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Abstract

We introduce a Bayesian structural equation modeling framework to explore the spatiotemporal phytoplankton community patterns in the
Neuse River Estuary (study period 1995e2001). The initial hypothesized model considered the influence of the physical environment (flow,
salinity, and light availability), nitrogen (dissolved oxidized inorganic nitrogen, and total dissolved inorganic nitrogen), and temperature on total
phytoplankton biomass and phytoplankton community structure. Generally, the model gave plausible results and enabled the identification of the
longitudinal role of the abiotic factors on the observed phytoplankton dynamics. River flow fluctuations and the resulting salinity and light avail-
ability changes (physical environment) dominate the up-estuary processes and loosen the coupling between nitrogen and phytoplankton. Further
insights into the phytoplankton community response were provided by the positive path coefficients between the physical environment and di-
atoms, chlorophytes, and cryptophytes in the down-estuary sections. The latter finding supports an earlier hypothesis that these three groups
dominate the phytoplankton community during high freshwater conditions as a result of their faster nutrient uptake and growth rates and their
tolerance on low salinity conditions. The relationship between dissolved inorganic nitrogen concentrations and phytoplankton community be-
comes more apparent as we move to the down-estuary sections. A categorization of the phytoplankton community into cyanobacteria, dinofla-
gellates and an assemblage that consists of diatoms, chlorophytes, and cryptophytes provided the best results in the upper and middle segments
of the estuary. Finally, the optimal down-estuary grouping aggregates diatoms and chlorophytes, lumps together dinoflagellates with crypto-
phytes, while cyanobacteria are treated separately. These structural shifts in the temporal phytoplankton community patterns probably result
from combined bottom-up and top-down control effects.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The explicit recognition of the dualdcompositional and
aggregatednature of community variability is highlighted as
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an essential piece of knowledge when exploring ecological
patterns (Micheli et al., 1999). For example, the study of
both total phytoplankton biomass and community composition
can be very useful to ecosystem management and restoration,
can assist environmental monitoring and also provide early
‘‘warning signs’’ of eutrophic trends in aquatic environments
(Cottingham and Carpenter, 1998; Arhonditsis et al., 2003;
Paerl et al., 2003a; Arhonditsis and Brett, 2005). In practice,
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the exploration of compositional and aggregate variability and
the identification of the underlying ecological mechanisms can
be problematic and raise several methodological issues. At
higher aggregation levels, plankton communities exhibit satis-
factory predictability, and are proposed by theoretical ecolo-
gists as a ‘‘paradigm’’ for elucidating spatiotemporal
patterns of complex natural systems (McCauley and Murdoch,
1987; Scheffer et al., 2003). The aggregate plankton properties
(e.g., total biomass, productivity), however, are also character-
ized by lower sensitivity to perturbations and are often consid-
ered unreliable indicators of changes in ecosystem functioning
(Schindler, 1990; Frost et al., 1995). Unlike the aggregate var-
iates, populations are more sensitive to external perturbations
(e.g., nutrient enrichment, episodic meteorological events), but
they also exhibit high natural variability across time and space
that impedes the delineation of real effects and background
noise (Cottingham and Carpenter, 1998).

The selection of the optimal resolution level is often en-
countered in phytoplankton ecology and several studies have
examined the efficiency of population (e.g., species), commu-
nity (e.g., genera, taxa), and aggregate (e.g., biomass, primary
productivity, nutrient cycling) variables to illuminate different
aspects of ecosystem dynamics (McCormick and Cairns, 1994;
Cottingham and Carpenter, 1998). The crux of the ‘‘optimal
grouping’’ problem is to obtain stable baseline variability by
encompassing information from multiple populations, while
maintaining the individual population sensitivity to external
perturbations. In this regard, Reynolds et al. (2002) under-
scored the importance of clustering species on the basis of
their general properties, i.e., morphological, physiological,
and ecological characteristics. The ‘‘functional grouping’’ is
an advancement that accounts for different patterns of adaptive
specialism, and recognizes that the concerted effects of exter-
nal (e.g., climatic conditions, trophic interactions) and internal
(e.g., interspecific competition) factors obfuscate the expected
signals of the phytoplankton community (Sommer, 1995;
Huisman and Weissing, 2001; Scheffer et al., 2003).

By acknowledging that the study of natural systems at dif-
ferent resolution levels entails trade-offs in sensitivity and pre-
dictability, we implicitly recognize the need for flexible
modeling approaches that can effectively depict the relation-
ships between ecological habitats and both aggregate and
compositional variability (Reynolds et al., 2002). There is
a need for a methodology that has the ability to synthesize in-
formation from a variety of conditions, effectively depict the
strength of causeeeffect relationships and filter out the noise
in ecological time-series. Our study introduces a Bayesian
structural equation modeling methodology that has the flexi-
bility to (a) translate fairly complicated ecological phenomena
and express them as functions of several conceptual environ-
mental factors; (b) link the conceptual factors of interest
with observed variables by explicitly acknowledging that
none of those perfectly reflects the underlying property; (c)
test both direct and indirect paths of this ecological structure
and identify the importance of their role (McCune and Grace,
2002); and (d) sequentially update the model, integrate infor-
mation over time and space, and further consolidate
community pattern delineation by treating aggregate and com-
positional variability as ‘‘two complementary aspects of the
same phenomenon’’ (e.g., phytoplankton dynamics).

Our modeling framework is used to examine the role of the
physical environment (flow, salinity, and light availability)
versus the role of nitrogen (dissolved oxidized inorganic nitro-
gen, and total dissolved inorganic nitrogen) on the spatiotem-
poral phytoplankton biomass and community composition
patterns in the Neuse River Estuary. Specifically, we focus
on the question: what is the relative importance of these fac-
tors on phytoplankton growth and compositional alterations
in this freshwater-marine continuum? Our work is founded
on diagnostic photopigment data, extensively evaluated as in-
dicators of coastal water quality and trophic state in previous
studies (Paerl et al., 2003a, 2006). By using a comprehensive
data set that includes quantitative information from the five
major phytoplankton taxa (dinoflagellates, diatoms, cyanobac-
teria, cryptophytes, and chlorophytes) of the estuary, we aim to
distinguish between opportunistic behaviors and regularities in
phytoplankton dynamics and test the extent of which these
patterns are expressed in our structural equation modeling
framework.

