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a b s t r a c t

We introduce the Bayesian calibration of process-based models to address the urgent need

for robust modeling tools that can effectively support environmental management. The

proposed framework aims to combine the advantageous features of both mechanistic and

statistical approaches. Models that are based on mechanistic understanding yet remain

within the bounds of data-based parameter estimation can accommodate rigorous and com-

plete error analysis. The incorporation of mechanism improves the confidence in predictions

made for a variety of conditions, while the statistical methods provide an empirical basis

for parameter estimation and allow for estimates of predictive uncertainty. Our illustration

focuses on eutrophication modeling but the proposed methodological framework can be

easily transferred to a wide variety of disciplines (e.g., hydrology, ecotoxicology, air pollu-

tion). We examine the advantages of the Bayesian calibration using a four state variable

(phosphate–detritus–phytoplankton–zooplankton) model and the mesotrophic Lake Wash-

ington (Washington State, USA) as a case study. Prior parameter distributions were formed

on the basis of literature information, while Markov chain Monte Carlo simulations pro-

vided a convenient means for approximating the posterior parameter distributions. The

model reproduces the key epilimnetic temporal patterns of the system and provides realis-

tic estimates of predictive uncertainty for water quality variables of environmental interest.

Finally, we highlight the benefits of Bayesian parameter estimation, such as the quantifica-
tion of uncertainty in model predictions, optimization of the sampling design of monitoring

programs using value of information concepts from decision theory, alignment with the

policy practice of adaptive management, and expression of model outputs as probability

distributions, that are perfectly suited for stakeholders and policy makers when making

decisions for sustainable environmental management.

receiving aquatic ecosystem response to external nutrient
. Introduction
n water quality assessment and management, mechanistic
odels are used to understand ecological processes, predict
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loading changes, evaluate management alternatives, and sup-
port the policy making process (Reckhow and Chapra, 1999;
Jorgensen and Bendoricchio, 2001). Although these modeling
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constructs can be complex and contain much detail, their
application involves substantial uncertainty contributed by
both model structure and parameters. This uncertainty is not
surprising because all models are drastic simplifications of
reality that approximate the actual processes, i.e., essentially,
all parameters are effective (spatially and temporally aver-
aged) values unlikely to be represented by a fixed constant
(Stow et al., 2003). Furthermore, ecological data are scarce or
highly variable, so individual equations which are approxi-
mately correct in controlled laboratory environments may not
collectively yield an accurate picture of ecosystem behaviour.
Another problem that modellers do not seem to acknowledge
is that the conventional model calibration, may provide the
best fit of model input parameters to the dataset available at
the moment, but it is specific to the given dataset at hand.
As new data become available, the model should be recali-
brated and in the common calibration practice there is no way
of considering previous results. In this sense, we do not update
previous knowledge about model input parameters, but rather
we make the models dataset-specific (Kennedy and O’Hagan,
2001).

The conventional model calibration also does not address
the well-known equifinality (poor identifiability) problem
in which several distinct choices of model inputs lead to
the same model outputs (many sets of parameters fit the
model about equally well) (Beven and Binley, 1992). A main
reason for the equifinality problem is that the causal mech-
anisms/hypotheses used for understanding how the system
works internally is of substantially higher order than what
can be externally observed (Beck, 1987). However, having a
determination of model structure (and associated parameter
values) that realistically reflects the natural system dynam-
ics is particularly important when the model is intended for
making predictions in the extrapolation domain (Arhonditsis
and Brett, 2005a). For example, when a eutrophication model
does not operate with realistic ecological structure (e.g., rel-
ative/absolute magnitudes of biological rates and transport
processes), even if the fit between model outputs and obser-
vations is satisfactory, its credibility to provide predictions
about how the system will respond under significantly dif-
ferent external nutrient loading conditions is very limited. In
this case, the application of mechanistic models for extrapola-
tive tasks is “an exercise in prophecy” rather than scientific
action based on robust prognostic tools (Beven and Binley,
1992).

The importance of investigating the effects of uncertainty
on model predictions has been extensively highlighted in the
modeling literature (Reichert and Omlin, 1997; Omlin and
Reichert, 1999). Nonetheless, a recent meta-analysis showed
that the large majority of the aquatic mechanistic biogeo-
chemical models published over the last decade did not
properly assess prediction error and reliability of the critical
planning information generated by the models (Arhonditsis
and Brett, 2004). Thorough quantification of model sensitivity
to parameters, forcing functions and state variable submod-
els was only reported in 27.5% of the studies, while 45.1%

of the published models did not report any results of uncer-
tainty/sensitivity analyses. The question of model uncertainty
is important because models are used to identify polluters,
direct the use of research dollars, and determine manage-
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ment strategies that have considerable social and economic
implications (Clark et al., 2001). Erroneous model outputs and
failure to account for uncertainty could provide misleading
results and misallocation of the limited resources during the
costly implementation of alternative environmental manage-
ment schemes. For better model-based decision making, the
uncertainty in model projections must be reduced or at least
quantified and reported in a straightforward way that can
be easily used by decision makers/policy planners (Reckhow,
1994; Arhonditsis et al., 2006).

The main objective of this study is to outline how envi-
ronmental mechanistic (process-based) modeling can be
integrated with Bayesian analysis, and the anticipated output
will have broad applicability as a means for improving model
forecasts and management actions over time and space. Our
intent is to show that Bayesian calibration can be used to refine
our knowledge of model input parameters, obtain insight
into the degree of information the data contain about model
inputs, and obtain predictions and uncertainty bounds for
modeled output variables. Model uncertainty analysis essen-
tially aims to quantify the joint probability distribution of
model parameters and to make inference about this dis-
tribution; hence, the iterative nature of Bayes’ Theorem is
a convenient means to incorporate existing knowledge and
update the joint distribution as new information becomes
available. Bayesian parameter estimation is also a technique
that is especially useful when scattered, multivariate infor-
mation on the modeled system is available to improve the
understanding of model parameters, but not enough to fully
validate the mechanistic models. Bayesian inference should
change the perspective of water quality modellers from seek-
ing a single “optimal” value for each model parameter, to
seeking a joint distribution of parameter sets, which then
provide the basis for estimating model prediction error. Tech-
nically, we will show that there are better ways to parameterize
mechanistic models; other than simply tuning (adjusting)
model parameters until the modeller obtains “satisfactory”
fit.

