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Abstract

Structural equation modeling is a multivariate statistical method that allows evaluation of a network of relationships between
manifest and latent variables. In this statistical technique, preconceptualizations that reflect research questions or existing
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knowledge of system structure create the initial framework for model development, while both direct and indirect
and measurement errors are considered. Given the interesting features of this method, it is quite surprising that the n
applications in ecology is limited, and even less common in aquatic ecosystems. This study presents two examples where
equation modeling is used for exploring ecological structures; i.e., summer epilimnetic phytoplankton dynamics. Both e
(Lake Mendota) and mesotrophic (Lake Washington) conditions were used to test an initial hypothesized model that co
the regulatory role of abiotic factors and biological interactions on lake phytoplankton dynamics and water clarity du
summer stratification period. Generally, the model gave plausible results, while a higher proportion of the observed variab
accounted for in the eutrophic environment. Most importantly, we show that structural equation modeling provided a co
means for assessing the relative role of several ecological processes (e.g., vertical mixing, intrusions of the hyp
nutrient stock, herbivory) known to determine the levels of water quality variables of management interest (e.g., wate
cyanobacteria). A Bayesian hierarchical methodology is also introduced to relax the classical identifiability restrictio
treat them as stochastic. Additional advantages of the Bayesian approach are the flexible incorporation of prior know
parameters, the ability to get information on multimodality in marginal densities (undetectable by standard procedur
the fact that the structural equation modeling process does not rely on asymptotic theory which is particularly importa
the sample size is small (commonly experienced in environmental studies). Special emphasis is given on how this
methodological framework can be used for assessing eutrophic conditions and assisting water quality management.
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equation modeling has several attractive features that can be particularly useful to researchers when exploring ecological patterns
or disentangling complex environmental management issues.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

“. . .Thinking only in terms of directly observable vari-
ables confines our horizons and limits our assessment
of complex systems. . .” (Malaeb et al., 2000, Environ-
mental and Ecological Statistics, pg 95)

Mechanistic understanding and prediction of
patterns is a key feature in ecological research (Peters,
1991; Jorgensen, 1997; Pace, 2001; Carpenter, 2002;
Arhonditsis and Brett, 2005). Given the hierarchical
structure of biological information, observations in
a particular study scale are usually associated with
upper-level joint behaviors and lower-level processes,
thus it is essential for ecologists, when exploring
patterns, to be able to shift between different scales
of description in space, time, and organizational com-
plexity (Sugihara and May, 1990; Levin, 1992). For
example,Vepsalainen and Spence (2000)advocated
the development of “general explanatory frameworks”
that comprise (i) the focal level, defined by the
pattern/process of interest, and (ii) the contiguous
lower and upper levels, associated with the initiating
conditions and boundary constraints, respectively.
Recognizing the intertwined nature of ecological hier-
archies, this framework was proposed as a convenient
means to select the appropriate level of information for
understanding specific observations/events. Similarly,
earlier studies bySalthe (1985)and O’Neill et al.
(1986)acknowledged the importance of a basic triadic
a of
s sses
o The
p ility
t and
p e,
2 sses
t ngle
v m is
t rchy

that can be decomposed into an infinite number of sub-
processes and causal interactions. The premise behind
this partitioning is that the selective measurement of
some of these elements can improve our understanding
about the collective behavior/mechanism. The attempt
to abstract essential features and reduce the complexity
of the real world is ubiquitous in ecological practice.
Levin (1992)characterized the study of the transfer-
ability of ecological phenomena across scales and the
development of laws of simplification and aggregation
as a central problem in ecology and evolutionary
biology.

Modeling as a tool for elucidating ecological
patterns is subject to the same problem of complexity,
and the optimal model dimension has been extensively
debated in the ecological literature (Levins, 1966;
Costanza and Sklar, 1985; Rastetter et al., 1992;
Jorgensen, 1999; Reckhow, 1999; Arhonditsis and
Brett, 2004). Applied ecologists are inclined to select
realism and precision in favor of generality; driven
by technical or conceptual limitations, they adopt
“intuitively manageable scales” and develop models
that aim to provide “faithful descriptions” of the data
(Vepsalainen and Spence, 2000). A characteristic
example is the application of regression analysis
for analyzing data from experimental/observational
studies and the use of the best-fit model for inference
and hypothesis testing. While useful for investigating
causality in nature, regression models have several
limitations: (i) the predictor variables are assumed to
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o measure with absolute accuracy characteristics
roperties of conceptual interest (McCune and Grac
002). Ecologists are frequently interested in proce

hat cannot be measured effectively by one si
ariable, and a common way to address this proble
o perceive the ecological concept as a nested hiera
e free of measurement error or uncontrolled varia
ii) the assumption of normality is frequently violat
y the errors in the resultant models, and (iii) hypo
es are formulated in a way that solely allow for
nclusion of directly observed variables (Malaeb e
l., 2000). Therefore, it is increasingly recognized t
hat is missing from the common ecological prac

s a statistical technique with the ability to unra
omplex interrelationships and aid generalization
heory testing by relaxing some of these restriction
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Structural equation modeling (SEM) is a method
that can address several of the above restrictions, pro-
viding a robust technique for studying interdependen-
cies among a set of correlated variables. We believe
that it is well suited to provide insight into the relation-
ships of the often correlated and error-contaminated
physical, chemical, and biological variables in ecolog-
ical research. To that end, we developed and tested
a conceptual model concerning the regulatory role of
abiotic conditions and biological interactions on lake
phytoplankton dynamics and water clarity during the
summer-stratified period in Lake Washington and in
Lake Mendota. Our objectives are: (1) to assess the
adequacy of this conceptual model, (2) to examine
the value of structural equation modeling in empiri-
cal confirmation of scientific hypotheses, and (3) to
discuss how this multivariate statistical method can
be combined with Bayesian analysis and assist natu-
ral resource management.

2. Methods

2.1. Structural equation modeling

SEM is a multivariate statistical methodology that
encompasses factor and path analysis (McCune and
Grace, 2002; Pugesek et al., 2003). Even though the
major advancements towards generalization of the
method occurred after the 1970s (Keesling, 1972;
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multiple indicator (observed) variables. An aquatic
ecosystem example is the combination of several indi-
cators such as photosynthetic pigments (chlorophylls,
carotenoids), primary productivity, algal biovolume
or carbon biomass, to model the latent (unobservable)
variable “phytoplankton”. However,Bollen (1989a)
emphasized the need for caution when developing
latent variable models and discussed several validity
tests for examining the correspondence between
concepts and observed variables. It should be noted
that principal component analysis has also the ability
to reduce a set of correlated variables to higher-order
components but has a limited flexibility to specify
the model structure prior to the analysis and does not
account for measurement error (McCune and Grace,
2002).

SEM is an “a priori” statistical technique, where
the modeler proposes and tests a hypothesized struc-
ture/mechanism that usually reflects existing knowl-
edge. The formulation of this initial model creates an
expected covariance structure, which is tested against
the covariance matrix from observed data. The null
hypothesisH0 that formalizes the idea of structural
equation modeling is:

H0 : Σ = Σ(θ) (1)

whereΣ is the population (or sample) covariance
matrix of observed variables,θ is a vector that contains
the model parameters, andΣ(θ) is the model-implied
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athways and partition direct and indirect relations
mong variables date back approximately 80 y
Wright, 1918; Wright, 1921). In contrast with mul
ivariate regression, SEM allows the user to explic
est indirect effects between two explanatory variab
here effects between two variables can be med
y another intermediary variable (e.g.,Bollen, 1989a
line, 1998). Additionally, SEM can explicitly incor
orate uncertainty due to measurement error or
f validity of the observed variables. The latter asp
efers to the essential feature of allowing theore
ni- or multidimensional concepts to be amalgam

nto single entities of variant “degrees of abstracti
e.g., phytoplankton or zooplankton community ver
nvironmental degradation or ecosystem health). M
pecifically, SEM can represent variables of con
ual interest that are not directly measurable, by u
ovariance matrix (Bollen, 1989a). In contrast with
onventional statistical models where rejection of
ull hypothesis is sought, the objective of struct
quation modeling isacceptance of the null hypothesis
ot rejectingH0, means that existing data support
roposed model (hypothesized covariance struct
he model is fit by minimizing the differences betwe
bserved and model-predicted covariances. Comm
sed fitting functions include maximum likeliho
ML), unweighted least squares (ULS) and gene
zed least squares (GLS). Finally,Jöreskog and S̈orbom
1993)articulated the important issue of extracting
ppropriate inferences from model results, by dis
uishing among three situations: (i)strictly confirma-

ory: a single model is formulated and tested aga
atasets, ideally after model specification. In this c

he model can be accepted or rejected, (ii)alternative
odels: several prespecified models are tested aga
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single set of data. In this case, one of the models should
be selected, and (iii)model generating: the analysis
starts with a tentative model, which is subject to eval-
uation and modification. These respecifications should
provide meaningful interpretations and the final model
needs further confirmation (Raykov, 1992; McCune
and Grace, 2002).