2. Materials and methods

2.1. Study area

The Neuse River drains a 16,008 km2 watershed and dis-
charges into the Neuse Estuary (35�000N; 76�450W) and Pam-
lico Sound (Fig. 1). The major land uses in the basin are
agriculture (35%) and forestry (34%) while the upper portion
of the basin includes much of North Carolina’s Research Tri-
angle (defined by the cities of Raleigh, Durham, and Chapel
Hill), an area that has experienced economic prosperity and
rapid population growth during the last three decades (Stow
and Borsuk, 2003a). Rapid development is also occurring in
lower portions of the basin with an increasing coastal popula-
tion and an expanding commercial hog-farming industry. The
Neuse River Estuary (NRE) is an intermittently mixed and
shallow (<4 m) system, where salinity varies with precipita-
tion and wind conditions, river discharges, and saltwater influx
from Pamlico Sound (Luettich et al., 2000; Borsuk et al.,
2001). The system has a long history of algal blooms, bottom
water hypoxia, and fishkills (Stow and Borsuk, 2003b; Paerl
et al., 2004). Excessive chlorophyll a (Chl a) levels are gener-
ally attributed to high point and nonpoint source inputs of ni-
trogen, though historic and other lines of evidence suggest that
phosphorus has also contributed to excessive algal production
(Qian et al., 2000; Buzzelli et al., 2002; Paerl et al., 2004).
These eutrophication problems led the Neuse River to be char-
acterized as one of the 20 most threatened rivers in the United
States in 1997 (American Rivers Foundation, 1997). The
Neuse has also been listed as an impaired water body on the
Federal 303(d) list because, in certain segments, more than
10% of water quality samples analyzed for Chl a exceeded
the 40 mg L�1 criterion. Water-quality conditions in the
Neuse River show significant interannual variability and
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Fig. 1. The Neuse River Estuary; the vertical lines separate the four segments used for this study.
phytoplankton growth is regulated by a complex interplay be-
tween physical, chemical and biological factors (Rudek et al.,
1991; Mallin and Paerl, 1994a; Borsuk et al., 2004), and is fur-
ther influenced by a recent rise in the frequency of hurricanes
and tropical storms (Paerl et al., 2003b; Paerl et al., 2006).

2.2. Data description

Daily mean flow rates were based on the United States
Geological Survey streamflow gauging station at Fort Barn-
well (Stow and Borsuk, 2003a), while the remaining data
were provided from the UNC-CH Institute of Marine Sciences
Neuse River Bloom Project, the Neuse River Estuary Model-
ing and Monitoring Project, ModMon, and the Atlantic Coast
Environmental Indicators Consortium Project, ACE-INC
(study period 1995e2001). Detailed information regarding
the collection and analytical protocols and methods used in
these programs can be found elsewhere (Pinckney et al.,
1999; Luettich et al., 2000; Paerl et al., 2004). To assess spatial
and temporal patterns of phytoplankton community structure,
we also used diagnostic phytoplankton photopigment data
(Paerl et al., 2003a). Phytoplankton photopigments (chloro-
phylls and carotenoids) representative of specific phytoplank-
ton taxonomic groups were separated and quantified using
high-performance liquid chromatography (HPLC) coupled to
an inline photodiode array spectrophotometer (PDAS) (Tester
et al., 1995; Jeffrey et al., 1997). Photopigment concentrations
were subsequently analyzed using ChemTax, a matrix factor-
ization program that determines the absolute and relative con-
tribution of specific phytoplankton taxonomic groups to the
total chlorophyll a pool based on an initial pigment ratio ma-
trix specific to the study area (Mackey et al., 1997). Based on
Mackey et al.’s (1996) suggestion to separate complex data-
sets into more homogeneous subsets and reduce the variation
of pigment ratios due to large changes in phytoplankton spe-
cies-composition, we defined homogenous data groupings
(i.e., groups by season and salinity regime) of the HPLC-
derived photopigment concentrations prior to running Chem-
Tax (Pinckney et al., 1998). The initial pigment ratio matrix
used in this study was obtained from a matrix characteristic
of coastal phytoplankton groups and consisted of nine photo-
pigments (alloxanthin, antheraxanthin, chlorophyll b, total
chlorophyll a (chlorophyll aþ chlorophyllide a), fucoxanthin,
lutein, peridinin, violaxanthin, and zeaxanthin). These photo-
pigments are indicative of five major algal taxonomic groups,
chlorophytes, cryptophytes, cyanobacteria, diatoms, and dino-
flagellates, the dominant phytoplankton classes found in the
NRE. We also used a modification of the Pinckney et al.
(1998) spatial segmentation by dividing the study area into
four sections A, B, C, and D (Fig. 1), i.e., this study’s first
and third segments were grouped with the second and the
fourth spatial compartments, respectively. For each segment,
we calculated volume-weighted averages for all the environ-
mental variables of the model based on the corresponding wa-
ter volumes (m3) for two depth intervals, i.e., surface to 2 m
and 2 m to bottom.