2. Methods

2.1. Case study and model description

Lake Washington was selected as a case study for testing
the Bayesian calibration framework. Lake Washington is the
second largest natural lake in Washington State, and is one
of the best documented cases of successful restoration by
sewage diversion (Edmondson, 1994). Currently, Lake Wash-
ington can be characterized as a mesotrophic ecosystem with
limnological processes strongly dominated by a recurrent
diatom bloom, which occurs during March and April with
epilimnetic chlorophyll concentration peaks on average at
10 �g/L, which is 3.2 times higher than the summer concen-
trations when the system is phosphorus limited (Arhonditsis
et al., 2003). The dataset used for model calibration was based

on a recent (1995–2001), spatially intensive (12 stations) lim-
nological sampling program carried out by King County/Metro
(http://dnr.metrokc.gov/wlr/waterres/lakes/LakeWashington.
htm). Detailed description of the sampling network, the

http://dnr.metrokc.gov/wlr/waterres/lakes/LakeWashington.htm
http://dnr.metrokc.gov/wlr/waterres/lakes/LakeWashington.htm
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Fig. 1 – The phosphate–detritus–phytoplankton–
zooplankton model used for reproducing the Lake
Washington dynamics. Arrows indicate flows of matter
through the system. System equations and parameter
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efinitions are provided in Tables 1 and 2.

nalytical methods used along with the data analysis is
rovided elsewhere (Arhonditsis et al., 2003; Arhonditsis and
rett, 2005b).

We opted for a parsimonious model structure that only
onsiders the basic ecological processes underlying plank-
on dynamics in the mesotrophic environment of the Lake

ashington epilimnion. The basic conceptual design of the
odel builds upon the results of a recent modeling study by
rhonditsis and Brett (2005a,b). We critically evaluated the
utputs of the complex eutrophication model used to simu-

ate multiple elemental cycles (org. C, N, P, Si, O), functional
hytoplankton (diatoms, green algae and cyanobacteria) and
ooplankton (copepods and cladocerans) groups, and devel-
ped a fairly simple single-compartment, four state variable
pproach (Fig. 1). Specifically, our single-compartment model
onsiders the interplay (flows of matter) among the state vari-
bles: phosphate (PO4), phytoplankton (PHYT), zooplankton
ZOOP), and detritus (DET); mathematically is described by the

ystem of four ordinary differential equations presented in
able 1, while the definition of the model parameters is given
n Table 2. The simulation model was solved numerically using
he fourth-order Runge–Kutta method with a time step of 1

Table 1 – The specific functional forms of the eutrophication mo

dPO4
dt = − PO4

e+PO4
a�(t)PHYT × P/Cphyto + ˇ�((PHYT×P/Cphyto)2+ωDET2)

�2+(PHYT× P/Cphyto)2+ωDET2 �(tz)ZOOP × P/

PO4) + PO4exog − outflows × PO4, �(t) = 1−ε cos(2	t/365)
1+ε �(tz) = 1−ε cos(2	t/365−0.5

1+ε
0.052 + 0.02 sin

(
2	

(
t

365 + 0.12
))

, outflows = 0.0028 + 0.0014 sin
(

2	
(

3

dPHYT
dt = PO4

e+PO4
× a�(t)PHYT − r�(t)PHYT − �(PHYT×P/Cphyto)2

�2+(PHYT×P/Cphyto)2+ωDET2 �(tz)ZOOP −

dZOOP
dt = ˛�((PHYT×P/Cphyto)2+ωDET2)

�2+(PHYT×P/Cphyto)2+ωDET2 �(tz)ZOOP − d�(tz)
ZOOP3

pred2+ZOOP2 − outflows × Z

dDET
dt = r�(t)PHYT × P/Cphyto + [(1−˛−ˇ)(PHYT×P/Cphyto)2−(˛+ˇ)ωDET2]�

�2+(PHYT×P/Cphyto)2+ωDET2 �(tz)ZOOP × P

0.2 + 0.12 sin
(

2	
(

t
365 + 0.16

))
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day. Some of the functional forms resemble those presented
in the Edwards (2001) study, which also provided comprehen-
sive examination of the model bifurcational behaviour. Here,
we briefly describe the model structure along with the modifi-
cations introduced to simulate natural system dynamics (i.e.,
external forcing).

The governing equation for algal biomass considers phyto-
plankton production and losses due to basal metabolism, set-
tling and herbivorous zooplankton grazing. Phosphorus limi-
tation on phytoplankton growth follows the Michaelis–Menten
kinetics, and the effects of the seasonal cycle of light and tem-
perature are described by a trigonometric function �(t). We
used the same function of time introduced by Scheffer et al.
(1997) to study periodically forced prey–predator systems, in
which the amplitude and phase were adjusted to reproduce
the mean physical conditions for the study period (ε= 0.9). Phy-
toplankton sinks out of the epilimnion at a constant rate, while
the basal metabolism includes all internal processes that
decrease algal biomass (respiration, excretion) as well as nat-
ural mortality. Zooplankton has two alternative food sources
of equal palatability, i.e., phytoplankton and detritus. Both
herbivory and detrivory were formulated using the Holling
Type III function. A fraction of zooplankton grazing is assim-
ilated and fuels growth, another fraction is recycled directly
to phosphate, while the remaining fraction represents the
faecal pellets and contributes to the detritus pool. Zooplank-
ton losses encompass natural mortality and consumption by
higher predators; we selected a sigmoid closure term that rep-
resents a “switchable”-type of predator behaviour controlled
by a prey threshold concentration (equal to the half-saturation
constant for predation; see Edwards and Yool, 2000). The
effects of temperature on zooplankton metabolic activities
were modeled by a similar trigonometric function assuming
an approximate lag of 30 days. The specific parameteriza-
tion for both zooplankton grazing and predation was adopted
to more closely represent Daphnia dynamics, which is the
dominant member of the Lake Washington zooplankton com-
munity (Arhonditsis and Brett, 2005a). A proportion of the
zooplankton mortality/predation is returned back to the sys-
tem as dissolved phosphorus. Epilimnetic phosphate levels
are also fuelled by the bacteria-mediated mineralization of

detritus, and are subject to seasonally variant diffusive mixing
with the hypolimnion. Detritus sinks out of the epilimnion at
a constant rate, while the watershed loadings (mainly repre-
senting the inflows of particulate phosphorus) were described

del

Czoop + � d�(tz)
ZOOP3

pred2+ZOOP2 P/Czoop + ��(t)DET + k(1 − �(t))(PO4(hypo) −
)
, PO4(hypo) = 11 + 3 sin