2.1.1. SEM applications in ecology
SEM has been extensively applied in research areas

including social science, psychology, chemistry, and
biology (e.g.,Bollen, 1989a; Hair et al., 1995; Hay-
duk, 1996; Kline, 1998). Applications in ecology and
environmental sciences, however, are still limited (e.g.,
Mitchell, 1992; Smith, 1995; Shipley, 1997; Grace and
Pugesek, 1998; Shipley, 2000). For example,Grace and
Pugesek (1997)provided an example of exploratory
analysis in ecology by developing a general SEM that
examined the relative effects of abiotic conditions
(e.g., soil salinity, elevation, nutrient content), distur-
bances (e.g., herbivory) and biomass density on plant
species richness.La Peyre et al. (2001)used SEM for
evaluating a hypothesized model for national wetland
management effort, which explained 60% of the
observed variability in 90 nations and highlighted the
role of social development for more effective wetland
protection.

Even less common is SEM application in aquatic
ecosystems and limited number of relevant studies can
be found in the literature. In an illustrative application,
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aimed to provide a predictive approach to water quality
criteria.

2.1.2. Benefits of Bayesian approach
The importance of considering auxiliary prior

information on individual parameters was recognized
early in the SEM literature (Martin and McDonald,
1975; Bartholomew, 1981; Lee, 1981). Lee (1981)
used a hierarchical Bayesian approach for analyzing
the confirmatory factor analytic model, which led to an
improvement of the factor loading, factor covariance,
and unique variance estimates in comparison with
the maximum likelihood method. Subsequent studies
considered prior information in the form of stochastic
functional relationships among the parameters, i.e.,
the classical identifiability constraints were restated as
stochastic (Lee, 1992; Lee and Ho, 1993). They found
that the Bayesian approach with stochastic constraints
performed equally well with the classical approach
when prior information was available, and provided
more robust results when population parameters were
misspecified.Scheines et al. (1999)demonstrated
how the Bayesian estimation along with informative
priors can assist for obtaining posterior distributions
for parameters of underidentified models; he replaced
a regression model with a SEM where the predictors
were measured with substantial error and the available
prior information was not sufficient to associate the
respective parameters with unique values. An inter-
esting finding of the same study was the ability of the
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he model, another interesting finding of this study
he positive total effect of natural variability on grow
otential, as a result of a negative direct effect a
igher positive indirect mediated through biodivers
he importance of path analysis when trying to el
ate patterns of causal association was also indic
y Stow and Borsuk (2003); the use of graphica
odels provided evidence that toxicity ofPfiesteria-

ike organisms was the effect rather than the caus
shkills. Structural equation modeling was also
ajor component of a recently introduced meth
logical framework byReckhow et al. (2005), which
ayesian approach to identify the existence of m
han one local maximum value (multimodality) in t
ikelihood surface, which were not detectable by
tandard procedures (see their example with Whea
odel). Recent developments in Markov Chain Mo
arlo (MCMC) methods (e.g., seePaap (2002)for an
xtensive discussion about the computational ad
ages of MCMC application on latent variable mod
ave increased the application of Bayesian infer

n non-linear factor analysis models (Arminger and
uthen, 1998; Zhu and Lee, 1999) that also accoun

or polytomous (Lee and Zhu, 2000) and dichotomou
ata (Lee and Song, 2003), or assess the contributi
f incomplete datasets to model selection (Lee and
ong, 2004). Generally, the advantages of the Baye
pproach over the classical methods are the abili

ncorporate prior knowledge about the parameters
he fact that the modeling process does not rely
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asymptotic theory (Congdon, 2003). The latter issue
is particularly important when the sample size is small
(commonly experienced in environmental studies),
and thus the classical estimation methods (maximum
likelihood, generalized and weighted least squares)
are not robust. MCMC samples are taken from the
posterior distribution, and as a result the procedure
works for all sample sizes and various sources of non-
normality.

We formulated a structural model that describes
epilimnetic phytoplankton dynamics as the interplay
between physical, chemical, and biological factors.
The latent and observed variable selection and the
model temporal resolution were based on data available
from routine monitoring programs (bimonthly sam-
plings, standard limnological variables). This model
specification allowed us to assess the adequacy of the
underlying information to give plausible results with
SEM and identify the relative role of several ecological
processes known to regulate water quality variables of
management interest. The model is tested in two lakes
with different trophic status (i.e., the mesotrophic
Lake Washington and the eutrophic Lake Mendota).
We also introduced a Bayesian hierarchical framework
and tested its results against the classical likelihood
approach. Using the same identification conditions
and uninformative priors, we firstly compared the con-
sistency between Bayesian, maximum likelihood, and
bootstrap estimates. The sensitivity of the structural
model results was then evaluated by treating these iden-
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delineating general abstract theories/hypotheses and
transform them into controllable-scale entities that
can be incorporated in experimental/observational
frameworks. This is particularly important in the field
of ecology where the directions of the dependence
relationships are largely known and prior knowledge
can be easily translated in models testable against
present and future datasets (McCune and Grace,
2002).

2.2. Case study sites

2.2.1. Lake Washington
Lake Washington is the second largest natural lake in

the State of Washington, with a surface area of 87.6 km2

and a total volume of 2.9 km3. The mean depth of the
lake is 32.9 m (maximum depth 65.2 m), the summer
epilimnion depth is typically 10 m with a epilimnion:
hypolimnion volume ratio of 0.39. The retention time
of the lake is 2.4 years on average. Lake Washington
is a mesotrophic ecosystem after a successful lake
restoration by sewage diversion (Edmondson, 1994).
The limnological processes are strongly dominated
by a recurrent spring diatom bloom with epilimnetic
chlorophyll concentration peaks of 10�g/L on average,
which is 3.2 times higher than the summer-stratified
period concentrations (Arhonditsis et al., 2003).
Generally, the strongly phosphorus limiting conditions
along with the zooplankton grazing pressure sustain
summer phytoplankton at an approximate level of 3�g
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ith the matrix representation of the Lake Washing
odel is provided inAppendix 1, while the Bayesia
EM configuration is presented inAppendix 2.
We recognize that a single example can o

artially cover the general principles of this statist
echnique. Thus, our intention is at least to show
EM’s ability to estimate both direct and indire
ffects between variables, to account for meas
ent error, and to simultaneously evaluate sev

ause-effect relationships warrant its consideratio
cological pattern description. The addition of la
ariables enables the linkage between theore
oncepts and observed variables, which provid
efensible method to quantify natural properties

nterest measured with uncertainty (Bollen, 1989a).
ost importantly, SEM can serve as a useful tool
hl a/L. In its current restored state, Lake Washing
as not experienced major cyanobacteria blooms

he summer phytoplankton assemblage on ave
omprises 26% diatoms (Aulacoseira, Stephanodiscus,
sterionella, Fragilaria), 37% chlorophytes (Oocystis,
phaerocystis), and 25% cyanobacteria (Anabaena,
nacystis, Microcystis) (Arhonditsis et al., 2003).
hus, Lake Washington provided an environmenta
p where we tested the ability of our conceptual m

o describe phytoplankton patterns under mesotro
onditions.

The dataset for SEM development was based
ecent (1994–2001), spatially intensive (12 statio
imnological sampling program carried out by Ki
ounty/ Metro (http://dnr.metrokc.gov/wlr/waterre

akes/Wash.HTM). Detailed description of this sam
ling network along with the analytical methods u

s provided elsewhere (Arhonditsis et al., 2003, 2004a).

http://dnr.metrokc.gov/wlr/waterres/lakes/wash.htm
http://dnr.metrokc.gov/wlr/waterres/lakes/wash.htm
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For this project, we selected data from the deeper parts
of the lake and sampling dates that spanned from the
onset of thermal stratification until the fall overturn
(n = 57).