2.3. Bayesian structural equation modeling

Structural equation modeling (SEM) is a multivariate statis-
tical method that allows for evaluating a network of relation-
ships between observed and latent variables. In this
statistical technique, pre-conceptualizations that reflect re-
search questions or existing understanding of system structure
form the initial framework for model development. In contrast
with multivariate regression, SEM can evaluate indirect effects
between two explanatory variables, i.e., effects mediated by
other intermediary variables (Bollen, 1989). Additionally,
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SEM can explicitly incorporate uncertainty due to observation
error or lack of validity of the observed variables. The latter
aspect refers to the essential feature of representing variables
of conceptual interest that are not directly measurable with
multiple indicator (observed) variables. In this study, we also
adopted a Bayesian approach to SEM that has several advan-
tages over the classical methods (e.g., maximum likelihood,
generalized and weighted least squares). For example, Bayes-
ian SEM has the ability to incorporate prior knowledge about
the parameters and more effectively treat unidentified models
(Scheines et al., 1999; Congdon, 2003). In addition, the as-
sumptions used to determine the latent variable metrics can
be treated stochastically and can provide additional insight
into the ecological structures (Arhonditsis et al., 2006). The
modeling process does not rely on asymptotic theory, a feature
that is particularly important when the sample size is small and
the classical estimation methods are not robust (Congdon,
2003). Markov Chain Monte Carlo (MCMC) samples are
taken from the posterior distribution, and as a result the proce-
dure works for all sample sizes and various sources of non-
normality (e.g., avoidance of multimodality problems; see
Scheines et al., 1999). Finally, the Bayesian nature of our
framework provides more realistic estimates of the existing
knowledge/predictive uncertainty by taking into account both
the uncertainty about the parameters and the uncertainty that
remains when the parameters are known (posterior predictive
distribution).

Our starting point is a ‘‘conceptual/mental model’’ that
considers the effects of three latent variables, i.e., physical en-
vironment, nitrogen, and temperature on phytoplankton dy-
namics (as a general/abstract idea; Fig. 2). Each of these
conceptual factors (latent variables) can be linked with ob-
served variables (‘‘what can be measured in the real world’’),
while it is explicitly acknowledged that none of these variables
perfectly represents the underlying property (measurement er-
rors; d and 3 in Fig. 2). Specifically, we hypothesized that the
latent variable physical environment along with the three indi-
cator variables attenuation coefficient (m�1), salinity (&), and
daily flow rates (m3 s�1) comprised the measurement model
for the physical environment. The premise for the selection
of the first two indicators was based on the findings of the
principal factor analysis presented by Pinckney et al. (1997;
see their Table 2), where salinity and attenuation coefficient
had the highest positive and negative loadings on the first prin-
cipal factor (31% of the observed variability), respectively.
The inclusion of the flow rates builds upon the results of a re-
cent study that highlights the regulatory role of flow on the
spatiotemporal NRE phytoplankton dynamics (Borsuk et al.,
2004). We also used the latent variable nitrogen and two sur-
rogate variables: the first variable was total dissolved inorganic
nitrogen (DIN) concentrations, while the second one included
only the oxidized forms of inorganic nitrogen (nitrateþ nitrite;
NOx). [It should be noted that the use of NH4 and NOx as sur-
rogate variables for the latent variable nitrogen resulted in
a model that was not supported by the data.] Temperature
was considered as directly observable with no measurement
error and the coefficient that relates temperature (expressed
as water temperature deviance from 20 �C) to phytoplankton
was not considered spatially constant. As a result, the respec-
tive path values are confounded with the effects of other
drivers not explicitly accounted for by the model, and mainly
aim to detect shifts in the seasonal phytoplankton patterns
along the estuary.

The structural equation model that aimed to provide a quan-
titative description of total phytoplankton dynamics (aggregate
phytoplankton SEM) had one endogenous latent variable
phytoplankton combined with two indicator variables, i.e.,
chlorophyll a and primary productivity (Fig. 2). The basis
for the selection of the two phytoplankton indicators was pro-
vided by the observed spatiotemporal similarity of the chloro-
phyll a and primary productivity NRE patterns (Pinckney
et al., 1997). Note that this multivariate method accounts for
two sources of error, i.e., measurement and structural error
(its variance is denoted as j in Fig. 2). The latter error source
reflects the latent variable model efficiency, i.e., ‘‘how well
can the physical environment, nitrogen, and temperature de-
scribe phytoplankton’’. [The matrix presentation of the aggre-
gate phytoplankton structural equation model is provided in
Appendix A.]

Concurrently, we formulated and tested two alternative
models to examine the relative importance of the various abi-
otic factors on the phytoplankton community composition
(compositional phytoplankton SEMs). The development of
these models was based on SEM’s ability to use multiple ob-
served variables for the representation of latent variables of
conceptual interest (Bollen, 1989). Using this property, we
constructed measurement models that allow several phyto-
plankton groups (e.g., species, genera or taxa) of variant de-
gree of observed correlation to be amalgamated into single
entities, i.e., latent variables that characterize phytoplankton
functional groups. The first model considers the functional
group A (PFG A) that comprises diatoms, cryptophytes and
chlorophytes, and retains dinoflagellates and cyanobacteria
as two further, distinct groups. The second model aggregates
diatoms and chlorophytes (PFG B), lumps together dinoflagel-
lates with cryptophytes (PFG C), while cyanobacteria are
treated separately (Fig. 3). We tested the compatibility of the
two different pre-conceptualizations with the observed ecolog-
ical patterns, and selected the model with the higher perfor-
mance in each spatial section to resolve the optimal
aggregation level of the phytoplankton community structure.

Square root and natural logarithm transformations were
used to achieve linearity among the observed indicators of
the exogenous and the endogenous latent variables. Based
on calculated residence times (Christian et al., 1991) and ex-
ploratory data analyses, mean daily flow rates were calculated
for the two-day, one-week, two-week, and 25-day period
preceding the sampling dates in the four spatial sections,
respectively. Aside from the flow rate values, we used contem-
poraneous measurements from individual samplings for all the
environmental variables, i.e., no time-averaging or lagged
relationships were considered. The nature of the data used
for model development (i.e., temporal resolution/aggregation
and absence of lagged relationships) largely determined the
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Fig. 2. The structural equation model used for predicting the Neuse River Estuary phytoplankton dynamics. The use of a rectangular box for the temperature im-

plies that the variable was considered as directly observable with no measurement error (l8¼ 1.0, and d6¼ 0). The metrics of the latent variables were set by fixing