(
2	

(
t

365 + 0.3
))

, PO4exog =
t
65 + 0.12

))
sPHYT − outflows × PHYT

OOP

/Czoop − ϕ�(t)DET −  DET + DETexog − outflows × DET, DETexog =
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Table 2 – Parameter definitions of the eutrophication model

Parameter Symbol Units

Maximum phytoplankton (PHYT) growth rate a* day−1

Higher predation on zooplankton (ZOOP) d* day−1

Half-saturation constant for predation pred* mg C m−3

Half-saturation constant for PO4 uptake e* mg P m−3

Cross-thermocline exchange rate k* day−1

Phytoplankton respiration rate r* day−1

Phytoplankton sinking loss rate s* day−1

Phosphorus to carbon ratio for phytoplankton P/Cphyto 0.015 mg P (mg C)−1

Phosphorus to carbon ratio for zooplankton P/Czoo 0.029 mg P (mg C)−1

Zooplankton growth efficiency a*

Zooplankton excretion fraction ˇ*

Regeneration of zooplankton predation excretion � *

Maximum zooplankton grazing rate �* day−1

Zooplankton grazing half-saturation coefficient �* mg P m−3

Relative zooplankton preference for detritus compared to phytoplankton ω 1
Detritus (DET) remineralization rate ϕ* day−1
Detritus sinking rate

∗ Parameters used during the Bayesian calibration of the model.

by a sinusoidal function fitted to data from the local streams
(Brett et al., 2005). Finally, similar sinusoidal functions were
used for the remaining boundary conditions of the model, i.e.,
the exogenous dissolved phosphorus loadings, the hypolim-
netic phosphate concentrations, and the outflows to the Lake
Union Ship Canal (Arhonditsis and Brett, 2005a).

2.2. Bayesian calibration

Several recent studies have focused on the development
of statistical methodologies that link mathematical models
to the physical systems, i.e., frameworks that aim to pro-
vide probabilistic statements about the modeled systems
using simulation models. Existing statistical methodologi-
cal approaches to mathematical models addressed issues of
uncertainty/sensitivity analysis (Saltelli et al., 2000), inter-
polation/emulation (Currin et al., 1991; Bates et al., 1996),
calibration and prediction (Poole and Raftery, 2000; Kennedy
and O’Hagan, 2001), and structural inadequacies of the avail-
able simulators (Craig et al., 2001; Goldstein and Rougier, 2004;
Higdon et al., 2004). In this paper, we outline a conceptu-
ally similar statistical approach that aims to combine field
observations and simulation model outputs to update the
uncertainty of model parameters, determine their correlation
structure, and then use the calibrated model to give predic-
tions (along with uncertainty bounds) of the natural system
dynamics. Our Bayesian framework explicitly accounts for the
uncertainty in model inputs (model parameters and field data)
and the discrepancy between the mathematical model and the
environmental system. In this presentation, we place empha-
sis on the features of this methodology that demonstrate its
appropriateness in the context of environmental modeling
and management.

2.2.1. The model is a perfect simulator of the

environmental system (Model 1)
The numerical solution of the eutrophication model is
denoted as f(�, x, y0); where x is a vector of time dependent
control variables (e.g., boundary conditions, forcing functions)
 * day−1

describing the environmental conditions, the vector � is a time
independent set of the calibration model parameters (i.e., the
14 parameters with asterisk in Table 2), and y0 corresponds
to the concentrations of the four state-variables at the ini-
tial time point t0. At various settings for x, observations y for
the four state variables are made from the environmental sys-
tem and if we assume that the model perfectly describes its
dynamics, then

yi = f (�, xi, y0) + εi, i = 1,2,3, . . . , n (1)

where the εi’s denote the observation (measurement) error
and are usually assumed to be independent and identically
distributed following a Gaussian distribution. Although the
observed Lake Washington patterns provide evidence of a
multiplicative measurement error (Arhonditsis et al., 2003;
Fig. 2), we found that the required logarithmic transformation
of the model outputs caused some computational problems.
Therefore, we treated the errors additively and assumed the
standard deviation to be proportional to the average monthly
values for each state variable (Van Oijen et al., 2005). Specifi-
cally, we chose the monthly standard deviations to be 15% of
the mean monthly values; a fraction that comprises both ana-
lytical error and interannual variability (Arhonditsis and Brett,
2005b).

Based on the previous assumptions, the likelihood func-
tion that evaluates how well the simulation model is able to
reproduce the observed data y at each value of �, is given by

p(y|f (�, x, y0)) =
m∏
j=1

(2	)−n/2|˙εj|−1/2

×exp
[
−1

2
[yj − fj(�, x, y0)]T˙−1

εj
[yj − fj(�, x, y0)]

]

(2)

where m and n correspond to the number of state variables
(m = 4) and the number of observations in time used to cali-
brate the model (n = 12 average monthly values), respectively;
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Fig. 2 – The Markov Chain Monte Carlo trace plots for the
(a) higher predation on zooplankton, (b) maximum
zooplankton grazing rate, and (c) detritus sinking rate
(
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Model 2).

j = [y1j, . . ., ynj]T and fj(�, x, y0) = [fj(�, x1, y0), . . ., fj(�, xn, y0)]T

orrespond to the vectors of the field observations and model
redictions for the state variable j; and˙εj = In(0.15)2 · yT

j · yj. In
he context of the Bayesian statistical inference, the posterior
ensity of the parameters � and the initial conditions of the
our state variables y0 given the observed data y is defined as

