥)𝑏−1, where 𝐵(𝑎, 𝑏) =

Γ(𝑎)Γ(𝑏)

Γ(𝑎+𝑏)
 

where α, b > 0 are the shape parameters, Γ is the gamma function, and the beta term, Β, is 

a normalization constant to ensure that the total probability is 1. The posterior probability density 

then becomes: 

𝑓(𝑥|𝑒, 𝑛) =

1
𝐵(𝑎, 𝑏)

𝑥𝑒+𝑎−1(1 − 𝑥)𝑛−𝑒+𝑏−1

∫
1

𝐵(𝑎, 𝑏)
𝑥𝑒+𝑎−1(1 − 𝑥)𝑛−𝑒+𝑏−1𝑑𝑥

1

0

 

=
𝑥𝑒+𝑎−1(1 − 𝑥)𝑛−𝑒+𝑏−1

𝐵(𝑒 + 𝑎, 𝑛 − 𝑒 + 𝑏)
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To formulate informative prior distributions, we can then calculate a and b from the known 

expressions for the mean and variance of the beta distribution, i.e., 𝑥̅ =
𝑎

𝑎+𝑏
  and 𝑠2 =

𝑎𝑏

[(𝑎+𝑏)2(𝑎+𝑏+1)]
 , from which we obtain: 

𝛼 = 𝑥̅ [
𝑥̅(1−𝑥̅)

𝑠2
− 1] and 𝑏 = 𝛼 [

1

𝑥̅
− 1] 

In panels 7d and 7e, the “confidence-of-compliance” graphs for the 1.5 and 5 μg MC L-1 

standards were based on shape parameters a and b, derived from the predicted mean exceedance 

rates, 𝑥̅1.5= 18.4% and 𝑥̅5= 4.4% , and associated standard deviations, 𝑠1.5= 15.5% and 𝑠5= 

10.5%, of the piecewise regression model with the chlorophyll a data as the sole predictor. 

Finally, the probability (or confidence) of compliance, denoted as CC, is calculated from the 

distribution function as follows: 

𝐶𝐶 = 𝐹(𝑥 ≤ 𝑋|𝑒, 𝑛) = ∫ 𝑓(𝑥|𝑒, 𝑛)
𝑥

0

𝑑𝑥 

Given that f is a beta density, the cumulative distribution function F follows an incomplete beta 

function ratio (Lee, 2012), written as 𝐼𝑋(𝑎, 𝑏), and thus after incorporating the different 

informative priors, our CC  estimates become: 

𝐶𝐶 = 𝐼𝑋(𝑒 + 𝑎𝑝𝑟𝑖𝑜𝑟 , 𝑛 − 𝑒 + 𝑏𝑝𝑟𝑖𝑜𝑟) 

Model computations: Sequences of realizations from the model posterior distributions 

were achieved by using Markov Chain Monte Carlo (MCMC) simulations (Gilks et al., 1998). 

We used a general normal proposal Metropolis algorithm which is based upon a symmetric 

normal proposal distribution, whose standard deviation is adjusted over the first 4,000 iterations 

so that the acceptance rate ranges between 20% and 40%. For each analysis, we used three chain 

runs of 50,000 iterations, keeping every 20th iteration (thin of 20) to avoid serial correlation. We 

discarded the first 10,000 samples to eliminate the effect of the initial parameter values assigned 
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(burn-in), and took samples after the MCMC simulation converged to the true posterior 

distribution. We assessed convergence to the true posterior distribution: (i) qualitatively, through 

visual inspection of plots of the Markov chains for mixing and stationarity, as well as the 

corresponding density plots of the pooled posterior Markov chains for unimodality; (ii) 

quantitatively, using the modified Gelman-Rubin convergence statistic (Brooks and Gelman, 

1998). The BGR factor is the ratio between among-chain and within chain variability. The chains 

have converged when the upper limits of the BGR factor are close to one. The accuracy of the 

posterior parameter values was inspected by assuring that the Monte Carlo error (an estimate of 

the difference between the mean of the sampled values and the true posterior mean) for all 

parameters was less than 5% of the sample standard deviation (Spiegelhalter et al., 2003). 
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WinBUGS codes 

Bernoulli model 

model { 

 

   for (i in 1:N) { 

#Data transformations 

       lnChla[i]<-log(Chla[i]) 

       lnTP[i]<-log(TP[i]) 

       lnNH4[i]<-log(NH4[i]) 

       lnWT[i]<-log(WT[i]) 

       lnWind[i]<-log(Wind[i]) 

#Model likelihood 

logit(p[i]) <-a[1]+a[2]*lnTP[i]+a[3]*lnNH4[i]+a[4]*lnChla[i]+a[5]*lnWT[i]+a[6]*lnWind[i] 

Tobs[i] ~ dbern(p[i]) 

      } 

#Priors 

  for (i in 1:6) {a[i] ~ dnorm(0, 0.001)} 

          } 

 