l2¼ l4¼ l5¼ 1.0.
signs of the various paths of our structural equation models
(e.g., negative dissolved inorganic nitrogenephytoplankton re-
lationships). In addition, even though the relative magnitudes
of the nitrogenephytoplankton path coefficients were used
to draw inferences about the aggregate and compositional phy-
toplankton variability, our interpretation should not be consid-
ered as an evidence of nitrogen limitation in the Neuse River
Estuary. Ambient nutrient concentrations partly reflect the re-
sidual nutrients from phytoplankton activity, but there are sev-
eral other potentially influential factors that are not accounted
for in our approach (e.g., phosphate, intracellular storage,
zooplankton grazing). Thus, a combination of modeling and
experimental approaches (e.g., bioassays) is certainly more ap-
propriate to make a more definite statement regarding the sta-
tus of nutrient limitation in the Neuse River Estuary (Granéli
et al., 1990; Piehler et al., 2004). In a strict causal sense, the
inclusion of external nutrient loading (instead of ambient nu-
trient concentrations) would have had a more unequivocal in-
terpretation. However, given the spatially explicit character of
our model, the consideration of this causal link also entails
substantial increase of uncertainty and is beyond the scope
of the present paper. Finally, the study by Borsuk et al.
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Fig. 3. The two alternative conceptualizations of the Neuse River Estuary phytoplankton community dynamics. (a) The use of a rectangular box for the temper-

ature, dinoflagellates and cyanobacteria implies that the variables were considered as directly observable with no measurement error (l1¼ l5¼ l11¼ 1.0, and

31¼ 35¼ d6¼ 0). The metrics of the latent variables were set by fixing l2¼ l7¼ l8¼ 1.0. (b) The use of a rectangular box for the temperature, and cyanobacteria

implies that the variables were considered as directly observable with no measurement error (l5¼ l11¼ 1.0, and 35¼ d6¼ 0). The metrics of the latent variables

were set by fixing l1¼ l3¼ l7¼ l8¼ 1.0.
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(2004) found a non-monotonic relationship between the flow
rates and DIN, chlorophyll a, and thus adopted a piecewise lin-
ear relationship (after the data-transformation) with a spatially
varying breakpoint. Even though our approach assumes mono-
tonicity, we did not find any evident trend in our predictive er-
ror distributions.

Assessment of the goodness-of-fit between the model outputs
and the observed data was based on the posterior predictive p-
value, i.e., the Bayesian counterpart of the classical p-value. In
brief, the p-value is defined as the probability that the replicated
data (i.e., the posterior predictive distribution) could be more ex-
treme than the observed data. The null hypothesis H0 is rejected
if the tail-area probability is close to 0.0 or 1.0, whilst the model
can be regarded as plausible if the p-value is near to 0.5. The dis-
crepancy variable chosen for carrying out the posterior predictive
model checks was the x2 test (see also Gelman et al., 1996 for
a detailed description of the posterior predictive p-value). Inter-
sectional comparisons of the aggregate and compositional model
performance (‘‘Which spatial segment better supports our prior
models?’’) along with the comparison of the two phytoplankton
community composition pre-conceptualizations (‘‘Which of the
two phytoplankton groupings is better supported in each seg-
ment?’’) were based on the use of the Bayes factor (Kass and
Raftery, 1995). When comparing two alternative models, the
Bayes factor is the posterior odds of one model over the other (as-
suming the prior probability on either model is 0.5). If SEM1 and
SEM2 denote the two alternative models and D corresponds to
the observed data, the Bayes factor is

B12 ¼
prðDjSEM1Þ
prðDjSEM2Þ

ð1Þ

For model comparison purposes, the model likelihood
(pr(DjSEMk); k¼ 1,2) is obtained by integrating over the
parameter space:

prðDjSEMkÞ ¼
Z

prðDjSEMk;qkÞpðqkjSEMkÞdqk ð2Þ

where qk is the parameter vector under model SEMk and
p(qkjSEMk) is the prior density of qk. Using the MCMC
method, we can estimate pr(DjSEMk) from posterior samples
of qk. Letting qk

(i) be samples from the posterior density
pr(qkjSEMk), the estimated pr(DjSEMk) is:

prðDjSEMkÞ ¼
(

1

m

Xm

i¼1

pr
�

D
���SEMk;q

ðiÞ
k

��1

)�1

ð3Þ

the harmonic mean of the likelihood values (Kass and Raftery,
1995).

3. Results

The aggregate phytoplankton SEM provided satisfactory re-
sults (see the posterior predictive p-values reported in Fig. 4).
The root mean square error (RMSE) values for the modeled
Chl a and primary productivity in the four segments varied be-
tween 3e8.4 mg L�1 and 4e27 mg C m�3 h�1. The RMSE
values for the two inorganic nitrogen forms varied from 10 to
32 mg L�1, while the respective salinity, attenuation coefficient,
and flow ranges were 1.41e2.69&, 0.37e0.48 m�1 and 38e
61 m3 s�1, respectively. Based on the Bayes factor values, we
also infer that the model was better supported by the data in sec-
tion D, while section B seems to be the least favorable for the
underlying conceptualization of the total phytoplankton dynam-
ics (Table 1). The direct path from nitrogen to phytoplankton is
very weak in the upper part of the estuary (<�0.01) and be-
comes stronger as we move to the down-estuary, i.e., �0.14,
�0.31, and �0.29 at the segments B, C and D, respectively.
The physical environment and most importantly the flow rates
play a significant role on phytoplankton dynamics in the up-
estuary segments A and B, where the respective total standard-
ized effects were �0.40 (¼�0.44� 0.91) and �0.72
(¼�0.77� 0.93). The path from the physical environment to
phytoplankton was weaker in the down-estuary segments, while
the posterior median effects were switched from negative
(�0.13 in segment C) to positive (0.12 in segment D) between
the two spatial sections. Interestingly, salinity has a slightly
higher total effect than the other two indicator variables (atten-
uation coefficient and flow) of the physical environment mea-
surement model. The temperature effects on phytoplankton
become weaker as we move to the down-estuary sections (i.e.,
from 0.42 to 0.08). Finally, the comparison between the ob-
served and predicted chlorophyll a values is presented in
Fig. 5, where it can be seen that our structural modeling ap-
proach describes sufficiently the observed phytoplankton pat-
terns and more than 98% of the data were included within the
95% credible intervals.