(�, y0|y) = p(y|f (�, x, y0))p(�)p(y0)∫∫
p(y|f (�, x, y0))p(�)p(y0) d� dy0

∝ p(y|f (�, x, y0))p(�)p(y0) (3)

here p(�) is the prior density of the model parameters �
nd p(y0) is the prior density of the initial conditions of
he four state variables y0. The prior probability distribution,
(�), reflects our knowledge on the relative plausibility of the
ifferent parameter values before calibration. In this study,
8 ( 2 0 0 7 ) 215–229 219

the formulation of the prior density functions was based on
field observations from the lake, laboratory studies, literature
information, and expert judgment. Specifically, the charac-
terization of the parameter distributions was similar to the
protocol used in Steinberg et al. (1997), i.e., we identified the
minimum and maximum values for each parameter and then
we assigned lognormal distributions parameterized such that
95% of their values were lying within the identified ranges. In
a similar way to the measurement errors, the characteriza-
tion of the prior density p(y0) was based on the assumption of
a Gaussian distribution with a mean value derived from the
January monthly averages during the study period and stan-
dard deviation that was 20% of the mean value for each state
variable j; a fraction that comprises both analytical error, inter-
annual variability, and difference between the starting date
of the simulation period (1 January) and the usual sampling
dates of the King County/Metro sampling program. Thus, the
resulting posterior distribution for � and y0 is given by

p(�, y0|y) ∝
m∏
j=1

(2	)−n/2|˙εj|−1/2

×exp
[
−1

2
[yj − fj(�, x, y0)]T˙−1

εj
[yj − fj(�, x, y0)]

]

×(2	)−l/2|˙� |−1/2
l∏

k=1

1
�k

×exp
[
−1

2
[log� − �0]T˙−1

� [log � − �0]
]

×(2	)−m/2|˙y0|−1/2

×exp
[
−1

2
[y0 − y0m]T˙−1

y0 [y0 − y0m]
]

(4)

where l is the number of the model parameters � used for
the model calibration (l = 14); �0 denotes the vector of the
mean values of � (logarithmic scale); ˙� = Il · �T

� · �� and �� =
[��1, . . . , ��l]

T corresponds to the vector of the shape parame-
ters of the l lognormal distributions (standard deviation of log
�); the vector y0m = [y11, . . ., y14]T corresponds to the average
values of the four state variables observed in January during
the study period (1995–2001); and ˙y0 = Im(0.20)2 · yT

0m · y0m.

2.2.2. The model is an imperfect simulator of the
environmental system (Model 2)
An augmentation of our statistical formulation explicitly rec-
ognizes that the model imperfectly represents the dynamics
of the environmental system (e.g., missing key ecological
processes, erroneous formulations, misspecified forcing func-
tions). In this case, an observation i for the state variables j, yij,
can be described as

yij = f (�, xi, y0) + ıj + εij, i = 1,2,3, . . . n and j = 1, . . . ,m (5)

where the stochastic term ıj accounts for the discrepancy
between the model f(�, x, y ) and the natural system. In this

study, we assumed that the model discrepancy is invariant
with the input conditions x (i.e., the difference between model
and lake dynamics was assumed to be constant over the
annual cycle for each state variable), which is slightly differ-
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ent from the statistical formulation introduced by Higdon et
al. (2004 see Discussion). With this assumption, the likelihood
function will be

p(y|f (�, x, y0)) =
m∏
j=1

(2	)−n/2|˙Tj|−1/2

×exp
[
−1

2
[yj − fj(�, x, y0)]T˙−1

Tj
[yj − fj(�, x, y0)]

]
(6)

˙Tj = ˙ıj +˙εj (7)

where ˙ıj = In · �2
j

corresponds to the additional stochastic

term of Model 2; and the prior densities p(�2
j
) were based

on uniform distributions to overcome some problems caused
from the conjugate inverse-gamma distribution (Gelman,
2005). Thus, the resulting posterior distribution for �, y0, and
�2 is:

p(�, y0, �
2|y) ∝

m∏
j=1

(2	)−n/2|˙Tj|−1/2

×exp
[
−1

2
[yj − fj(�, x, y0)]T˙Tj

−1[yj − fj(�, x, y0)]
]

×(2	)−l/2|˙� |−1/2
l∏

k=1

1
�k

×exp
[
−1

2
[log � − �0]T˙�−1[log � − �0]

]
×(2	)−m/2|˙y0|−1/2

×exp
[
−1

2
[y0 − y0m]T˙y0

−1[y0 − y0m]
]

×
m∏
j=1

1
upj − loj

(8)

where the location parameters lo and up correspond to the
lower and upper limit of the range of the m uniform distribu-
tions.

2.2.3. Numerical approximations for posterior
distributions
Sequence of realizations from the posterior distribution of
the two models were obtained using Markov chain Monte
Carlo (MCMC) simulations (Gilks et al., 1998). Specifically, we
used the general normal-proposal Metropolis algorithm as it
is implemented in the WinBUGS software (Spiegelhalter et
al., 2003); this algorithm is based on a symmetric normal
proposal distribution, whose standard deviation is adjusted
over the first 4000 iterations such as the acceptance rate
ranges between 20% and 40%. We also used an ordered over-
relaxation, which generates multiple samples per iteration
and then selects one that is negatively correlated with the

current value of each stochastic node (Neal, 1998). The latter
option resulted in an increased time per iteration but reduced
within-chain correlations. Based on the Steinberg et al. (1996)
findings, the posterior simulations were based on multiple
2 0 8 ( 2 0 0 7 ) 215–229

chains from starting points dispersed around the parameter
space. We found that some of the initial parameter vectors
resulted in unstable solutions, i.e., solutions of the dynamical
system that tended to infinity. In this study, we present results
using two parallel chains with starting points: (i) a vector that
consists of the mean values of the prior parameter distribu-
tions and (ii) a vector that resulted from the optimization of the
model with the Fletcher–Reeves conjugate-gradient method
(Chapra and Canale, 1998). We used 30,000 iterations and
convergence was assessed with the modified Gelman–Rubin
convergence statistic (Brooks and Gelman, 1998). The accu-
racy of the posterior estimates was inspected by assuring that
the Monte Carlo error (an estimate of the difference between
the mean of the sampled values and the true posterior mean;
see Spiegelhalter et al., 2003) for all the parameters was less
than 5% of the sample standard deviation. Our framework was
implemented in the WinBUGS differential Interface (WBDiff);
an interface that allows numerical solution of systems of ordi-
nary differential equations within the WinBUGS software.

