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[1] Large simulation models of eutrophication processes are commonly used to aid
scientific understanding and to guide management decisions. Confidence in models for
these purposes depends on uncertainty in model equations (structural uncertainty) and
on effects of input uncertainties (model parameters, initial conditions, and forcing
functions) on model outputs. Our objective herein is to illustrate two strategies, a
generalized likelihood uncertainty estimation (GLUE) approach combined with a simple
Monte Carlo sampling scheme and a Bayesian methodological framework along with
Markov Chain Monte Carlo (MCMC) simulations, for elucidating the propagation of
uncertainty in the high-dimensional parameter spaces of mechanistic eutrophication
models. We examine the ability of the two approaches to offer insights into the degree
of information about model inputs that the data contain, to quantify the correlation
structure among parameter estimates, and to obtain predictions along with uncertainty
bounds for modeled output variables. Our analysis is based on a four-state-variable
(phosphate-detritus-phytoplankton-zooplankton) model and the mesotrophic Lake
Washington (Washington State, United States) as a case study. Scientific knowledge,
expert judgment, and observational data were used to formulate prior probability
distributions and characterize the uncertainty pertaining to 14 model parameters. Despite
the conceptual differences for addressing model equifinality, that is, wide ranges of
parameter values subject to complex multivariate relationships that result in plausible
observed behaviors and produce equivalently accurate predictions, we found that the two
strategies provided fairly consistent estimates of the posterior parameter correlation
structure and output uncertainty. Nonetheless, our analysis also shows that MCMC can
more efficiently quantify the joint probability distribution of model parameters and make
inference about this distribution. The latter finding can be explained by the basic idea
underlying the MCMC methodology, that is, the configuration of a Markov process whose
stationary distribution approximates the joint posterior distribution of all the stochastic
model nodes; as a result, Monte Carlo samples are not drawn from the prior parameter
space, and problems of wide or highly correlated prior distributions can be overcome.
Finally, our study stresses the lack of perfect simulators of natural system dynamics and
introduces two statistical formulations that can explicitly account for the discrepancy
between mathematical models and environmental systems.
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If our science is to be meaningful, we should aim to communicate

the limitations of the predictions we make in ways that are useful to

the wider community. This, in itself, cannot be divorced from the

wider socio-political context. . .
Pappenberger and Beven [2006, p. 6]

1. Introduction

[2] Mechanistic models are an attractive tool that can be
particularly useful for assisting water quality management.
An appealing feature for their extensive use is their role as

‘‘information integrators’’ [Spear, 1997], that is, their ability
to synthesize among different types of information that
reflect our existing knowledge/best understanding of the
ecosystem functioning. Their main foundation consists of
causal mechanisms, complex interrelationships, direct and
indirect paths in ecological structures that are mathemati-
cally depicted in the form of nonlinear differential equa-
tions. Then, any scientific knowledge, expert judgment, and
experimental data can be used to assign realistic ranges and
determine the relative likelihood of the different values of
ecologically meaningful parameters (e.g., chemical processes,
biological rates, and partition coefficients). Most impor-
tantly, the model endpoints (state variables) usually coincide
with routinely monitored environmental variables, which in
turn are considered reliable surrogates of the physics,
chemistry and biology of the aquatic ecosystem under
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investigation. The latter attribute also provides the theoretical
underpinning for what is called ‘‘model calibration’’; the
procedure by which the modelers attempt to minimize the
discrepancy between model outputs and observed data by
adjusting model parameters [Jorgensen and Bendoricchio,
2001]. An implicit assumption for this practice is that if a
mathematical model fits well the observed data, then it can
be considered an accurate representation of the natural system
and can be effectively used for projecting future responses
under alternative management schemes [Arhonditsis and
Brett, 2005a].
[3] Although the premise for ‘‘predictive capability