Generally, the SEM that categorizes the phytoplankton
community into cyanobacteria, dinoflagellates and a dia-
tomechlorophyteecryptophyte assemblage (PFG A) also pro-
vided satisfactory results (see the posterior predictive p-values
reported in Fig. 6). The RMSE for the five group-specific
Chl a values were lower in the upper part (<1 mg L�1) and
the down-estuary section D (0.7e1.9 mg L�1). The highest
RMSE values were found for cryptophytes and cyanobacteria
in section B (>2 mg L�1) and for cryptophytes (2.1 mg L�1),
diatoms (2.2 mg L�1), dinoflagellates (3.6 mg L�1), and cyano-
bacteria (2.7 mg L�1) in section C of the estuary. [One point
worth mentioning is that our reported measures of model per-
formance are inflated by several observed phytoplankton (total
and group-specific) peaks in the estuary, but we chose to keep
the original information unaltered and thus no outlier exclu-
sion was implemented.] The RMSE values for the two inor-
ganic nitrogen forms varied from 4 to 45 mg L�1, while the
respective salinity, attenuation coefficient and flow ranges
were 1.35e2.59&, 0.38e0.44 m�1 and 44e65 m3 s�1. The
posterior median paths from nitrogen to the three phytoplank-
ton functional groups of the model (dinoflagellates, cyanobac-
teria, and functional group A) were weak in the up-estuary
section (A), where the strongest path was found between nitro-
gen and dinoflagellates (�0.18). A relatively strong coupling
exists between dinoflagellates (�0.33) and cyanobacteria
(�0.31) with nitrogen in the second NRE segment. In addi-
tion, the functional group A (from �0.25 to �0.34) and the
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Fig. 4. Aggregate phytoplankton SEM for the four spatial segments of the Neuse River Estuary (see Fig. 1). The numbers correspond to the posterior predictive

p-values, the posterior medians of the standardized path coefficients and the root mean square error (numbers in rectangles) between the observed values and the

medians of the predictive posterior distributions. Shaded rectangular boxes correspond to RMSE values higher than 50% of the observed averages. The standard-

ized coefficients correspond to the shift in standard deviation units of the dependent variable that is induced by shifts of one standard deviation units in the

explanatory variables, and thus provide a means to assess the relative importance of the various model paths.
dinoflagellates (from �0.23 to �0.32) have the strongest asso-
ciation with nitrogen in the mid- and down-estuary section.
The physical environment is the major regulatory factor of
the phytoplankton community dynamics at the upper and mid-
dle NRE segments (A and B), where the absolute values of the
respective posterior median paths were consistently higher
than 0.40. Moreover, the path between the physical environ-
ment and the functional group A was switched from negative
(�0.54) to positive (0.18) between the second and the third
spatial section. This positive physical environmentefunctional
group A relationship is more evident (0.34) in the down-
estuary segment (D), and also characterizes the dynamics of
dinoflagellates (0.14). As we move closer to the river (seg-
ments A and B), flow predominates over the other two indica-
tor variables (attenuation coefficient and salinity) of the
physical environment measurement model, and its total stan-
dardized effects on phytoplankton vary from �0.32 to
�0.49. As was also indicated by the aggregated phytoplankton
SEM, salinity has a slightly higher effect on the three PFGs
(PFG A, dinoflagellates, cyanobacteria) in the down-estuary
NRE segments (C and D). A relatively strong positive cyano-
bacteria-temperature path exists along the estuary (>0.25),
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while a weak up-estuary positive temperature relationship with
the functional group A is switched to a stronger negative one
in the down-estuary segments (C and D). The intersectional
Bayes factor comparisons indicate that the underlying

Table 1

Intersectional comparisons of the aggregate and compositional model perfor-

mance using the Bayes factor. The likelihood of the models contained in the

first column/row forms the numerator/denominator of the Bayes factor

Section A Section B Section C Section D

Aggregate phytoplankton model

Section A 1 1.221 0.934 0.788

Section B 1 0.809 0.753

Section C 1 0.852

Section D 1

Compositional phytoplankton model

Section A 1 1.542 1.656 1.412

Section B 1 1.071 0.911

Section C 1 0.848

Section D 1
conceptualization of phytoplankton community dynamics
was better supported by the observed patterns in the up-estuary
section (A), and becomes weaker as we move to the lower
parts of the estuary (Table 1). In fact, the comparison with
the alternative phytoplankton community classification (i.e.,
cyanobacteria, functional groups B and C) indicates that the
latter has better foundation in the down-estuary segment D
(Table 2). However, it must be noted that none of the models
was rejected on the basis of the posterior assessment ( p-
values), while the Bayes factor did not provide strong evidence
in support of one of the two alternative conceptualizations
of the NRE phytoplankton community (Kass and Raftery,
1995, p. 777). Finally, the comparison between the observed
concentrations and the medians of the predictive chlorophyte,
cryptophyte, cyanobacteria, diatom, and dinoflagellate distri-
bution in the four spatial segments of the estuary illustrates
the satisfactory description of the spatiotemporal phytoplank-
ton community patterns from our structural equation model
(Fig. 7).
Fig. 5. Comparison of the observed (volume weighted) and mean predicted (along with 95% credible intervals) chlorophyll values in the four segments of the

Neuse River Estuary. [Note the timing of the occurrence of four major hydrological events (hurricanes Fran, Dennis, Floyd, and Irene) during the study period.]
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Fig. 5 (continued).
4. Discussion

Elucidating thedoften contrastingdphytoplankton pat-
terns and understanding the underlying causeeeffect relation-
ships require rigorous quantitative tools with the ability to
analyze multiple (direct and indirect) causal pathways and
consider both compositional and aggregate variability (Cot-
tingham and Carpenter, 1998; Micheli et al., 1999). Our mod-
eling framework can be particularly useful for this purpose.
We used a Bayesian structural equation modeling approach
that intended to identify recurrent patterns in phytoplankton
dynamics, while the optimal phytoplankton grouping was se-
lected on the basis of model performance and was amenable
to the complex interplay among several abiotic (latent and ob-
served) variables. Our approach has a ‘‘conditional’’ character;
the interpretation of the system dynamics and the selection of
the optimal phytoplankton grouping are based on the specific
assumptions (scale, data aggregation, subset of abiotic causal
variables). The robustness of our results is subject to further
confirmation by both model updating as new data become
available and by considering additional causal factors (e.g.,
phosphorus, herbivory). The Neuse River Estuary provided
an ideal location for testing model efficiency because the phy-
toplankton spatiotemporal patterns are driven by several phys-
ical, chemical, and biological factors and are frequently
masked by anthropogenic and climatic perturbations.