2.2.4. Assessment of the goodness-of-fit and model
comparisons
Assessment of the goodness-of-fit between the model pre-
dictions and the observed data was based on the posterior
predictive p-value, i.e., the Bayesian counterpart of the classi-
cal p-value. In brief, the posterior predictive p-value is defined
as the probability that the replicated data (the posterior pre-
dictive distribution) could be more extreme than the observed
data. The null hypothesis H0 (i.e., there are no systematic dif-
ferences between the simulations and the data) is rejected if
the tail-area probability is close to 0.0 or 1.0; while the model
can be regarded as plausible if the p-value is near to 0.5. The
“discrepancy variable” chosen for carrying out the posterior
predictive model checks was the �2 test [see also Gelman et
al. (1996) for a detailed description of the posterior predictive
p-value]. The comparison between the two alternative mod-
els was based on the use of the Bayes factor, i.e., the posterior
odds of one model over the other (assuming the prior prob-
ability on either model is 0.5). If M1 and M2 denote the two
alternative models, the Bayes factor is

B12 = pr(y|M1)
pr(y|M2)

(9)

For model comparison purposes, the model likelihood
(pr(y|Mk); k = 1, 2) is obtained by integrating over the unknown
element (initial conditions, model parameters, error terms)
space:

pr(y|Mk) =
∫

pr(y|Mk,k)	(k|Mk) dk (10)

wherek is the unknown element vector under model Mk and
	(k|Mk) is the prior density of k. Using the MCMC method,
we can estimate pr(y|Mk) from posterior samples of k. Let-

ting (i)
k

be samples from the posterior density pr(k|Mk), the
estimated pr(y|Mk) is
pr(y|Mk) =
{

1
m

m∑
i=1

pr(y|Mk,
(i)
k

)
−1

}−1

(11)
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he harmonic mean of the likelihood values (Kass and Raftery,
995).

. Results

he MCMC trace plots for three model parameters (higher
redation on zooplankton, maximum zooplankton grazing
ate, detritus sinking rate), after discarding the “burn-in”
i.e., the period of adjustment to the appropriate conditional
istribution), are shown in Fig. 2. The irregular patterns of
hese sequences of iterations are characteristic of the MCMC
imulation, because the aim is to create a Markov process
hose stationary distribution approximates the joint pos-

erior distribution of all the stochastic nodes of the model
ather than identify the global optimum for maximizing the

odel fit (Gelman et al., 1995). Generally, we noticed that
he sequences converged rapidly (≈5000 iterations), while
he statistics reported in this study were based on the last
5,000 draws by keeping every 4th iteration (i.e., an appropri-
te thinning to avoid serious autocorrelation problems). The
ncertainty underlying the values of the 14 model parameters
efore and after the Bayesian calibration is depicted on the
espective prior and marginal posterior distributions (Table 3
nd Fig. 3). Generally, the coefficients of variation (or “relative
tandard deviation”; CV) of the posterior parameter distribu-
ions were significantly reduced when using the first statistical
ormulation (Model 1); characteristic examples were the detri-
us sinking rate ( ), the phytoplankton sinking loss rate (s),

he assimilation efficiency (a), and the maximum growth rate
a) with a decrease from 50 to 90%. On the other hand, the
nclusion of the stochastic term that accounts for the dis-
repancy between the model and the real system resulted in

Table 3 – Prior and Markov Chain Monte Carlo posterior estima
model stochastic nodes

Parameter Prior

Mean S.D. Mea

a 1.801 0.515 1.6
d 0.164 0.026 0.1
pred 36.49 15.64 28.2
e 12.16 5.212 6.3
k 0.036 0.010 0.0
r 0.136 0.066 0.3
s 0.080 0.085 0.0
a 0.360 0.103 0.4
ˇ 0.431 0.077 0.4
� 0.431 0.077 0.4
� 0.535 0.077 0.6
� 5.055 1.285 9.5
ϕ 0.155 0.060 0.0
 0.113 0.072 0.0
PO4(0) 13.57 2.714 13.0
PHYT(0) 61.94 12.39 69.3
ZOOP(0) 15.97 3.194 15.3
DET(0) 15.68 3.136 18.8
�PO4
�chla

�zoop

�det
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significantly higher CV parameter values, and – in some cases
– our knowledge did not improve relative to what we knew
prior to the calibration (e.g., higher predation on zooplankton,
maximum zooplankton grazing rate, maximum growth rate,
cross-thermocline exchange rate, and zooplankton excretion
fraction). The latter finding indicates that the discrepancy
term mainly improves our knowledge on the natural system
dynamics (see next paragraph) but gives little information
regarding the values of the calibration vector. In a general con-
text, however, the Higdon et al. (2004) study showed that the
effects of the discrepancy term on the parameter posteriors
can be quite variant depending on the prior model specifica-
tion and the system being modeled (see the results reported
in their Figs. 3 and 11). It should also be noted that the central
tendency of the updated distributions of the phytoplankton
respiration rate (r) and zooplankton grazing half-saturation
coefficient (�) with the Model 1 was significantly higher than
the prior assigned values. To avoid these major shifts on the
two posterior distributions, we used truncated prior distribu-
tions but the subsequent calibration resulted in inferior results
comparing with those found from the full parameter space.

The Bayesian calibration can also be used to determine the
correlation structure among the model parameters using the
MCMC posterior samples (Table 4). Some of these relationships
have plausible physical explanation that can be derived from
the model equations. If the phytoplankton respiration rate (r)
is high, for example, the detritus remineralization rate (ϕ) will
also be high so as the amount of detritus (or particulate phos-
phorus) in the water column not be greater than that observed.

Likewise, if the maximum phytoplankton growth rate (a) is
high, then the half-saturation constant for PO4 uptake (e)
should also be high in order to accurately represent the
observed epilimnetic phytoplankton dynamics. There were

tes of the mean values and standard deviations of the

Model 1 Model 2

n S.D. Mean S.D.