2.2.2. Lake Mendota
Lake Mendota (12.7 m mean depth, surface area

of 38.95 km2 and flushing rate of 0.15 per year) is a
culturally eutrophic lake located in south-central Wis-
consin, USA. The lake is relatively deep (maximum
depth of 25.3 m) and is characterized by a dimictic
circulation pattern. Agricultural areas cover a large por-
tion (≈85%) of the lake’s watershed (604 km2 total
surface area), while urban and forested areas and wet-
lands account for the remaining 15%. Agricultural
and urban non-point loadings are the dominant exter-
nal nutrient (mostly P) inputs and have maintained
the lake’s eutrophic character, despite the diversion
of sewage effluents in 1971 (Lathrop et al., 1998).
In addition, nutrient intrusions from the hypolimnion
(internal loading) play a significant role in the epilim-
netic P budget, albeit the high interannual variability
in the relative contribution of the various (exogenous
versus endogenous) sources (Soranno et al., 1997).
The lake has been characterized by the occurrence of
cyanobacteria blooms during the summer, while the
unsuccessful implementation of several management
programs necessitated the adoption of more aggressive
non-point pollution reduction strategies (Betz et al.,
1997). The summer cyanobacteria assemblage is dom-
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wisc.edu/index.jsp?projectid=LTER1. SEM develop-
ment was based on a 5-year period (1997–2001), when
consistent measurements for all the observed variables
of the conceptual model existed in the dataset.

2.2.3. Statistical assumptions and data
transformations

The datasets used for SEM development were col-
lected from conventional monitoring programs with
moderate sampling intensity during the summer period
(i.e., once or twice a month), which was also the tem-
poral resolution of our study (no time-averaging was
considered). For maximum likelihood estimation, the
χ2-test is the commonly used goodness-of-fit mea-
sure where the observed variables are assumed to fol-
low a multivariate normal distribution. We tested for
both univariate and multivariate normality (skewness
and kurtosis) and applied transformations when neces-
sary. Multivariate kurtosis was examined with Mardia’s
coefficient (Mardia, 1974). We also examined for influ-
ential observations and outliers before and after trans-
formations were applied. The squared Mahalanobis
distance was used as a screening test for detecting mul-
tidimensional outliers (Legendre and Legendre, 1983).
According to this distance measure, the deviationd2

i

of the i-th observation from the centroid of all obser-
vations, is given by the formulation:

d2
i = (xi − x̄)′Ŝ−1(xi − x̄) (2)

w
v
t nce
m was
a lues.
T f the
e eans
d ces
( s
o ets,
a n was
n

2
role

o on
l ring
t

nated by colonial and filamentous species,Aphani-
omenon flos-aquae, Oscillatoria agardhii, andMicro-
ystis aeruginosa, capable of surface scum format
nder appropriate weather and water quality co

ions (Lathrop and Carpenter, 1992a; Soranno, 19).
ence, in contrast with Lake Washington, the eutro
ake Mendota provides an alternative environmen
etect differences in the relative importance of the

ous pathways of the hypothesized model ofFig. 1
nd its ability to illuminate epilimnetic phytoplankt
ynamics.

The dataset used for this analysis was assem
rom the Northern Temperate Lakes Long Term E
ogical Research (LTER) program (Center for Limn
gy, University of Wisconsin, Madison). The data w
ollected approximately twice a month from one sta
t the deepest part of the lake (for further sampling
ethodological details, seehttp://lterquery.limnology
here xi is the i-th observation on thep observed
ariables, ¯x is the vector of their means, and̂S−1 is
he unbiased estimate of their population covaria
atrix. The overall mean of each observed variable
lso used to fill gaps in the dataset due to missing va
he number of missing values was less than 2% o
xisting data, and thus the use of the respective m
id not cause distortions (shrinking) of the varian
Malaeb et al., 2000). Finally, no significant problem
f temporal autocorrelation were found in the datas
nd thus the independent observations assumptio
ot violated.

.2.4. The conceptual model
Our conceptual model considers the regulatory

f abiotic conditions and biological interactions
ake phytoplankton dynamics and water clarity du
he summer-stratified period (Fig. 1). Abiotic condi-

http://lterquery.limnology.wisc.edu/index.jsp?project_id=lter1
http://lterquery.limnology.wisc.edu/index.jsp?project_id=lter1
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Fig. 1. (a) The hypothesized conceptualization and (b) the actual structural equation model used for predicting epilimnetic phytoplankton
dynamics. The use of a rectangular box for the epilimnion depth and the water clarity implies that the variable was considered as directly
observable with no measurement error (λ1 =λ6 = 1.0, andδ1 = ε3 = 0). The metrics of the latent variables were set by fixingλ2 =λ5 =λ8 = 1.0.
The notation is similar to that inAppendix 1.

tions refer to the physical and chemical properties of
the epilimnetic environment, and our intention is to
examine the relative importance of their effects on
the phytoplankton community. We hypothesized that
the physical environment will be represented by the

changes of the epilimnion depth (defined as the depth
where the temperature change was≥1◦C m−1). For
simplicity, we did not include other surrogate vari-
ables of the physical environment (e.g., the Schmidt
stability index), although we recognize that the present
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indicator does not reflect the entire range of macro-
and microscale advection and diffusion processes that
can occur in a lake’s epilimnion. The latent variable
nutrients along with the two indicator variables solu-
ble reactive phosphorus (SRP) and dissolved inorganic
nitrogen (DIN) concentrations comprised the measure-
ment model for the chemical environment. Zooplank-
ton grazing pressure on phytoplankton represented the
food–web interactions. We used the latent variable her-
bivory and two surrogate variables: the first, referred
to as total zooplankton included all the herbivorous
zooplankton species, while the second included only
Daphnia species. Both herbivory indicator variables
were formed as the sum of the species abundances
(expressed as organisms per litre) weighted by the
respective mean lengths (Carpenter et al., 1996). Sec-
chi transparency was considered as a perfect measure
(no measurement error) of water clarity, and thus we
only considered the latent (structural) error in the equa-
tion that relates phytoplankton to water clarity. Due to
differences in data availability, the physical interpreta-
tion of the latent variable phytoplankton were different
between the two case studies because different indica-
tors were used (Lake Washington and Lake Mendota).
For the Lake Mendota SEM, we included two measures
of phytoplankton (i.e., chlorophyll a and total algal bio-
volume), which resulted in a quantitative configuration
of the phytoplankton latent variable. In contrast, the
Lake Washington SEM development was based on the
combination of two variables, chlorophyll a and a poly-
t nce.
T eled
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of simplicity, we adopted a recursive approach (i.e., all
causal effects were unidirectional and the disturbances
were uncorrelated), but we recognize that some of the
considered ecological paths would be more realistically
represented by a non-recursive model.

3. Results and discussion

3.1. Lake Washington

Variance resolution for phytoplankton (24%), her-
bivory (31%) and water clarity (32%) (Fig. 2) was
relatively low. Theχ2-test statistic value was 27.795
with 17 d.f. with ap-value of 0.047. [Note that a sig-
nificant χ2 value calls for rejection of the proposed
model.] The root mean square error of approximation
(RMSEA) was 0.106, which under the null hypothe-
sis of “close fit” (i.e., RMSEA is no greater than 0.05
in the population) corresponds to ap-value of 0.108.
Based on their experience,Browne and Cudeck (1993)
argued that a value of about 0.08 or less for the RMSEA
would indicate a close fit, while a model with a RMSEA
greater than 0.1 would not be satisfactory. The values
of the incremental fit index (IFI;Bollen, 1989b) and
comparative fit index (CFI;Bentler, 1990) were 0.858
and 0.834, respectively. These indices provide infor-
mation for the comparison between the hypothesized
and the baseline model and a value close to 1 indicates
a good fit. The baseline model is defined as the simplest
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Fig. 2. Structural equation model for Lake Washington (N = 57). The numbers correspond to the standardized path coefficients and theR-squared
values (numbers in rectangles);χ2, d.f. andp correspond to the chi-square test values, the degrees of freedom and the probability level for rejecting
the null hypothesis, respectively.

lation (r≈−0.27). BothDaphnia (r≈0.72) and total
zooplankton (r≈0.89) length weighted biomass were
strongly correlated with the latent variable herbivory.