Stochastic segmented model on Chl a   

model { 

  

    for (j in 1:M) { 

#Data transformation 

        lnChla[j] <- log(Chla[j]) 

        lnMicroCys[j] <- log(TotalMC[j])   

#Tobit model 

MicroCys_tobit[j] <- (-1.89)*is.detlim[j]+10000*(1 - is.detlim[j]) 

is.detlim[j] <- step(0.1499-TotalMC[j])    

#Model likelihood 

J[j] <- 1 + step(lnChla[j]-Chla_change) 

MicroCys_mu[j]<- alpha + beta[J[j]]*(lnChla[j]-Chla_change) 

Microcys[j] ~ dnorm(MicroCys_mu[j],tau)I(,MicroCys_tobit[j]) 

#Exceedance Frequency Calculations 

ExceedFreq_1.5[j]<- 1-phi((log(1.5)-MicroCys_mu[j])/sigma) 

ExceedFreq_5[j]<- 1-phi((log(5)-MicroCys_mu[j])/sigma) 

                           } 

ExceedFreq_mean_1.5<-mean(ExceedFreq_1.5[]) 

ExceedFreq_sd_1.5<-sd(ExceedFreq_1.5[]) 

ExceedFreq_mean_5<-mean(ExceedFreq_5[]) 

ExceedFreq_sd_5<-sd(ExceedFreq_5[]) 

#Priors  

Chla_change~dunif(1.6, 2.3) 

alpha ~ dnorm(0, 0.001) 

for (j in 1 : 2) {beta[j] ~ dnorm(0, 0.001) } 
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tau ~ dgamma(0.01,0.01)   

sigma<-sqrt(1/tau) 

         }   

 

Stochastic segmented model on MC   

model { 

      

    for (j in 1:M) { 

#Data transformations 

         lnNH4[j]<-log(NH4[j]) 

         lnWind[j] <- log(Wind[j]) 

         lnWaterTemp[j] <-log(WaterTemp[j])  

         lnTP[j]<-log(TP[j]) 

         lnChla[j] <- log(Chla[j]) 

         lnMicroCys[j] <- log(TotalMC[j]+0.000001) 

#Tobit model 

MicroCys_tobit[j] <- (-1.89)*is.detlim[j]+10000*(1 - is.detlim[j]) 

is.detlim[j] <- step(0.1499-TotalMC[j]) 

#Model likelihood 

J[j] <- 1 + step(lnMicroCys[j]-MicroCys_change) 

Microcys[j] ~ dnorm(MicroCys_mu[j],tau)I(,MicroCys_tobit[j]) 

MicroCys_mu[j]<- beta[1,J[j]] + beta[2,J[j]]*lnNH4[j] + beta[3,J[j]]*lnWaterTemp[j]  

                            + beta[4,J[j]]*lnWind[j] + beta[5,J[j]]*lnTP[j] + beta[6,J[j]]*lnChla[j] 

#Exceedance Frequency Calculations 

Prob_1[j]<-phi((MicroCys_mu[j]-0)/sigma) 

Prob_1.5[j]<-phi((MicroCys_mu[j]-0.4055)/sigma) 

Prob_5[j]<-phi((MicroCys_mu[j]-1.609)/sigma) 

MicroCys_pred[j]<-exp(MicroCys_mu[j]) 

   } 

#Priors  

MicroCys_change~dunif(-1.6,0) 

     for (i in 1 : 6) { 

         for (j in 1 : 2) { 

           beta[i,j] ~ dnorm(0, 0.001)  

                           }   } 

tau ~ dgamma(0.01,0.01)   

sigma<-sqrt(1/tau) 

          }   

 

Confidence-of-Compliance Graphs  

Pessimistic Prior 

model { 

# Binomial-beta model 

for (i in 1:N) { 

       Viol[i]<-i 

   for (j in i:L) { 
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     r[i,j] <-Viol[i]     

     p[i,j] ~ dbeta(1, 7.2) 

     r[i,j] ~ dbin(p[i,j], j) 

     CC[i,j]<-step(0.10-p[i,j])  }  }      

              }  

#Data 

list(N=21, L=216) 

 

Prior derived by the stochastic segmented model on Chl a   

model { 

# Binomial-beta model 

for (i in 1:N) { 

        Viol[i]<-i 

   for (j in i:L) { 

         r[i,j] <-Viol[i]     

         p[i,j] ~ dbeta(alpha, beta) 

         r[i,j] ~ dbin(p[i,j], j) 

         CC[i,j]<-step(0.10-p[i,j]) }  }     

 

alpha<-ExceedFreq_mean_1.5*(ExceedFreq_mean_1.5*(1-ExceedFreq_mean_1.5)/  

            pow(ExceedFreq_sd_1.5,2) -1) 

beta<- alpha*(1/ExceedFreq_mean_1.5-1)     

                       } 

#Data 

list(N=21, L=216, ExceedFreq_mean_1.5= 0.1841, ExceedFreq_sd_1.5=0.1556) 
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