05 0.133 1.153 0.302
86 0.017 0.199 0.028
2 4.693 34.96 9.404
43 1.686 8.215 4.579
20 0.003 0.028 0.007
78 0.082 0.227 0.069
54 0.006 0.061 0.012
59 0.032 0.362 0.050
03 0.052 0.439 0.071
21 0.072 0.433 0.079
64 0.035 0.568 0.091
16 0.781 5.413 1.810
89 0.026 0.072 0.018
26 0.002 0.024 0.004
8 1.661 13.48 2.124
5 10.90 67.69 16.94
5 1.487 19.77 5.040
0 2.636 17.20 3.387

1.537 0.578
113.9 40.92

22.99 9.456
0.504 0.815
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also some relationships that seem counterintuitive (based on
the model setup), such as the positive correlation between the
zooplankton excretion fraction (ˇ) and detritus sinking rate
( ). Given that higher values for both parameters normally
result in lower detritus levels in the system, a negative rela-
tionship under which the two terms cancel each other out
would have seemed more plausible. The positive correlation
probably reflects the predominance of other ecological paths
considered in our eutrophication model, e.g., higher fraction
of the zooplankton excretion provides phosphate which fuels

phytoplankton growth, and then the resulting increase in phy-
toplankton respiration and zooplankton grazing supply the
detritus pool. Thus, higher detritus sinking rates probably
compensate for this increase, and the model can still pro-

Fig. 3 – Prior (thick black lines) and posterior (Model 1: gray lines
eutrophication model parameters. The posteriors depict smooth
samples from the two models.
2 0 8 ( 2 0 0 7 ) 215–229

vide a reasonable fit to the observed data. The latter pattern is
particularly pronounced during the summer stratified period
when the system is strongly phosphorus limited and the phy-
toplankton growth mainly depends on the internal loading
(see following discussion). Furthermore, the implementation
of principal component analysis on the resulting correla-
tion matrix provides evidence of several distinct clusters
that characterize the posterior parameter variability (Legendre
and Legendre, 1998). Based on the rotated (normalized vari-
max) component loadings (Fig. 4), we can distinguish one

cluster that consists of the respiration (r) and detritus rem-
ineralization (ϕ) rates; a second cluster that comprises the
half-saturation constant for grazing (�), the maximum phy-
toplankton growth rate (a), and the half-saturation constant

and Model 2: thin black lines) distributions of the
ed kernel density estimates based on 12,500 MCMC
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Fig. 3 –

or PO4 uptake (e); a third group that includes the phyto-
lankton sinking rate (s), the zooplankton growth efficiency
˛) and higher predation (d); while the remaining parameters,
.e., maximum grazing rate (�), the zooplankton excretion frac-

ion (ˇ), the cross-thermocline exchange rate (k), the detritus
 ) sinking rate, the regeneration of zooplankton predation
xcretion (�) and half-saturation constant for predation (pred)
ere not classified in a coherent cluster. Finally, we found a

Table 4 – Correlation matrix of the eutrophication model param

a ˛ ˇ d e � k

a
˛ 0.027
ˇ 0.278 −0.719
d −0.018 −0.205 0.248
e 0.746 −0.208 0.393 0.091
� −0.027 0.122 −0.300 −0.131 0.042
k 0.204 0.026 −0.047 −0.115 0.198 0.049
� 0.244 −0.109 0.273 0.522 0.456 0.033 0.0
� 0.171 0.467 −0.249 −0.325 0.207 0.208 0.1
ϕ −0.306 0.044 −0.164 −0.374 −0.556 −0.080 −0.0
pred −0.178 −0.265 0.063 −0.215 −0.091 −0.066 0.0
 0.120 −0.753 0.579 0.010 0.219 −0.080 0.0
r −0.178 0.007 −0.154 −0.351 −0.586 −0.078 −0.0
s 0.260 0.543 −0.158 −0.002 −0.098 −0.089 0.0

Bold numbers correspond to correlation coefficients with absolute value g
tinued).

similar (to the parameters) pattern between the two statis-
tical formulations in terms of the CV values of the prior and
posterior distributions of the initial conditions; the first model
was more informative and resulted in significantly reduced CV

values (Table 3 and Fig. 5). We also note the relatively high CV
values of the error terms (�j) that account for the discrepancy
between the simulation model and the natural system (Model
2), especially for detritus (>100%).

eters

� � ϕ pred  r s

30
25 0.409
36 −0.683 −0.146
64 −0.191 0.234 0.463
74 0.038 −0.341 0.028 0.341
93 −0.640 −0.204 0.776 0.229 0.102
95 0.123 0.143 −0.148 −0.413 −0.469 0.000

reater than 0.5.
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Fig. 4 – Principal component analysis of the 14 model
parameters based on Markov chain Monte Carlo posterior
samples from Model 2. [Significant principal components
were rotated using the normalized varimax strategy (raw
factor loadings divided by the square roots of the respective

communalities), and the three PCs explained 89% of the
observed variability.]

The two models were favourably supported by the data
and were accepted on the basis of their posterior predictive
p-values (0.124 and 0.385 for Models 1 and 2, respectively). The
Bayes factor value B21 = 2.85 did not provide strong evidence
in support of one of the two alternative models but did reflect
a better predictive performance of the Model 2. The compari-
son between the observed (monthly averages over the 7-year
period, 1995–2001) and posterior predictive monthly distribu-
tions for the four state variables illustrates some features of
the Bayesian calibration (Fig. 6). The Model 1 provides a mod-
erate fit to the four state variables; 83.3% (10 of 12) of the
phosphate, 58.3% (7 of 12) of the total phosphorus, 83.3% (10
of 12) of the chlorophyll concentrations and 83.3% (10 of 12)
of the zooplankton biomass data were included within the
95% credible intervals. On the other hand, the addition of the
discrepancy term in the second statistical formulation (Model
2) has significantly improved the results and all the observed
monthly values were included within the 95% credible inter-
vals. Regarding the central tendency of the predictive monthly
distributions, we found that the predicted median values were
lower than the observed spring phosphorus levels (Model 1)
and also underestimated the spring maximum phytoplank-
ton and zooplankton biomass. [Interestingly, the optimization
of the model (not presented here) using Powell’s direct pat-
tern search and Fletcher–Reeves conjugate gradient method
along with a cost function that equally weights the four
state variables provided fairly similar results and only slightly
improved the representations of the mid/late spring plank-

ton dynamics.] These results can partly be attributed to the
inaccurate representation of the physical conditions (weather
and vertical mixing) by simple periodic functions, while the
relatively wide prediction bands for the spring plankton
2 0 8 ( 2 0 0 7 ) 215–229

dynamics also reflect the higher observation error used for
these months. To more realistically account for the effects
of the physical conditions on the Lake Washington patterns,
we also employed a stochastic treatment of the forcing func-
tions of the model (i.e., the trigonometric functions provided
the mean of a Gaussian distribution with standard devia-
tion assumed to be 10% of the mean values). The predicted
median phosphate–plankton biomass values were closer
to the lake seasonal dynamics but, not surprisingly, were
also accompanied by wider prediction bands (not presented
here).