Generally, there was a good agreement between
observed and model-implied values in 30 out of 36
moments of the covariance matrix (Table 1). Six
residual covariances were large and the respective
standardized estimates (i.e., the residual covariances
divided by their standard error) were above one. All
the paths between the latent variables of the initial
hypothesized structural model were significant with
the only exception being the direct path from nutrients
to phytoplankton (p = 0.427; seeTable 2). In addition,
the covariance between epilimnion depth and nutrients
was positive but non-significant (p = 0.251). The
standardized direct effect (i.e., the unstandardized
partial regression coefficients multiplied by the ratio
of the standard deviation of the explanatory variable
to the standard deviation of the variable it affects) of
the epilimnion depth on phytoplankton was−0.498.

The standardized direct paths from phytoplankton to
herbivory (0.554) and water clarity (−0.567) were
nearly equal in magnitude, but opposite in sign.

Interpreting these results, we highlight the absence
of significant linkage between the inorganic nutrient
stock and phytoplankton variability in the Lake
Washington summer epilimnion. The epilimnion also
lacks significant replenishments from the hypolimnion
(non-significant covariance between nutrients and
epilimnion depth) probably due to the low nutri-
ent levels below the thermocline (DIN≤300�g/L
and SRP≤15�g/L; see Lehman, 1988). The two
regulatory factors for the phytoplankton community
structure are the mixing processes and grazing pressure
imposed by the zooplankton community. While the
negative path from epilimnion depth to phytoplankton
is plausible (i.e., dilution effects of epilimnetic
erosion/deepening) the positive relationship with
herbivory invites further explanation. During the
summer-stratified period, a co-dependence between
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Table 1
The analyzed covariance matrix for the Lake Washington model with predicted values and residuals (study periods 1994–2001)

Epilimnion
depth

Secchi
depth

log(SRP)
√

DIN Total
zooplankton

Daphnia log(chloro-
phyll a)

Cyanobacteria

Epilimnion depth
Observed 12.646
Predicted 12.646
Residual 0

Secchi depth
Observed 1.029 1.380
Predicted 0.951 1.380
Residual 0.078 0

log(SRP)
Observed 0.262 −0.061 0.243
Predicted 0.257 −0.018 0.243
Residual 0.005 −0.043 0
√

DIN
Observed 2.593 0.569 0.489 23.900
Predicted 2.643 −0.189 0.489 23.900
Residual −0.049 0.758 0 0

Total zooplankton
Observed −2.976 −1.767 0.430 5.309 23.878
Predicted −3.438 −1.603 0.067 0.685 23.878
Residual 0.462 −0.164 0.363 4.624 0

Daphnia
Observed −0.585 −0.244 0.035 0.106 3.636 1.362
Predicted −0.663 −0.309 0.013 0.132 3.636 1.362
Residual 0.078 0.065 0.022 −0.026 0 0

log(chlorophyll a)
Observed −0.206 −0.123 −0.002 0.088 0.375 0.086 0.052
Predicted −0.244 −0.114 0.005 0.049 0.412 0.079 0.052
Residual 0.038 −0.009 −0.007 0.040 −0.037 0.006 0

Cyanobacteria
Observed 13.498 −0.876 0.949 5.936 −7.055 −1.425 −0.539 92.039
Predicted 3.722 1.735 −0.072 −0.742 −6.272 −1.209 −0.446 92.039
Residual 9.775 −2.612 1.021 6.677 −0.783 −0.215 −0.093 0

the phytoplankton and zooplankton community exists
in the Lake Washington epilimnion, when a significant
portion of the phosphorus supply (60–90%) in the
mixed layer is provided by zooplankton excretion
(Richey, 1979; Arhonditsis et al., 2004b). Thus,
zooplankton nutrient recycling fuels phytoplankton
growth, which in turn has a positive feedback and
sustains herbivore biomass. Interestingly, the standard-
ized total effects of nutrients differed in sign between
cyanobacteria (−0.079 =−0.272×0.292) and chloro-
phyll a (0.219 = 0.751×0.292). A possible explanation
for this difference is a pattern where small-pulsed

nutrient inputs from thermocline migrations/external
sources selectively subsidize the taxonomic groups of
the Lake Washington phytoplankton community with
affinity and velocity competitive advantages (e.g.,
diatoms, chlorophytes) over cyanobacteria (Sommer,
1989). The use of fully quantitative information
will further assist the elucidation of the interspecific
phytoplankton response to discrete nutrient fluxes in
mesotrophic environments during the stratified period.

We used the modified bootstrap procedure proposed
by Bollen and Stine (1992)for testing the Lake Wash-
ington SEM. The Bollen and Stine method introduces
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Table 2
Comparison of the maximum likelihood, bootstrap (N = 2000) and Markov Chain Monte Carlo sampling estimates and standard errors of the
Lake Washington model path coefficients and error variances. The second pairs of the Bayesian estimates (medians and respective standard
errors) correspond to a limited movement around the three fixed loading coefficients by sampling the normal distribution (1, 1). The notation is
similar to that inAppendix 1

Parameters Symbol Maximum likelihood Bootstrap Markov Chain Monte Carlo sampling

Estimate S.E. Estimate S.E. Median S.E. Median S.E.

Phytoplankton←Nutrients γ2 0.229 0.289 0.345 0.570 0.155 0.299 0.122 0.306
Phytoplankton←Epilimnion γ1 −0.024 0.009 −0.025 0.016 −0.020 0.010 −0.035 0.020
Herbivory←Phytoplankton β2 2.711 1.217 3.190 1.931 2.337 0.995 1.710 1.282
Cyanobacteria←Phytoplankton λ4 −15.225 9.510 −17.776 24.838 −13.761 9.511 −13.710 3.046
Chlorophyll a←Phytoplankton λ5 1.000 1.000 1.000 0.527 0.215
Daphnia←Herbivory λ8 1.000 1.000 1.000 0.929 0.441
Zooplankton←Herbivory λ7 5.186 1.747 6.211 3.730 5.781 1.511 5.146 2.197
DIN←Nutrients λ3 10.294 9.739 14.586 17.329 15.361 12.631 10.640 3.072
SRP←Nutrients λ2 1.000 1.000 1.000 0.476 0.499
Water Clarity←Phytoplankton β1 −3.890 1.371 −4.179 2.228 −3.841 1.281 −2.251 1.095
Var(Nutrients) ϕ22 0.047 0.055 0.088 0.172 0.029 0.026 0.037 0.071
Var(Epilimnion) ϕ11 12.646 2.390 12.476 2.345 12.572 2.485 12.445 2.474
Covar(Nutrients, Epilimnion) ϕ12 0.257 0.224 0.283 0.214 0.154 0.186 0.213 0.233
Var(Phytoplankton) ψ11 0.022 0.013 0.019 0.024 0.029 0.010 0.060 0.051
Var(Cyanobacteria) var(ε1) 85.248 16.854 79.194 18.640 87.260 18.642 83.403 19.026
Var(Chlorophyll a) var(ε2) 0.023 0.011 0.021 0.022 0.031 0.009 0.035 0.010
Var(Herbivory) ψ33 0.486 0.225 0.487 0.438 0.466 0.233 0.523 6.978
Var(Daphnia) var(ε5) 0.661 0.251 0.601 0.432 0.736 0.226 0.727 0.228
Var(Total Zooplankton) var(ε4) 5.018 5.930 1.990 11.256 2.238 4.087 2.453 4.235
Var(DIN) var(δ3) 18.869 6.230 16.008 9.798 16.624 9.206 12.986 8.886
Var(SRP) var(δ2) 0.196 0.061 0.152 0.078 0.222 0.052 0.221 0.059
Var(Water Clarity) ψ22 0.937 0.230 0.901 0.278 0.936 0.280 1.016 0.275

a transformation of the data matrix to ensure that the
bootstrap samples will not be drawn from a set of obser-
vations for which the null hypothesis does not hold
(Bollen and Stine, 1992). As a result, this scheme is
more objective than the naı̈ve bootstrapping, and thus
H0 will not be rejected regardless of whether it holds or
not for the entire population. We formed 2000 bootstrap
samples by taking independent draws with replacement
from the transformed dataset. Testing the null hypoth-
esis that the model is correct, we found ap = 0.048;
comparing the model performance when using the full
dataset, the fit was worse 98 out of 2000 bootstrap
samples. Interestingly, during the bootstrap procedure
several samples resulted in singular covariance matri-
ces, while the standard error for at least three bootstrap
estimates (var(ε4), λ3, λ4) was notably higher than
those from the classical method (Table 2). However,
these discrepancies did not alter the inference regard-
ing their significance. The first pairs of Bayesian esti-
mates (medians and respective standard errors) show
that the Bayesian SEM provided consistent results with