founded on mechanistic understanding’’ is tenable, it quickly
became clear that there is high degree of model structure
and input uncertainty (parameters, initial conditions, forcing
functions) resulting in considerable controversy regarding
their usefulness as management tools [Reckhow, 1994]. This
uncertainty is not surprising because all models are simplistic
representations of the aquatic systems and even the most
well studied ecological processes can be mathematically
described by a variety of relationships that entail different
assumptions and complexity levels, for example, Monod
and Variable-Internal Stores (VIS) models for modeling the
phytoplankton uptake of nutrients from the water column
and their conversion into biomass [Grover, 1991]. Water
quality data are also scarce or highly variable, so individual
equations that are approximately correct in ideal (controlled
laboratory) conditions may not collectively yield an accurate
picture of ecosystem behavior. Moreover, the ‘‘chimera’’ of
a reductionistic description of natural system dynamics
accentuates the disparity between what ideally we want to
learn and what can realistically be observed, and thus it is
often impossible to impose quantitative (or even qualitative)
constraints of what should be considered ‘‘behavioral’’
simulation [Beck, 1987]. By acknowledging the uncertainty
(error) underlying both model structures and data, we
explicitly recognize that the search for a single set of
parameter values (global optimum) that reproduces the real
world patterns is not a reasonable expectation [Reichert and
Omlin, 1997]. Rather, the only defensible strategy is the
assessment of the likelihood of different input factors
(model structures/parameter sets) being acceptable simula-
tors of the natural system, the so-called ‘‘model equifinal-
ity’’ [Beven, 1993].
[4] Uncertainty analysis of mechanistic models has

received considerable attention in the aquatic ecosystem
research and there have been several attempts to rigorously
address issues pertaining to structural and parametric error
[Spear and Hornberger, 1980; Dilks et al., 1992; Omlin and
Reichert, 1999; Brun et al., 2001; Reichert et al., 2002].
Nonetheless, a recent meta-analysis showed that the large
majority of the aquatic mechanistic biogeochemical models
published over the last decade did not properly assess
prediction error; aquatic mechanistic modelers are still
reluctant to embrace uncertainty analysis techniques and
assess the reliability of the critical planning information
generated by the models [Arhonditsis and Brett, 2004].
Thorough quantification of model sensitivity to parameters,
forcing functions and state variable submodels was only
reported in 27.5% of the studies, while 45.1% of the
published models did not report any results of uncertainty/
sensitivity analysis. Ironically, the identifiability problem in

the context of eutrophication modeling and management
was firstly discussed nearly three decades ago, when the
Hornberger and Spear [1981] study advocated the use of
regionalized estimation techniques that provide parameter
distributions instead of single values (point estimates) as an
antidote to the lack of comprehensive data sets. Despite the
compelling arguments for considering uncertainty analysis
as an integral part of the modeling endeavor, a recent paper
by Pappenberger and Beven [2006] identified several
reasons why the modeling community is still oblivious of
its importance and also argued that none of these points is
sound. Furthermore, the same study discussed the issues
involved in developing a ‘‘Code of Practice’’ that aims to
offer guidance about how we should conduct uncertainty
analysis in any modeling exercise, and the sixth issue of the
proposed code, that is, choice of uncertainty estimation
methodology, provides the impetus of our study.
[5] The main objective of this study is to illustrate two

strategies, a generalized likelihood uncertainty estimation
(GLUE) approach combined with a simple Monte Carlo
sampling scheme and a Bayesian methodological frame-
work along with Markov Chain Monte Carlo (MCMC)
simulations, for assessing the propagation of uncertainty
in the high-dimensional parameter spaces of mechanistic
eutrophication models. We examine the ability of the two
strategies to offer insights into the degree of information the
data contain about model inputs, quantify the dependence
structure among parameter estimates, and obtain predictions
along with uncertainty bounds for modeled output variables.
Our goal is to illuminate technical aspects of the two
uncertainty analysis approaches that can be particularly useful
for eutrophication management. Our illustration is based on
a four-state-variable (phosphate-detritus-phytoplankton-
zooplankton) model that provides a realistic platform for
testing the ability of the competing techniques to explore
multidimensional parameter spaces while conforming to the
principle of parsimony.