The estimation of the exceedance frequency for dif-
ferent chlorophyll levels can be based on the respective
marginal/cumulative predictive distribution (Fig. 7), e.g., there
is 15% probability that chlorophyll will be higher than 4 �g/L
during the summer stratified period in Lake Washington.
Furthermore, the joint predictive distributions of total phos-
phorus, chlorophyll, and zooplankton abundance can offer
insights into the relationships among the limiting nutri-
ent, primary producers and herbivory over the same period.
For example, the model predictions suggest that if our tar-
get for the chlorophyll level of 4 �g/L is an exceedance
frequency lower than 10%, then the summer TP concentra-
tions should be lower than 14 �g/L (Fig. 8a). The distinctly
positive relationship between the summer phytoplankton
community and zooplankton biomass provide evidence for
co-dependence and tight primary producer–herbivore associ-
ation, especially when the zooplankton biomass lies within
the range of 60–80 �g/L (Fig. 8b). This result can be explained
by the findings of earlier experimental (Richey, 1979) and
modeling (Arhonditsis and Brett, 2005b) studies which esti-
mated that zooplankton nutrient recycling (mostly by Daphnia
pulicaria and Daphnia thorata) provided 60–90% of the phospho-
rus supply to the mixed layer during the summer stratified
period. Thus, zooplankton nutrient recycling fuels phyto-
plankton growth, which in turn has a positive feedback
and sustains herbivore biomass. The latter presentation of
the model outputs as probabilistic assessment of water
quality along with the underlying ecological interactions
conveys significantly more information than point (single-
valued) estimates in regards to uncertainty and can make
the model results more credible and appealing to decision
makers and stakeholders. Finally, the state-space for total
phosphorus–phytoplankton–zooplankton dynamics, based on
the implementation of a spline fitting on the MCMC posterior
samples (Chapra and Canale, 1998), provides a comprehen-
sive presentation of the combined bottom-up and top-down
effects on phytoplankton during the summer stratified period
in Lake Washington (Fig. 9).

4. Discussion

The general lack of uncertainty estimates for most environ-
mental models, the arbitrary selection of higher – and often
unattainable – threshold values for environmental variables

(quality goals/standards) as a hedge against unknown fore-
cast errors, risky model-based management decisions and
unanticipated system responses are the norm in current man-
agement practice. The ubiquitous and often substantial model
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Fig. 5 – Prior (thick black lines) and posterior (Model 1: gray lines and Model 2: thin black lines) distributions of the initial
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ncertainty is a key reason why adaptive implementation is
ften considered the only defensible strategy in environmen-
al management (Walters, 1986). If, based on current science,
he initial management plan is likely to be inefficient or inad-
quate, why not design the management implementation
rocess so that it accommodates error and correction? Yet,
hile the concept of adaptive implementation makes sense

s a pragmatic solution to scientific uncertainty, practical mat-

ers related to technical approaches and policy issues remain
Borsuk et al., 2002). We presented an illustrative example
f a methodological tool (Bayesian calibration of mechanis-
ic models) that can be easily engaged with the policy practice
ulation model and the natural system) for the four state

of adaptive management and address some of the technical
difficulties. The proposed framework combines the advanta-
geous features of both mechanistic and statistical approaches.
Models with mechanistic foundation that are combined with
a statistical configuration; the former component can provide
more reliable predictions of system behaviour, while the lat-
ter allows for an empirical parameter estimation and rigorous
assessment of predictive uncertainty. We used a Bayesian for-

mulation that can simultaneously accomplish several goals,
i.e., offer insights into the degree of information the data con-
tain about model inputs, quantify the dependence structure
(correlation) among parameter estimates, and obtain pre-
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dictions along with uncertainty bounds for modeled output
variables.

Some of the technical advances and benefits for envi-
ronment management from the Bayesian calibration of
process-based models are:
i) Identification problem: As it was indicated in the present
study, prior knowledge of the magnitudes of ecological
processes can be converted into probability distributions
that reflect the relative plausibility of different values

Fig. 7 – Marginal and cumulative predictive distribution of
chlorophyll during the summer stratified period in Lake

Washington. [Results based on 12,500 Markov chain Monte
Carlo posterior samples from Model 2.]

of the respective model parameters, which then can be
included into the “prior–likelihood–posterior” update
cycles. Viewing model calibration as an inverse problem,
this practice increases the likelihood of model solutions

that more realistically reflect the internal structure of
the system and avoid getting “good results for the wrong
reasons”. Furthermore, the Bayesian inference techniques
offer an effective strategy to overcome the typical problem

Fig. 6 – Comparison between the observed and posterior
predictive monthly distributions for phosphate, total
phosphorus, chlorophyll a (1 g carbon = 20 mg chlorophyll)
and total zooplankton abundance for the Lake Washington
eutrophication model (Model 1: black line and Model 2: gray
line). Single dots and the respective black lines correspond
to the monthly averages and standard deviations, reflecting
the analytical error and the interannual variability in the
lake over the 7-year period, 1995–2001. Dashed lines
correspond to the 2.5 and 97.5% credible intervals. The
modeled total phosphorus concentrations comprise three
phosphorus pools; i.e., phosphate, detritus and
phosphorus sequestered in phytoplankton cells.
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Fig. 8 – Predictive chlorophyll distributions (median values
and 95% credible sets) for different (a) total phosphorus and
(b) zooplankton abundance levels during the summer
stratified period in Lake Washington (Model 2).