the maximum likelihood method.Fig. 3 presents the
comparison between the observed chlorophyll a and
total zooplankton abundance and the posterior pre-
dictive median, quartiles, and 95% credible sets. In
addition, when the assumptions regarding the metrics
of the latent variables (λ2 =λ5 =λ8 = 1) were relaxed
by sampling from the normal distribution (1,1), the
interpretation of the structural model remained unal-
tered. Using the posterior medians, the predicted struc-
tural equation models were:n1 =−0.035ξ1 + 0.122ξ2,
n2 =−2.251n1, and n3 = 1.710n1. By comparing the
standard error relative to the medians, we infer that
the weak relationship between nutrients and phyto-
plankton was also evident with the Bayesian approach,
while the path between phytoplankton and herbivory
was still positive but weaker (Table 2). Interestingly,
the DIN loading (λ3) over the latent variable nutri-
ents was stronger after the stochastic treatment of
the assumption, whereas the SRP loading (λ2) was
not significant. This finding probably reflects the
phosphorus-limiting conditions in Lake Washington
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Fig. 3. Comparison between the observed data and the posterior predictive distributions for (a) chlorophyll a and (b) total zooplankton abundance
of the Lake Washington SEM.

where SRP is usually below the detection limit and
the largest fraction of the phosphorus stock of the
system is sequestered in the phytoplankton cells. In
contrast, the non-limiting DIN (mostly NO3) ranges
in detectable levels (DIN≥80�g/L), and thus seems
to more closely portray the phytoplankton fluctua-
tions. Moreover, both herbivory and phytoplankton
were strongly associated with their pair of indicator
variables.

Generally, even though there were some discrep-
ancies, both the bootstrap testing and the Bayesian
approach provided similar results to the maximum like-
lihood method. The hypothesized conceptualization

of the epilimnetic phytoplankton dynamics provided
satisfactory results, which were also consistent with
the existing Lake Washington literature. However, it
should not be neglected that the model explained a
relatively low proportion of the observed variability,
while several tests of fit were in the marginal area
between model acceptance/rejection. We highlight two
possible aspects of the model that warrant reconsider-
ation/enhancement:

(i) The inclusion of the soluble form of phoshorus
as a sole limiting nutrient indicator in the nutri-
ents measurement model is not sufficient to com-
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pletely capture the phytoplankton dynamics. In
a strongly phosphorus limiting epilimnetic envi-
ronment, the usually small-sized subsidies from
the hypolimnion and/or the zooplankton recycling
are rapidly uptaken by the primary producers. As
a result, the use of SRP data from a moderate
sampling intensity monitoring program provides
limited sensitivity in describing the phosphorus-
phytoplankton relationship. The incorporation of
an additional indicator variable that also accounts
for the particulate or organic phosphorus fraction
(e.g., TP) is likely to improve the model.

(ii) The dual nature of the latent variable phytoplank-
ton community might be another cause of the
moderate model performance. It is possible that
the combination of chlorophyll a and cyanobac-
teria into one common factor is not the most
effective way to model phytoplankton response
because the relationship of these two variables
is not always clear in a mesotrophic environ-

ment. Even though it is reasonable to expect an
improvement after the inclusion of a fully quanti-
tative cyanobacteria characterization, the descrip-
tion of a stochastic and non-linear phenomenon
(i.e., species competition) with a linear and fairly
simple model is probably overoptimistic. There
are several physical, chemical, biological factors
that can affect the phytoplankton composition in
the summer epilimnion, which dynamically inter-
act and regulate the growth-minus-loss balance
for each phytoplankton group and determine the
“superior” competitor under any specific set of
conditions (Dokulil and Teubner, 2000; Downing
et al., 2001). The recognition of this model limi-
tation raises the classical “simplicity versus com-
plexity” dilemma; the realistic selection of a model
that simply focuses on a quantitative description of
the phytoplankton community (e.g., the Lake Men-
dota SEM) or a more complicated non-linear SEM
approach that requires several additional latent and

F numbe
v chi-squ level for
r

ig. 4. Structural equation model for Lake Mendota (N = 48). The
alues (numbers in rectangles);χ2, d.f. andp correspond to the
ejecting the null hypothesis, respectively.
rs correspond to the standardized path coefficients and theR-squared
are test values, the degrees of freedom and the probability
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observed variables (e.g., turbulence, pH, TN/TP,
CO2, trace elements, toxins) that can potentially
cause cyanobacteria dominance.

3.2. Lake Mendota

In constrast to Lake Washington, the Lake Men-
dota model accounts for a large amount of the observed
variability in phytoplankton (76%), herbivory (43%),
and water clarity (84%). Theχ2-test statistic value
was 22.473 with 19 d.f. and non-significantp-value
(= 0.261) (Fig. 4). In initial maximum likelihood cal-

culation runs, we found that the model yielded several
negative error variances. These improper solutions –
also referred as “Heywood cases” – can be caused
by several factors, e.g., not “typical” samples, out-
liers or influential observations, and fundamental faults
on model specification (Bollen, 1989a). For example,
Boomsma (1982)found that implausible values were
possible when small sample sizes and two indicators
per factor were used, andAnderson and Gerbing (1984)
suggested the use of large sample sizes (≥150) and
more than three indicators per factor to avoid negative
error variances.

Table 3
The analyzed covariance matrix for the Lake Mendota model with predicted values and residuals (study periods 1997–2001)

Epilimnion
depth

Secchi
depth

SRP
√

DIN
√

Total
zooplankton

√
Daphnia log(chlorophyll a) log(total

biovolume)

Epilimnion depth
Observed 16.496
Predicted 16.496
Residual 0

Secchi depth
Observed 2.666 2.923
Predicted 2.744 2.923
Residual −0.077 0

SRP
Observed 49.018 36.558 1097.123
Predicted 48.168 38.192 1097.124
Residual 0.850 −1.634 −0.001
√

DIN
.427
.442
4√
.810
.386
6√
.368
.360
08

l

l

Observed 16.821 13.437 272.742 96
Predicted 16.832 13.346 272.146 96
Residual −0.010 0.092 0.596 −0.01

Total zooplankton
Observed 0.673 0.921 17.824 5
Predicted 1.313 1.179 18.275 6
Residual −0.639 −0.259 −0.450 −0.57

Daphnia

Observed 0.691 1.143 22.965 7
Predicted 1.307 1.175 18.200 6
Residual −0.617 −0.032 4.765 1.0

og(chlorophyll a)

Observed −0.730 −0.566 −7.655 −3.088 −
Predicted −0.630 −0.566 −8.777 −3.067 −
Residual −0.099 0 1.122 −0.021

og(total biovolume)
Observed −0.821 −0.796 −10.639 −4.005 −
Predicted −0.866 −0.778 −12.057 −4.213 −
Residual 0.045 −0.018 1.418 0.208
1.571
1.571

0

1.303 1.381
1.293 1.388

0.010 −0.007
0.234 −0.283 0.165
0.271 −0.270 0.165
0.037 −0.013 0

0.366 −0.431 0.177 0.369
0.372 −0.371 0.179 0.369

0.006 −0.060 −0.002 0
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To prevent the Lake Mendota model from yielding
negative values, we added specification of two error
variances (DIN,Daphnia), thus increasing the d.f. from
17 to 19. To compute the prespecified error variances,
we ran the Bayesian SEM configuration and used the
median error variances, which resulted from this model
as the prescribed values for the maximum likelihood
model. We ran the Bayesian SEM model keeping the
three loading coefficients fixed (equal to one; see below
and Appendices 1 and 2) and using “flat” (uninfor-
mative) priors for the rest of the model parameters.
Note that in a Bayesian framework, the use of a con-
jugate prior distribution specifies the variances in a
region of positive values, and thus the inadmissible val-
ues are avoided (Lee and Shi, 2000; see alsoMartin
and McDonald, 1975for another Bayesian approach
to avoid inadmissible estimates in unrestricted factor
analysis). Researchers using SEM for environmental
data sets are likely to find that such methods may be
needed in their analyses, since datasets of similar size
are frequent in environmental science.