2. Methods

2.1. Model Description

[6] The effectiveness of the two uncertainty analysis
approaches was examined using as a case study Lake
Washington; the second largest natural lake in Washington
State and one of the best documented cases of successful
restoration by sewage diversion [Edmondson, 1994]. Lake
Washington is a mesotrophic system with limnological
processes strongly dominated by a recurrent diatom bloom,
which occurs during March and April with epilimnetic
chlorophyll concentration peaks on average at 10 mg/L,
which is 3.2 times higher than the summer concentrations
when the system is phosphorus limited [Arhonditsis et al.,
2003]. The data set used for model calibration was based on
a recent (1994–2003), sampling program carried out by
King County/Metro (available at http://dnr.metrokc.gov/wlr/
waterres/lakes/LakeWashington.htm). Detailed description
of the sampling network, the analytical methods used along
with the data analysis is provided elsewhere [Arhonditsis et
al., 2003; Arhonditsis and Brett, 2005b]. The basic concep-
tual design of our model builds upon the results of a recent
modeling study [Arhonditsis and Brett, 2005a, 2005b], and
considers the basic ecological processes underlying plank-
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ton dynamics in the Lake Washington epilimnion. We
developed a zero-dimensional (single compartment) model
that considers the interplay between the four state variables:
phosphate, phytoplankton, zooplankton, and detritus
(Figure 1). The mathematical description of the eutrophica-
tion model and the definition of the model parameters can
be found in Appendix A and Table 1, respectively. The
simulation model was solved numerically using the fourth-
order Runge-Kutta method with a time step of 1 d.
2.1.1. Phytoplankton
[7] The equation for phytoplankton biomass considers

phytoplankton production and losses due to basal metabo-
lism, settling and herbivorous zooplankton grazing. The
combined effects of the seasonal cycle of light and temper-

ature (i.e., average physical conditions over the study
period) on phytoplankton are described by a trigonometric
function s(t). Phytoplankton sinks out of the epilimnion at a
constant rate, while phosphorus limitation on phytoplankton
growth follows the Michaelis-Menten kinetics. The basal
metabolism includes all internal processes that decrease
algal biomass (respiration, excretion) as well as natural
mortality.
2.1.2. Zooplankton
[8] Zooplankton grazing and losses due to natural mortality/

consumption by higher predators are the main two terms in
the zooplankton biomass equation, while the specific
parameterization used mainly represents Daphnia dynam-
ics, that is, the dominant member of the Lake Washington

Figure 1. The phosphate (PO4)–detritus (DET)–phytoplankton (PHYT)–zooplankton (ZOOP) model
used for reproducing the Lake Washington dynamics. Arrows indicate flows of matter through the
system. System equations and parameter definitions are provided in Appendix A and Table 1.

Table 1. Parameter Definitions of the Eutrophication Modela

Parameter Symbol Unit

Maximum phytoplankton (PHYT) growth rate a* d�1

Higher predation on zooplankton (ZOOP) d* d�1

Half-saturation constant for predation pred* mg C m�3

Half-saturation constant for PO4 uptake e* mg P m�3

Cross-thermocline exchange rate k* d�1

Phytoplankton respiration rate r* d�1

Phytoplankton sinking loss rate s* d�1

Phosphorus to carbon ratio for phytoplankton P/Cphyto 0.015 mg P (mg C)�1

Phosphorus to carbon ratio for zooplankton P/Czoop 0.029 mg P (mg C)�1

Shape parameter for the trigonometric functions s(t) and s(tz) e 0.9

Zooplankton growth efficiency a*
Zooplankton excretion fraction b*
Regeneration of zooplankton predation excretion g*
Maximum zooplankton grazing rate l* d�1

Zooplankton grazing half-saturation coefficient m* mg P m�3

Relative zooplankton preference for detritus compared to phytoplankton w 1
Detritus (DET) remineralization rate 8* d�1

Detritus sinking rate y* d�1

aThe asterisks indicate parameters used during the uncertainty analysis of the model.
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zooplankton community [Arhonditsis and Brett, 2005a].
Zooplankton has two alternative food sources (phytoplank-
ton and detritus) of equal palatability. A fraction of zoo-
plankton grazing is assimilated and fuels growth, while both
herbivory and detrivory were formulated using the Holling
Type III function. A sigmoid closure term was selected to
represent a ‘‘switchable’’ type of predator behavior con-
trolled by a prey threshold concentration [see Edwards and
Yool, 2000]. The effects of temperature on zooplankton
metabolic activities were modeled by a trigonometric func-
tion similar to the one used for phytoplankton. The ob-
served lagged Daphnia response (�30 d) during the spring
bloom was represented by a phase shift of �0.5 radians.
2.1.3. Phosphate
[9] The phosphate equation considers the phytoplankton