Model results underscore the influence of the physical envi-
ronment on phytoplankton dynamics at the upper reaches of
the estuary (section A), while the high standardized loading
values of flow on this latent variable give insight into the na-
ture of the underlying mechanism. Flow determines the water
residence time, which in turn regulates the phytoplankton
growth-minus-physical advection loss balance and controls
the accumulation of phytoplankton biomass (Gallegos et al.,
1992; Twomey et al., 2002; Borsuk et al., 2004). The other
two environmental variables (salinity and light attenuation) as-
sociated with river discharge fluctuations seem to have a sec-
ondary role on phytoplankton dynamics. The dominance of the
physical environment on the up-estuary processes also loosens
the coupling between inorganic nitrogen and phytoplankton.
This finding was evident in the results of both phytoplankton
aggregate and compositional SEMs with the only exception
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Fig. 6. Compositional phytoplankton SEM for the four spatial segments of the Neuse River Estuary (see Fig. 1). The numbers have the same interpretation as in

Fig. 4. For the sake of consistency, the same compositional SEM (PFG A, dinoflagellates, and cyanobacteria) results are presented in the four segments of the

estuary, although this categorization was not the most favorably supported by the data in the lower section (D).
being the relationship between nitrogen and dinoflagellates.
Interestingly, the dinoflagellates are also the less abundant
group in the upper estuary segments, since most of their mor-
phological and physiological features do not permit them to
compete successfully with the other major phytoplankton
groups. For example, the dinoflagellates have slower growth
rates, lower nutrient affinities, while their sensitivity to hydro-
logic forcing results in significantly reduced concentrations
during elevated river flows (Pollingher, 1988; Paerl et al.,
2003a, see also discussion following). The competitive handi-
cap can partly be counterbalanced by their tolerance of cold
water conditions and their motility; the latter enables vertical
migration and screening of the water column for nutrients
and optimal light conditions (Pollingher, 1988; Pinckney
et al., 1998; Paerl et al., 2006). Thus, the relatively distinct
negative nitrogenedinoflagellate path reflects the almost

Table 2

Comparisons of the two alternative conceptualizations of the Neuse River Es-

tuary phytoplankton community composition using the Bayes factor. The nu-

merator and denominator of the Bayes factor correspond to the likelihood of

the models A and B of Fig. 3, respectively

Section A Section B Section C Section D

Section A 1.227

Section B 1.035

Section C 1.056

Section D 0.927
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Fig. 7. Observed (volume weighted) and predicted phytoplankton community composition in the four segments of the Neuse River Estuary. Model predictions are

based on the medians of the predictive chlorophyte, cryptophyte, cyanobacteria, diatom, and dinoflagellate distributions.
consistent occurrence of the dinoflagellate annual maxima
during the fall months, which coincide with periods of longer
residence time and the annual upstream DIN minima
(z500 mg L�1). The high standardized loading values of the
chlorophytes, cryptophytes and diatoms on the latent func-
tional group A indicate that these taxa are characterized by
fairly uniform patterns; they can be treated as one entity with-
out missing much of the information underlying their individ-
ual behavior. The latter assertion is further supported by the
higher performance of the respective model in the upper part
of the estuary. The relatively strong positive path between cy-
anobacteria and temperature reflects the dominance of this
particular group during the summer months.

The physical environment and most importantly the flow is
still the major driving force of phytoplankton dynamics, as
we move to the middle portion of the estuary (section B).
Even though this section is wider than the upper part, the flush-
ing rates are still fast enough to induce significant advective los-
ses. Nonetheless, both the aggregate and compositional models
show that the association between nitrogen and phytoplankton
dynamics becomes more evident in this section. Interestingly,
the path between nitrogen and the functional group A was still
weaker than those with dinoflagellates, cyanobacteria and in-
vites further investigation. As is also indicated by the respective
temperature paths, both dinoflagellates and cyanobacteria ex-
hibit fairly regular patterns in the Neuse River Estuary, i.e.,
the dinoflagellate annual maxima are usually observed during
the fall months and cyanobacteria dominate the phytoplankton
community during the summer period when the dissolved inor-
ganic nitrogen concentrations are relatively lower (Pinckney
et al., 1998). The fast-growing functional group A is usually
more abundant during the late springemid summer months
and also shows more opportunistic behavior that allows domi-
nating after episodic hydrologic perturbations characterized
by high flow conditions, e.g., hurricanes, tropical storms (Paerl
et al., 2006). Thus, the PFG A assemblage has less straightfor-
ward relationship with the contemporaneous dissolved inor-
ganic nitrogen concentrations and the weak nitrogen paths
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Fig. 7 (continued).
suggest that the periods when this functional group is more re-
sponsive are also associated with sufficient and relatively con-
stant upstream DIN levels.