The RMSEA was 0.062, which under the null
hypothesis of “close fit” corresponds to ap-value
of 0.388. The IFI and CFI values were 0.989 and
0.987, respectively. Hoelter’s criticalN test indicated a
model acceptance (CN = 64) at the 0.05 significance
level. The latent variable nutrients was well corre-
lated with dissolved inorganic nitrogen (r≈0.99) and
soluble reactive phosphorus (r≈0.84). Chlorophyll a
and total algal biovolume were also highly correlated
with phytoplankton and the respective coefficients were
0.89 and 0.81. Finally, bothDaphnia (r≈0.96) and
total zooplankton (r≈0.91) length weighted biomass
were strongly correlated with the latent variable her-
bivory.

Generally, there was a good agreement between
the observed and model-implied moments and all the
standardized estimates of the residuals were below
one (Table 3). The largest residual covariances were
found between the epilimnion depth and the two her-
bivory indicators and between SRP andDaphnia (stan-
dardized estimates of the residuals≥0.7). The initial

Table 4
Comparison of the maximum likelihood, bootstrap (N = 2000) and Markov Chain Monte Carlo sampling estimates and standard errors of the
Lake Mendota model path coefficients and error variances. The second pairs of the Bayesian estimates (medians and respective standard errors)
correspond to a limited movement around the three fixed loading coefficients by sampling the normal distribution (1, 1). The notation is similar
to that inAppendix 1

Parameters Symbol Maximum likelihood Bootstrap Markov Chain Monte Carlo sampling

Estimate S.E. Estimate S.E. Median S.E. Median S.E.

Phytoplankton←Nutrients γ2 −0.011 0.002 −0.011 0.002 −0.011 0.002 −0.037 0.024
P 08 −
H 16 −
T 86 .336
C 37
D 30
Z 82 .536
D 33 .295
S 48
W 64 −
V 263 5.721
V 03 .513
C 08 .081
V 10 .146
V 30 .034
V 10 .012
V 77 .809
V 59
V 76 .094
V 63
V 864 7.673
V 53 .172
hytoplankton←Epilimnion γ1 −0.006 0.0
erbivory←Phytoplankton β2 −2.074 0.4
otal biovolume←Phytoplankton λ4 1.374 0.1
hlorophyll a←Phytoplankton λ5 1.000
aphnia←Herbivory λ8 1.000
ooplankton←Herbivory λ7 1.004 0.0
IN←Nutrients λ3 0.349 0.0
RP←Nutrients λ2 1.000
ater Clarity←Cyanobacteria β1 −4.352 0.4

ar(Nutrients) ϕ22 778.817 217.
ar(Epilimnion) ϕ11 16.496 3.4
ovar(Nutrients, Epilimnion) ϕ12 48.168 18.6
ar(Phytoplankton) ψ11 0.035 0.0
ar(Total Biovolume) var(ε1) 0.123 0.0
ar(Chlorophyll a) var(ε2) 0.031 0.0
ar(Herbivory) ψ33 0.728 0.1
ar(Daphnia) var(ε5) 0.100
ar(Total Zooplankton) var(ε4) 0.273 0.0
ar(DIN) var(δ3) 1.344
ar(SRP) var(δ2) 318.306 67.
ar(Water Clarity) ψ22 0.458 0.1
0.007 0.009 −0.007 0.007 −0.008 0.014
2.078 0.444 −2.035 0.436 −1.452 0.854
1.380 0.196 1.361 0.193 1.053 0
1.000 1.000 0.756 0.2
1.000 1.000 1.102 0.5
1.009 0.081 1.006 0.091 1.095 0
0.353 0.036 0.367 0.042 0.935 0
1.000 1.000 2.553 0.7
4.391 0.510 −4.335 0.486 −3.381 1.013
759.919 209.328 699.311 217.721 109.322 16
16.121 3.240 16.312 3.533 16.280 3
46.929 17.905 44.215 18.481 17.432 11
0.029 0.010 0.040 0.012 0.062 0
0.118 0.029 0.131 0.034 0.131 0
0.033 0.010 0.043 0.012 0.044 0
0.694 0.166 0.759 0.200 0.651 1
0.100 0.100 0.059 0.083 0.0
0.259 0.075 0.291 0.092 0.292 0
1.344 1.344 1.920 0.627 3.5

304.697 63.891 332.557 76.999 330.907 7
0.435 0.151 0.449 0.174 0.448 0
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hypothesized structural model was confirmed and all
the paths between the latent variables were significant.
The only exception was the direct path from epil-
imnion depth to phytoplankton (p = 0.436; seeTable 4).
The standardized direct effect of nutrients on phyto-
plankton was−0.841. The standardized direct paths
from phytoplankton to herbivory (−0.659) and water
clarity (−0.918) were negative and highly significant.
Finally, the correlation (r = 0.425) between epilimnion
depth and nutrients (p = 0.01) was also significant. The
latter result is consistent with previous studies that
emphasized the internal loading contribution to the
epilimnetic nutrient stock in Lake Mendota.Soranno
et al. (1997)found that major entrainment events can
occur and result in nutrient fluxes that are significantly
higher than those from external nutrient sources. These
nutrient pulses stimulate phytoplankton (cyanobacte-
ria) blooms (≥30�g chl a/L), surface scum formation

with adverse effects on the water clarity and the aes-
thetic value of the lake (Lathrop et al., 1996; Soranno,
1997). Our SEM approach also highlighted the control
that herbivory exerts on summer epilimnetic phyto-
plankton dynamics. Several past Lake Mendota studies
based on both short and long-term datasets, variant tem-
poral resolution (from days to seasonal averages), and
contemporaneous or lagged measurements provided
similar evidence and underscored the role of zooplank-
ton grazing pressure (especially from the large bodied
Daphnia spp.) on phytoplankton dynamics (e.g., com-
position, abundance) and the water clarity (Lathrop and
Carpenter, 1992b; Lathrop et al., 1996; Soranno, 1997;
Lathrop et al., 1999). Overall, the conceptual model
resulted in a good fit with the data and it provided a
plausible interpretation of the ecological processes in a
eutrophic environment that is consistent with the exist-
ing literature.
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ake Mendota SEM.
ictive distributions for (a) chlorophyll a and (b)Daphnia abundance of th



G.B. Arhonditsis et al. / Ecological Modelling 192 (2006) 385–409 401

Both bootstrap estimates (Table 4) and model
fit (p = 0.367) were consistent with the maximum
likelihood results.Fig. 5 presents the comparison
between the observed chlorophyll a andDaphnia abun-
dance and the posterior predictive median, quartiles,
and 95% credible sets of the Bayesian model with
the three identification restrictions (λ2 =λ5 =λ8 = 1).
Moreover, interesting findings were raised when
these three constraints were relaxed. Using the pos-
terior medians, we have the structural equation
model n1 =−0.008ξ1−0.037ξ2, n2 =−3.381n1, and
n3 =−1.452n1. Comparing these estimates with the
respective standard errors, we infer that the Bayesian
approach also underlined the importance of the paths
from nutrients to phytoplankton, and from phytoplank-

ton to herbivory and water transparency. In contrast,
the variance of the nutrients (ϕ22) and the covariance
between nutrients and epilimnion depth (ϕ12) were
notably lower. The lowerϕ12 andϕ22 variance esti-
mates were related to the assumption that determines
the metric of the latent variable nutrients (λ2 = 1) in
combination with the high variance of the used SRP
values (Table 3), which in turn is indicative of the role
of the hypolimnetic fluxes. [Also note that the best
fit to the normal distribution was provided by the raw
(untransformed) SRP data for the Lake Mendota SEM.]
The discrepancies were minimized when we sampled
values for theλ2 loading from a normal distribution
with mean 1 and precision 5 or when keeping this
loading factor fixed. Finally, significant loadings were
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ig. 6. Posterior distributions for the two parameters associated with
f the Lake Mendota structural equation model: each point correspon
uality index for each sampling date (study period 1997–2001,N = 48). Th
atisfactory/non-satisfactory water quality conditions.
(a) chlorophyll a, (b) water transparency, and (c) water quality predictions
ds to the mean value of the posterior predictive distribution of the water

e water quality index is based on a binary characterization (0, 1) of
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found between the three latent variables and the respec-
tive pairs of indicators.