uptake, the proportion of the zooplankton excretion and
mortality/predation that is returned back to the system as
dissolved phosphorus. Epilimnetic phosphate levels are also
fuelled by the bacteria-mediated mineralization of detritus,
and are subject to seasonally varying diffusive mixing with
the hypolimnion.
2.1.4. Detritus
[10] Detritus sinks out of the epilimnion at a constant rate

and is transformed to phosphate by the seasonally forced
mineralization processes. Phytoplankton respiration and a
fraction of the zooplankton growth that represents the fecal
pellets also contribute to the detritus pool.
2.1.5. Boundary Conditions
[11] The dissolved phosphorus and detritus (mainly repre-

senting the inflows of particulate phosphorus) loadings from
the watershed, the hypolimnetic phosphate concentrations
and the outflows to the Lake Union Ship Canal were
described by sinusoidal functions fitted to data from the local
streams [Brett et al., 2005], the King County/Metro sampling
program and the H. H. Chittenden Locks [Arhonditsis and
Brett, 2005a].

2.2. Generalized Likelihood Uncertainty Estimation

[12] The generalized likelihood uncertainty estimation is
an extension of the binary ‘‘acceptance/rejection’’ system of
behavioral/nonbehavioral simulations of the original
Regionalized Sensitivity Analysis [Hornberger and Spear,
1981]. The GLUE methodology uses likelihood measures to
assign different levels of confidence (weighting) to different
parameter sets, reflecting their ability to acceptably repro-
duce ‘‘non-error-free’’ observations from the environmental
system [Beven and Binley, 1992; Zak and Beven, 1999;
Page et al., 2004; Beven, 2006]. Unlike other uncertainty
analysis techniques, the term likelihood has a very broad
meaning and is specified as any measure of goodness-of-fit
that can be used to compare observed responses with model
predictions [Zak et al., 1997]. As a result, a wide variety of
likelihood functions can be found in the GLUE literature,
for example, likelihood measures based on the sum of
squared errors [Beven and Binley, 1992; Sorooshian and
Gupta, 1995; Freer et al., 1997], fuzzy measures [Franks et
al., 1998; Page et al., 2004] or even qualitative measures
for model evaluation [Beven, 2001]. The GLUE procedure
requires a large number of Monte Carlo model runs sampled
from (usually) uniform distributions across a plausible range
of each parameter. The behavioral runs are selected on the
basis of a subjectively chosen threshold of the likelihood
function and are rescaled so that their cumulative total is

1.0. The weighting assigned to the retained behavioral runs
is propagated to the model output and forms a likelihood-
weighted cumulative distribution of the predicted varia-
ble(s), which are then used for estimating the prediction
uncertainty ranges [Beven and Binley, 1992].
[13] GLUE also has the ability to update likelihood

weights (and thus predictive uncertainty) by successive
application of the Bayes’ Theorem, as additional data
become available. The refinement of the predictive uncer-
tainty can be assessed each time the likelihood function is
updated by the use of appropriate quantitative measures
(e.g., the probabilistic Shannon Entropy measure and the
U-uncertainty); see the relevant discussion by Beven and
Binley [1992]. However, unless the combination of a
‘‘likelihood’’ function with a threshold criterion corresponds
to a well-defined probability distribution that directly
connects the data with model input and output parameters,
GLUE does not have a clear Bayesian interpretation
[Engeland and Gottschalk, 2002; Hong et al., 2005]. For
example, the 95% uncertainty bounds resulting from GLUE
can have different statistical interpretation than the 95%
credible intervals [Lamb et al., 1998]. In addition, the
GLUE procedure is mainly based on the parameter-set
ability to produce behavioral simulations, and therefore it
is difficult to extract information regarding the individual
parameter effects on the model response. We know, for
example, from past studies that the set of modal values of
the marginal distributions may not be itself behavioral
[Beven, 2006]. Even though the use of scattergrams (pro-
jections of the sampled high-dimensional response surface
onto single parameter dimensions) can give insights, they
cannot fully reflect the complexity of the response surface
[Page et al., 2004]. Finally, it should also be noted that
depending on the likelihood measure and the behavioral/
nonbehavioral threshold used, GLUE can be particularly
inefficient in sampling acceptable runs, for example, the
MAGIC application by Page et al. [2004] classified as
acceptable 7200 out of eleven million runs (0.066%).