The nitrogenefunctional group A path is stronger in the mid-
lower segment of the estuary (section C), and the negative sign
probably reflects their ability to respond to episodic hydrologic
events, increase their abundance and consequently decrease the
contemporaneous nitrogen levels; especially as we move down-
stream where nitrogen is in short supply (Pinckney et al., 1998;
Paerl et al., 2003a). The physical environmentePFG A path also
becomes positive, while the increased standardized loading of
salinity on the respective latent variable highlights their ability
to demonstrate optimal growth rates under reduced salinity con-
ditions (Pinckney et al., 1999). The switch of the signs of the
physical environmentePFG A path between upper and lower
segments along with the increased mid-estuary chlorophyll
levels (see Fig. 5) are probably related to the conceptualization
proposed to explain the spatiotemporal disparity between
elevated growth rates and phytoplankton productivity or bio-
mass increase in the Neuse River Estuary (Pinckney et al.,
1997). Specifically, sufficient nutrient levels and absence of den-
sity-dependent limitations (e.g., self-shading effects) stimulate
algal growth in the upper reaches of the estuary, which, however,
is usually masked by the increased flow rates. These elevated
growth rates are maintained during horizontal transport, and un-
der the most favorable physical conditions (higher residence
time, low turbidity) in the mid-lower reaches lead to biomass ac-
cumulation and bloom manifestation. On the other hand, the
paths from the physical environment to total phytoplankton, cy-
anobacteria, and dinoflagellates are still negative which pro-
vides evidence of a differential response between the overall
phytoplankton assemblage and various groups, possibly be-
cause this conceptual pattern is more pronounced on the fast-
growing taxa (chlorophytes, cryptophytes, and diatoms).

Consistent with the previous conceptualization, both the ag-
gregate and compositional models highlight the positive
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Fig. 7 (continued).
relationship between physical environment and phytoplankton
community dynamics in the lower NRE section (section D),
while the functional group A is the most responsive (see the cor-
responding standardized path values). Another interesting find-
ing from the down-estuary phytoplankton community SEM was
that the categorization of the phytoplankton community into cy-
anobacteria, dinoflagellates, and an assemblage that consists of
diatoms, chlorophytes, and cryptophytes is no longer the most
favorably supported by the data. The model that aggregates di-
atoms and chlorophytes (PFG B), lumps together dinoflagel-
lates with cryptophytes (PFG C), and separately treats the
cyanobacteria provides slightly better results (Fig. 3b). In
fact, the relatively lower standardized loading of cryptophytes
on the latent PFG A was also indicative of a more loose associ-
ation between the cryptophyte dynamics and the diatoms/chlor-
ophytes in the lower NRE section (Fig. 6d). We hypothesize that
these structural shifts on the phytoplankton community tempo-
ral patterns may reflect the combined effects of both bottom-up
and top-down control. The former effects probably result from
the prevailing downstream conditions (warmer water tempera-
tures, longer residence times, and lower DIN concentrations)
that favor cyanobacteria dominance, and restrict the occurrence
of diatom/chlorophyte blooms to shorter time windows over the
annual cycle, i.e., mainly during the winter/early spring period
(see also the respective strongly negative temperature paths in
Fig. 6d). On the other hand, the signature of the zooplankton
grazing is likely to become more apparent under the longer res-
idence times in the lower NRE. For example, an earlier study by
Mallin and Paerl (1994b) reported that both diatom and dinofla-
gellate abundance were correlated with the observed grazing
rates in the down-estuary area, while it is now well established
in the literature that cryptophytes and diatoms usually have high
nutritional value for zooplankton (Brett et al., 2000).

In conclusion, we used a Bayesian structural equation mod-
eling framework to explore the Neuse River Estuary spatio-
temporal phytoplankton aggregate and compositional
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Fig. 7 (continued).
patterns. Our model highlighted the role of the physical envi-
ronment, primarily by the river flow fluctuations and secondar-
ily by the resulting salinity and light availability changes,
which dominate the up-estuary processes and loosens the cou-
pling between nitrogen and phytoplankton. The relationship
between nitrogen and the phytoplankton community becomes
more apparent as we move to the down-estuary sections. Fur-
ther insights into the phytoplankton community response were
provided by the positive paths between the physical environ-
ment and diatoms, chlorophytes, cryptophytes in the down-es-
tuary sections. This finding supports a previous hypothesis by
Paerl et al. (2003a) that these groups dominate the phytoplank-
ton community during high freshwater conditions as a result of
their faster nutrient uptake and growth rates and their tolerance
on low salinity conditions. In addition, our modeling study
provided evidence that the initiation of the opportunistic phy-
toplankton taxa blooms takes place in the upper parts of the
estuary and due to the horizontal transport and the more
favorable physical conditions is fully manifested (biomass ac-
cumulation) in the central segments. Finally, an appealing fu-
ture application of the present methodological framework will
be the consideration of smaller functional units (e.g., genera,
species) and the evaluation of its ability to separate noise,
identify the important causeeeffect relationships, and define
the optimal aggregation level in community variability studies.
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Appendix A

Using the classical SEM notation, we present an illustrative
example of the matrices’ forms and the specific assumptions
made for the aggregate phytoplankton structural equation
model. The extraction of the two compositional SEMs can
be similarly obtained. The exogenous latent variable measure-
ment model consists of four matrices; i.e., X is a q� 1 vector
of observable indicators of the independent latent variables x;
LX is a q� n matrix of coefficients relating X to x; x is a n� 1
vector of independent (exogenous) latent variables; and d is
a q� 1 vector of measurement errors for X. In the present
model, we included three (n¼ 3) exogenous latent variables
x which were described from six (q¼ 6) indicator variables;
i.e., NOx and DIN were used for the latent variable ‘‘Nitro-
gen’’; salinity, attenuation coefficient, and flow for the latent
variable ‘‘Physical Environment’’; and the temperature for
the respective latent variable. Thus,

X ¼

2
666666664

X1 ¼ NOx

X2 ¼ DIN

X3 ¼ Attenuation coefficient

X4 ¼ Salinity

X5 ¼ Flow

X6 ¼ Temperature

3
777777775
;LX ¼

2
666666664

l3 0 0

l4 0 0

0 l5 0

0 l6 0

0 l7 0

0 0 l8

3
777777775
;

x¼

2
64

x1 ¼ Nitrogen

x2 ¼ Physical environment

x3 ¼ Temperature

3
75;d¼

2
666666664

d1

d2

d3

d4

d5

d6

3
777777775

ðA1Þ

The endogenous latent variable measurement model also
consists of four matrices; i.e., Y is a p� 1 vector of observable
indicators of the dependent latent variables h; LY is a p�m
matrix of coefficients relating Y to h; h is a m� 1 vector of
dependent (endogenous) latent variables; 3 is a p� 1 vector
of measurement errors for Y. Here, two indicator variables
( p¼ 2) were used for the representation of one (m¼ 1) endog-
enous latent variable; i.e., primary productivity and chloro-
phyll a were used as indicators for the latent variable
‘‘Phytoplankton’’. Thus, the exogenous latent variable mea-
surement model can be described from the four matrices:

Y ¼
�

Y1 ¼ Primary productivity

Y2 ¼ Chlorophyll a

�
;LY ¼

�
l1

l2

�
;

h¼ ½h1 ¼ Phytoplankton�; 3¼
�

31

32

�
ðA2Þ

The additional two matrices of the structural equation for
the latent variable model are

G¼ ½g1 g2 g3 �;z¼ ½z1� ðA3Þ
where, G is the matrix of the coefficients that relate latent ex-
ogenous to endogenous variables; z is the vector of latent
(structural) errors. [Note that the inclusion of only one endog-
enous variable in the model implies that the matrix of the co-
efficients that relate latent endogenous variablesddenoted as
B in Eq. (A6)dis a zero matrix.] As it can be inferred from
the path diagram (i.e., absence of double-headed arrows be-
tween the error terms in Fig. 2), the associated covariance ma-
trices of the model; i.e., Cov(x)¼F(n� n): covariances
between the independent variables x; Cov(3)¼Q3( p� p): co-
variances between the measurement errors in Y; Cov
(d)¼Qd(q� q): covariances between the measurement errors
in X; Cov(z)¼J(m�m): covariances between the structural
errors z, have the off-diagonal elements equal to zero:

Q3 ¼
�

varð31Þ
0 varð32Þ

�
;

Qd ¼

2
666666664

varðd1Þ
0 varðd2Þ
0 0 varðd3Þ
0 0 0 varðd4Þ
0 0 0 0 varðd5Þ
0 0 0 0 0 varðd6Þ

3
777777775
;

J¼ ½j11�;F¼

2
64

f11

0 f22

0 0 f33

3
75 ðA4Þ

The metric of the latent variables was set by fixing one
loading in each column of LX and LY to 1.0. In this particular
case, we assumed that l2¼ l4¼ l5¼ l8¼ 1.0. Moreover, im-
plicit in the assumption that the latent variable temperature
coincides with the respective observed variable temperature
is: d6¼ 0.

The hierarchical Bayesian configuration of the phytoplank-
ton SEM can be specified as follows:

Y1i ¼ l1h1iþ 31; Y2i ¼ l2h1iþ 32

3wNð0;Q3Þ

X1i ¼ l3x1i þ d1; X2i ¼ l4x1i þ d2

X3i ¼ l5x2i þ d3; X4i ¼ l6x2i þ d4; X5i ¼ l7x2i þ d5

X6i ¼ l8x3i þ d6

dwNð0;QdÞ; xwNð0;FÞ

h1i ¼ g1x1i þ g2x2i þ g3x3i þ z1

z1wNð0;JÞ ðA5Þ

Let wi¼ {yi, xi, i¼ 1,.,n} be the joint vector of the ob-
served variables (expressed as deviations from the respective
means) for an arbitrary observation i. According to the model
(A5), each observation i comes from a multivariate normal dis-
tribution f(m(q)i, S(q)) where m(q)i is the conditional mean
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(expected) vector, S(q) is the conditional covariance matrix,
given by (Bollen, 1989):
codes and data) pertinent to this study is available upon re-
quest from the first author.
SðqÞ ¼
"

LYðI�BÞ�1ðGFG0 þJÞ
�
ðI�BÞ�1�0

L0Y þQ3 LYðI�BÞ�1
GFL0X

LXFG0
�
ðI�BÞ�1�0

L0Y LXFL
0

X þQd

#
ðA6Þ
and q is the vector of the unknown model parameters. The
likelihood of w¼ (w1,.,wn) is

pðwjqÞ ¼
Yn

i¼1

ð2pÞ�ðpþqÞ=2jSðqÞj�1=2

� exp

�
� 1

2

�
wi� mðqÞi

�0
SðqÞ�1�wi� mðqÞi

��
ðA7Þ

where q¼ 6 and p¼ 2 are the number of exogenous and en-
dogenous observed variables, respectively. In the context of
the Bayesian statistical inference, the focus is on the poste-
rior density of q given the observed data w, which is de-
fined as:

pðqjwÞ ¼ pðwjqÞpðqÞR
pðwjqÞpðqÞdq

fpðwjqÞpðqÞ ðA8Þ

where p(q) is the prior density of q which is required to be
specified for each of the unknown model parameters. Aside
from the cases where no measurement error was assumed
between the latent and indicator variables (i.e., tempera-
ture), we used independent non-informative conjugate
gamma priors (0.1, 0.1) for the elements of the matrices
Qd
�1, Q3

�1, F�1 and J�1 (Spiegelhalter et al., 1996; p.
39). Effectively ‘‘flat’’ normal prior distributions with
means equal to 0 and precisions (1/variance) equal to
0.0001 were used for the structural parameters (i.e., the pa-
rameters that relate latent variables) and the factor loadings
(l2¼ l3¼ l6¼ l8 were kept fixed and equal to 1). [Note
that a methodology to test the sensitivity of the model re-
sults to these assumptions was presented in Arhonditsis
et al. (2006)]. MCMC simulation was used as the compu-
tation tool implemented in the WinBUGS software (Spie-
gelhalter et al., 2003). We used three chain runs of
30,000 iterations and samples were taken every 50th itera-
tion to avoid serial correlation. Convergence was assessed
using the modified GelmaneRubin convergence statistic.
Generally, the sequences converged rapidly (z2000 itera-
tions), while the summary statistics reported in this study
were based on the last 7500 draws. The accuracy of the
posterior estimates was inspected by assuring that the
Monte Carlo error (an estimate of the difference between
the mean of the sampled values and the true posterior
mean) for all the parameters was less than 5% of the sam-
ple standard deviation. Finally, all the material (WinBUGS
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