Fig. 9 – State-space for total phosphorus–phytoplankton–
zooplankton dynamics during the summer stratified period
in Lake Washington. [Spline fitting was implemented on
the 12,500 Markov chain Monte Carlo posterior samples
from Model 2.]

i
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of identification in environmental models, because the
use of additional information (along with the calibration
dataset) reduces the disparity between what ideally we
want to learn (internal description of the system) and
what can realistically be observed; the primary reason for
poor model identifiability (Beck, 1987; Omlin and Reichert,
1999).

ii) Realistic predictive uncertainty estimates: The Bayesian
approach generates a posterior predictive distribution
that takes into account both the uncertainty about the
parameters and the uncertainty that remains when the
parameters are known (Kennedy and O’Hagan, 2001). As
a result, the predictive uncertainty estimates from the
Bayesian inference techniques are more realistic (usually
larger than those based on the classical procedures), and
thus more appropriate for environmental management
(Reichert and Omlin, 1997). For example, as it was shown
in our study (Figs. 6–8), the – often misleading – deter-
ministic statements can be avoided and the water quality
goals can be set by explicitly acknowledging an inevitable
risk of non-attainment, the level of which is subject to
decisions that reflect different socioeconomic values and
environmental concerns.

ii) Adaptive management implementation and optimization of
monitoring programs: The Bayesian (iterative) nature of
the proposed approach is conceptually similar to the
policy practice of adaptive management, i.e., an itera-
tive implementation strategy that is recommended to
address the -often substantial- uncertainty associated
with water quality model forecasts and avoid implementa-
tion of inefficient and flawed management plans. Adaptive
implementation or “learning while doing” augments
initial model forecasts of management schemes with post-
implementation monitoring; the initial model forecast
serves as the Bayesian prior, the post-implementation
monitoring data serve as the sample information (the like-
lihood), and the resulting posterior probability (the inte-
gration of monitoring and modeling) provides the basis for
revised (and improved) management actions. The proba-
bilistic assessment for water quality variables of manage-
ment interest (e.g., chlorophyll a) that incorporates all pos-
sible sources of uncertainty (model inadequacy, parameter
uncertainty, observation error) can also indicate where the
limited monitoring resources should be focused (Van Oijen
et al., 2005). Based on the patterns of the posterior predic-
tive distributions (where the predictive distribution for one
site indicates a “low” probability of attaining water quality
goals or, alternatively, an “unacceptably high” variance),
we can determine again the optimal sampling design for
water quality monitoring and assess the value of infor-
mation (value of additional monitoring; “Where should
additional water-quality data-collection efforts be focused?”).

iv) Bayesian model averaging: Although beyond the scope of
the present paper, a logical next step of the proposed
framework would be to examine how the uncertainty
patterns of the model predictions and the posterior

parameter distributions can be used to optimize model
complexity by omitting highly uncertain or including
missing ecological processes. An alternative approach
would be to recognize that there is no true model of an
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ecological system, but rather several adequate descrip-
tions of different conceptual basis and structure (Reichert
and Omlin, 1997). Therefore, rather than picking the single
“best-fit” model to predict future system responses, we
can use Bayesian model averaging to provide a weighted
average of the forecasts from different models (Hoeting
et al., 1999; Stow et al., 2004). For example, an appealing
future next step of this methodological framework will
be the combination of the present fairly simple (4 state
variable) model with the existing complex eutrophication
(21 state variable) model for Lake Washington (Arhonditsis
and Brett, 2005a,b). Hence, by acknowledging that models
at both ends of the complexity spectrum have different
strengths and weaknesses, Bayesian model averaging can
be used to provide better average predictive ability and
overcome the ambiguity regarding model selection or the
risk of basing ecological forecasts on a single model.

One of the major disadvantages of the Bayesian inference
techniques that has prohibited their broader application in
the common modeling practice has been their high compu-
tation demands (Reichert and Omlin, 1997; Reichert et al.,
2002). In our study, we showed that the MCMC procedure can
overcome the lack of analytical expressions for the posterior
distribution; a typical problem with the nonlinear parame-
terizations used in eutrophication modeling. We found that
30,000 samples with a fairly straightforward algorithm (i.e.,
general normal-proposal Metropolis) gave adequate summary
statistics of the posterior parameter distributions and the pre-
dicted model outputs. Although more advanced procedures
are available (Gilks et al., 1998; Robert and Casella, 1999),
several modeling studies from a variety of disciplines indi-
cated that even simpler MCMC schemes can effectively sample
high dimensional parameter spaces and multivariate outputs
(Hegstad and More, 2001; Lee et al., 2002; Van Oijen et al., 2005).
Alternatively, Higdon et al. (2004) proposes a compromise
between the “fidelity of the simulator” and the “simulation
speed” claiming that a comprehensive examination of the pos-
terior distribution of a simple model can be more informative
than an insufficient posterior approximation of a more com-
plex model (see their charged particle accelerator example).
Finally, it should be noted that the additional model complex-
ity does not necessarily imply more MCMC runs; if the number
of parameters that drive the model outputs does not change,
then the number of runs required to sufficiently approximate
the posterior will be approximately the same (Jansen and
Hagenaars, 2004).

In the present study, our aim was to illustrate how some
features of the Bayesian model calibration can assist environ-
mental management, and thus our presentation was neither
exhaustive in terms of the technical aspects of this framework
nor informative regarding its ability to produce extrapo-
lated predictions, i.e., reproduce ecological patterns under
significantly different external conditions such as increased
nutrient loading. For example, a follow-up study demon-
strates how the Bayesian approach supports management

decisions by assessing both the exceedance frequency and
confidence of compliance of different water quality crite-
ria (Zhang and Arhonditsis, submitted). Furthermore, while
the previously mentioned stochastic treatment of the forcing
2 0 8 ( 2 0 0 7 ) 215–229

functions can also be used to accommodate the role of inter-
annual variability under the current management practices,
the extrapolation in new, significantly different, regions of
system behaviour requires special consideration [see Bayarri
et al. (2002) for some basic principles underlying the model
extrapolation task]. Finally, an interesting next step from a
methodological point of view will be the relaxation of the
assumption that the model discrepancy is invariant with the
input conditions (i.e., monthly variation regarding the differ-
ence between model and natural system dynamics). The latter
statistical formulation, including a Gaussian process model
to account for the covariance structure among the stochas-
tic/error terms (Higdon et al., 2004), may also improve the
current misrepresentation of the spring plankton dynamics
(underestimation of the mid–late spring phytoplankton and
zooplankton levels).

In conclusion, we outlined a methodological framework
that integrates environmental mechanistic (process-based)
modeling with Bayesian analysis. Through an illustration
focused on the reproduction of the average seasonal patterns
of a mesotrophic lake (Lake Washington), we showed that
this approach provides a convenient means for characterizing
uncertainty in model predictions. We also discussed several of
the anticipated benefits from the Bayesian calibration that are
well suited for stakeholders and policy makers when making
decisions for sustainable environmental management. Sound
environmental management can only result from an in-depth
assessment of the political/social factors, scientific consider-
ations, and economic impacts; the proposed methodological
framework can be very useful in this direction and can facili-
tate decisions for rational resource allocation.
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