3.3. Application in natural resource management

To illustrate one way of how this methodological
framework can be used for assessing trophic conditions
and assist water quality management, we linked the
Bayesian configuration of the Lake Mendota SEM with
the following model:

logit(p[i]) = α0+ α1 chlorophyll a[i] + α2 water transparency[i],

whereY = 1 if chlorophyll a[i] ≥ 10�g/L or Secchi depth[i] ≤ 2 m elseY = 0,

Y [i]|p[i]∼Bernoulli (p[i]), logit p[i] = loge(p[i]/(1− p[i])) (3)

The indicator variable for identifying trophic state
(referred to as “Water Quality Index” inFig. 6)
was based on a binary characterization (0, 1) of
satisfactory/non-satisfactory water quality conditions.
More specifically, the observedY[i] was modeled as
a realization from a random Bernoulli process where
p[i], the probability of non-satisfactory conditions, is
a function of chlorophyll a and water transparency
(coincides with Secchi depth in this model) for this
categorization. The respective cutoff points were
10�g/L and 2 m.Fig. 6(a) and (b) show the posterior
distribution for the parameters associated with the
two water quality variables.Fig. 6(c) illustrates how
the proposed conceptualization of the Lake Mendota
e for
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programs (moderate sampling intensity, standard lim-
nological variables used), and (ii) the ability to test
a single model simultaneously for multiple waterbod-
ies (multi-group analyses or stacked models), where
the use of constraints across groups enables the iden-
tification of the longitudinal differences (Pugesek and
Tomer, 1996). Bayesian analysis can also be advanta-
geous along this line, since the stochastic treatment of
the cross-sectional constraints improves the accuracy
of the estimation and results in a more meaningful inter-
pretation of the model (Lee, 1992; Lee and Ho, 1993).

4. Conclusions

We presented an illustrative example that examined
the efficiency of a multivariate statistical method to
explore ecological patterns. Structural equation mod-
eling was used to formulate a simple conceptual model
regarding epilimnetic phytoplankton dynamics, which
was then tested in two lakes with different trophic status
(i.e., eutrophic Lake Mendota and mesotrophic Lake
Washington). The basic feature of the confirmation
theory is the recognition that science is a hypothetico-
deductive process and observations/experimental data
should be considered a consequence of a theory or a
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Model acceptance in two or more case studies is
not evidence for a general statement, but merely the
start of a “perpetual race” for confirmation (Oreskes et
al., 1994). This realization might be misinterpreted as
a necessity for good starting models, where the ecol-
ogist has to embody conceptualizations with a high
likelihood of confirmation in a variety of conditions.
In typical SEM practice, what is needed is a tenta-
tive initial model and probably prior knowledge of
the variety of observed variables that can reflect the
studied ecological conditions. The initial model can be
respecified and effectively optimized, as long as the
modifications are done through a combination of data
and theory-driven exploratory analysis (McCune and
Grace, 2002). By integrating intuition, theory, and evi-
dence from the data, we insure that the final model has
not only the best fit but also meaningful paths. Thus,
the resulting modeling development provides a plau-
sible framework that seeks for further confirmation.
For several reasons, SEM has received criticism with
regards to its ability to serve as a methodological tool
in ecology and evolutionary biology (e.g.,Petraitis et
al., 1996), which however have been addressed on a
vis-à-vis basis in the SEM literature (e.g.,Pugesek and
Tomer, 1995; Grace and Pugesek, 1998). For exam-
ple, SEM does not require larger sample sizes than
other multivariate methods (e.g., multiple regression,
MANOVA); can account for non-linear relationships;
can include categorical data and can overcome devia-
tions from multinormality.
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It should also be stressed that SEM can be more
complicated than the presented model and more infor-
mation can be easily included.McCune and Grace
(2002)discussed that SEMs can become problematic
after the inclusion of more than 10 latent variables.
For example, the ecological structure of our model can
be augmented by the inclusion of more indicators for
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nutrient forms, silica, trace elements, primary produc-
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food web, external nutrient loadings or concepts that
reflect recent advancements in aquatic ecology such as
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urated fatty acid, amino acid, protein content, and/or
digestibility, seeSterner and Hessen, 1994; Kilham et
al., 1997; Brett and M̈uller-Navarra, 1997; Kleppel et
al., 1998). Finally, another methodological advance-
ment for the analysis of complex ecological systems is
likely to result from the delineation of the correspon-
dence between SEM and system dynamic modeling
and the integration of these two techniques into one
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Appendix 1

A.1. General description

By expressing the observations as deviations from
their means, the following set of three equations pro-
vides the general matrix representation of a structural
equation model:

X = Λxξ + δ,
Y = Λyη+ ε (Measurement model),

η )

w rs
o
v ent
l nt
(
i
v
o
m
c
c
c
m us
v

E

is uncorrelated withξ, (4) ζ is uncorrelated withξ, (5)
ζ, ε andδ are mutually uncorrelated, and (6) (I−B)−1

is non-singular. In addition, the associated covariance
matrices are: Cov(ξ) =Φ(n× n): covariances between
the independent variablesξ; Cov(ε) =Θε(p× p):
covariances between the measurement errors inY;
Cov(δ) =Θδ(q× q): covariances between the measure-
ment errors inX; Cov(ζ) =Ψ (m×m): covariances
between the structural errorsζ.

The (p + q) model-implied covariance matrixΣ(θ)
of the observed variables can be partitioned into four
matricesΣyy(θ),Σyx(θ),Σxy(θ) andΣxx(θ) that denote
the model-implied covariances between theY observed
variables, theX observed variables, and theX and Y
observed variables, respectively.

Σ(θ) =
[
Σyy(θ) Σyx(θ)

Σxy(θ) Σxx(θ)

]
(A.2)

Based on the previous assumptions, the matrix(A.2)
takes the following form (Bollen, 1989a):

Σ(θ) =
[
Λy(I − B)−1(ΓΦΓ ′ + Ψ )[(I − B)−1]′Λ′y +Θε Λy(I − B)−1ΓΦΛ′x

ΛxΦΓ
′[(I − B)−1]′Λ′y ΛxΦΛ

′
x +Θδ

]
(A.3)

A.2. Lake Washington structural equation model

As an illustrative example, we present the matrices’
forms and the specific assumptions made for the Lake
W tion
o ilar
w
e d
f re
u pil-
i us,
t l con-
s

X

ξ

= Bη+ Γξ + ζ (Latent variable model) (A.1

here X is a q×1 vector of observable indicato
f the independent latent variablesξ; Y is a p×1
ector of observable indicators of the depend
atent variablesη; η is a m×1 vector of depende
endogenous) latent variables;ξ is a n×1 vector of
ndependent (exogenous) latent variables;ζ is am×1
ector of latent (structural) errors;ε is a p×1 vector
f measurement errors forY; δ is a q×1 vector of
easurement errors forX; Λy is a p×m matrix of

oefficients relatingY to η; Λx is a q× n matrix of
oefficients relatingX to ξ; Γ is a m×n matrix of
oefficients for the latent exogenous variables;B is a
×m matrix of coefficients for the latent endogeno

ariables.
The statistical assumptions are: (1)E(η) = E(ξ) =

(ε) = E(δ) = E(ζ) = 0, (2)ε is uncorrelated withη, (3)δ
ashington structural equation model. The extrac
f the Lake Mendota SEM can be obtained in a sim
ay. The Lake Washington SEM included two (n = 2)
xogenous latent variablesξ, which were describe
rom three (q = 3) indicators; i.e., SRP and DIN we
sed for the latent variable “Nutrients” and the e

mnion depth for the respective latent variable. Th
he exogenous latent variable measurement mode
ists of the following four matrices:

=



X1 = Epilimniondepth

X2 = SRP

X3 = DIN


 , ΛX=



λ1 0

0 λ2

0 λ3


 ,

=
[
ξ1 = Epilimniondepth

ξ2 = Nutrients

]
, δ =



δ1

δ2

δ3




(A.4)
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Five indicators (p = 5) were used for the represen-
tation of the three (m = 3) endogenous latent variables;
i.e., cyanobacteria counts and chlorophyll a were used
as indicators for the latent variable phytoplankton com-
munity, the Secchi depth for the Water clarity,Daphnia
and total zooplankton were used to characterize the
latent variable Herbivory. Thus, the exogenous latent
variable measurement model can be described from the
four matrices:

Y =




Y1 = Cyanobacteria

Y2 = Chlorophyll a

Y3 = Secchi depth

Y4 = Total Zooplankton

Y5 = Daphnia



,

ΛY =




λ4 0 0

λ5 0 0

0 λ6 0

0 0 λ7

0 0 λ8



,

η =



η1 = Phytoplankton community

η2 =Water clarity

η3 = Herbivory


 ,

ε =



ε1

ε2

ε


 (A.5)

The additional three matrices of the structural equation
for the latent variable model are:

Γ =



γ1 γ2

0 0

0 0


 , B =




0 0 0

β1 0 0

β2 0 0


 , ζ =



ζ1

ζ2

ζ3




(A.6)

As it can be inferred from the path diagram (Fig. 1) and
the form of the matrixB, the Lake Washington struc-
tural equation model is recursive (no feedback causal
relations and uncorrelated measurement or structural
errors). Thus, the associated covariance matrices are:

Θε =




var(ε1)

0 var(ε2)

0 0 var(ε3)

0 0 0 var(ε4)

0 0 0 0 var(ε5)



,

Θδ =




var(δ1)

0 var(δ2)

0 0 var(δ3)


 ,

Ψ =



ψ11

0 ψ22


 , Φ =

[
φ11

φ12 φ22

]

B e
t

Σ ,

Σ + var(
 3

ε4

ε5



xx(θ) =


 λ2

1φ11+ var(δ1)

λ1λ2φ12 λ2
2φ22+ var(δ2)

λ1λ3φ12 λ2λ3φ22 λ2
3φ22+ var(δ3)




yy(θ) =



λ2

4Aaux+ var(ε1)

λ4λ5Aaux λ2
5Aaux+ var(ε2)

λ4λ6β1Aaux λ5λ6β1Aaux λ2
6β

2
1Aaux+ λ2

6ψ22

λ4λ7β2Aaux λ5λ7β2Aaux λ6λ7β1β2Aaux

λ4λ8β2Aaux λ5λ8β2Aaux λ6λ8β1β2Aaux
0 0 ψ33
(A.7)

y substituting(A.4)–(A.7) into (A.3), we determin
he four sub-matrices of(A.2):

ε3)

λ2
7β

2
2Aaux+ λ2

7ψ33+ var(ε4)

λ7λ8β
2
2Aaux+ λ7λ8ψ33 λ2

8β
2
2Aaux+ λ2

8ψ33+ var(ε5)
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where Aaux= γ1(γ1φ11+ γ2φ12)+ γ2(γ1φ12+
γ2φ22)+ ψ11, and

Σyx(θ) = [Σxy(θ)]
′ =




λ1λ4(γ1φ11+ γ2φ12) λ2λ4(γ1φ12+ γ2φ22) λ3λ4(γ1φ12+ γ2φ22)

λ1λ5(γ1φ11+ γ2φ12) λ2λ5(γ1φ12+ γ2φ22) λ3λ5(γ1φ12+ γ2φ22)

λ1λ6β1(γ1φ11+ γ2φ12) λ2λ6β1(γ1φ12+ γ2φ22) λ3λ6β1(γ1φ12+ γ2φ22)

λ1λ7β2(γ1φ11+ γ2φ12) λ2λ7β2(γ1φ12+ γ2φ22) λ3λ7β2(γ1φ12+ γ2φ22)

λ1λ8β2(γ1φ11+ γ2φ12) λ2λ8β2(γ1φ12+ γ2φ22) λ3λ8β2(γ1φ12+ γ2φ22)




According to the null hypothesis, this model-implied
8×8 matrixΣ(θ) is equal to the known sample covari-
ance matrixS. The 36 [= (1/2) (8) (9)] non-redundant
elements of the two matrices provide 36 equations that
can be solved with one of the common fitting methods
(e.g., maximum likelihood, unweighted or generalized
least squares). In this study, we used the maximum like-
lihood (ML) method, where the fitting function that is
minimized is (Bollen, 1989a):

FML = log|Σ(θ)| + tr(SΣ−1(θ))− log|S| − (p+ q)
(A.8)

Before evaluating the identification status of the model,
it is essential to set the metric of the latent variables.
One way that this can be accomplished is by fixing one
loading in each column ofΛX andΛY to 1.0. In this par-
ticular case, we assumed thatλ2 =λ5 =λ8 = 1.0. More-
over, implicit in the assumption that the latent variables
epilimnion depth and water clarity coincide with the
observed variables epilimnion depth and Secchi depth
i e
m that
c siest
t -
b then
t ber
o ix of
t les:

t

I del
p
β

ψ

d
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c
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model identification (Kaplan, 2000). Additional rules
exist and can be used to establish model identification
(Bollen, 1989a). We used the software Amos 5 for SEM
development (Arbuckle, 1995).

Appendix 2

Using the previous notation, the hierarchical
Bayesian configuration of the Lake Washington SEM
can be specified as

X1i = λ1ξ1i + δ1, X2i = λ2ξ2i + δ2,
X3i = λ3ξ2i + δ3, δ∼N(0,Θδ), ξ∼N(0, Φ);

Y1i = λ4η1i + ε1, Y2i = λ5η1i + ε2,

Y3i = λ6η2i + ε3, Y4i = λ7η3i + ε4,

Y5i = λ8η3i + ε5, ε∼N(0,Θε),

η1i = γ1ξ1i + γ2ξ2i + ζ1, η2i = β1η1i + ζ2,
η

L f
t n
A
f
w tor,
�

v n in
A

p

s:λ1 =λ6 = 1.0, andδ1 = ε3 = 0. Having determined th
etric of the latent variables, there are several rules

an be used to check SEM identification. The ea
est to apply is the so-calledt-rule. If t is the total num
er of model parameters that are to be estimated,

his numbert must be less than or equal to the num
f non-redundant elements in the covariance matr

he observed (endogenous and exogenous) variab

≤ (1/2)(p+ q)(p+ q+ 1) (A.9)

n the Lake Washington SEM, the unknown mo
arameters were 19, i.e.,θ = (λ3, λ4, λ7, γ1, γ2, β1,
2, var(ε1), var(ε2), var(ε4), var(ε5), var(δ2), var(δ3),
11, ψ22, ψ33, ϕ11, ϕ12, ϕ22) which left 17 (36−19)
.f. in the model. Even though in practice, thet-rule
orks for the majority of models (except from ve
omplex ones), it should be noted that it is aneces-
ary but notsufficient condition and does not guaran
3i = β2η1i + ζ3, ζ∼N(0, Ψ ) (B.1)

etwi = {yi, xi, i = 1, . . . , n} be the joint vector o
he observed variables for an arbitrary observatioi.
ccording to the model(B.1), each observationi comes

rom a multivariate normal distributionf(µ(θ)i, Σ(θ))
hereµ(θ)i is the conditional mean (expected) vec
(θ) is the conditional covariance matrix andθ is the
ector of the unknown model parameters both give
ppendix 1. The likelihood ofw = (w1, . . . , wn) is:

(w|θ) =
n∏
i=1

(2π)−(p+q)/2|Σ(θ)|−1/2

exp

[
−1

2
[wi − µ(θ)i]

′Σ(θ)−1[wi − µ(θi)]

]
(B.2)
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whereq = 3 andp = 5 are the number of exogenous and
endogenous manifest variables. In the context of the
Bayesian statistical inference, the focus is on the pos-
terior density ofθ given the observed dataw, which is
defined as

p(θ|w) = p(w|θ)p(θ)∫
p(w|θ)p(θ)dθ

∝ p(w|θ)p(θ) (B.3)

wherep(θ) is the prior density ofθ which is required to
be specified for each of the unknown model parameters.
We used a Wishart distribution (ρ, R) over the precision
matrixΦ−1 that corresponds to vague prior knowledge;
i.e., we chose the degrees of freedomρ to be as small
as possible (2, the rank ofΦ), and a prior guess at
the order of magnitude of the covariance matrixΦ to
beR = 0.1I (Ansari et al., 2000). Aside from the cases
where no measurement error was assumed between the
latent and indicator variables (i.e., epilimnion depth,
water clarity), we used independent non-informative
conjugate gamma priors (0.01, 0.01) for the elements
of the matricesΘ−1

δ , Θ−1
ε , andΨ−1 (Spiegelhalter et

al., 1996; pg 39). Effectively “flat” normal prior distri-
butions with means equal to the maximum likelihood
estimates and precisions equal to 0.0001 were used for
the structural parameters and the factor loadings when
we compared the Bayesian model configuration with
the classical approach (λ2, λ5 andλ8 were kept fixed
and equal to 1). The sensitivity of the model results was
then tested by sampling the loadingsλ2,λ5 andλ8 from
the normal distribution (1,1), which allowed a limited
m g
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Spiegelhalter et al., 2003) for all the parameters was
less than 5% of the sample standard deviation.
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