2.3. Monte Carlo Sampling Specification of
Likelihood Weights

[14] For the GLUE illustration, the uncertainty associated
with the initial conditions was accommodated by using the
same initial values (mean January concentrations over the
study period) for all the Monte Carlo runs and a 10-a
simulation period which was sufficient time to reach an
equilibrium state (i.e., reproduce similar annual cycles) or to
collapse (zero, negative values or approach infinity). To
further retain the dimensions of the space examined to a
manageable level, we did not consider the error underlying
the input boundary conditions. Furthermore, since 4 param-
eters out of 18 are already known from empirical data and
literature information, the total number of unknown param-
eters is 14 (Table 1). To maximize the efficiency (accep-
tance rates) of our Monte Carlo sampling, we implemented
a modest pruning of the initial parameter space using 25,000
random sets sampled from 14 uniform distributions. The
ranges for this 14-dimensional hypercube were based on the
identified minimum and maximum parameter values from
the pertinent literature [Arhonditsis and Brett, 2005a, and
references therein]. This exploratory analysis resulted in a
5–20% reduction of the ranges of the univariate marginal
distributions, although behavioral simulations were found
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over the entire allowable regions for some parameters. The
latter finding has been repeatedly reported in the modeling
literature [e.g., Spear et al., 1994] and underscores the need
for caution when modelers attempt to truncate the parameter
space. In this study, our decisions were also guided from
existing knowledge and past experience regarding the
magnitudes of the various ecological processes in a meso-
trophic environment and the parameter regions that increase
the likelihood to reproduce the observed Lake Washington
patterns [Arhonditsis and Brett, 2005b].
[15] Using the same rationale, we also opted for infor-

mative parameter distributions for the GLUE analysis, and
their characterization was based on the assignment of
normal probability densities to the adjusted parameter
ranges (Table 2). The prior distribution of each model input
parameter was determined independently of other parame-
ters for two reasons: (1) there was no consistent literature
information regarding correlations among model parameters
[Di Toro and van Straten, 1979], and (2) the independence
assumption results in a multivariate prior distribution that
tends to be more spread out than one that attempts to
incorporate dependence explicitly. We used the latter feature
to provide a type of prior robustness in the analysis that
compensated for the compromises made during the trunca-
tion of the initial parameter space; that is, instead of a wide
hypercube or a narrow hyperellipsoid, we focused on a
relatively flat subregion where there was evidence (e.g.,
scientific knowledge, expert judgment, and observational
data) for more realistic representation of the system dynam-
ics. Furthermore, the assumption of a priori independence
does not imply independence a posteriori and some infor-
mation on the parameter covariance in fitting the available
observations will be unraveled in the posterior distribution
of likelihood measures following the conditioning of the
parameter sets within the GLUE procedure (see section 3).
After the formation of the density function that describes the
joint probabilities of the 14 parameters, we generated a
number of 60,000 random sets, which then provided the
input for our eutrophication model.
[16] As previously mentioned, the definition of the like-

lihood measure that assesses the goodness-of-fit of model
outputs to the observed data is a critical step in the GLUE

framework and the uncertainty predictions can be strongly
influenced by that definition [Ratto et al., 2001]. In this
study, we employed the following likelihood measure:

Lj qk jYj
� �

¼ 1

sk2
j

; ð1Þ

where

sk2
j ¼ 1

2n

Xn
i¼1

Yobs ijð Þ � Yk
pred ijð Þ

� �2
j 2 PO4; det; chla; zoopf g

ð2Þ

is the mean squared difference between predicted and
observed values for the j state variable from the kth Monte
Carlo simulation, and n is the number of observations
(twelve average monthly values). The four Lj values were
multiplied to give a combined likelihood measure for each
Monte Carlo run. After the selection of the behavioral
simulations (see section 3), the likelihood measures were
rescaled from 0 to 1 and these rescaled weights were then
used to compute the posterior parameter (i.e., mean,
variance, and correlation coefficients) and state variable
(i.e., weighted mean predicted monthly values, weighted
variance, and selected percentiles from the cumulative
likelihood distributions) statistics. We also examined the
consistency of the results obtained from different likelihood
measures (behavioral runs, posterior parameter statistics,
predictive uncertainty) by considering two additional
measures of fit, that is, the relative error [RE = Sj Observed
values � Predicted valuesj/SObserved values] and the
modeling efficiency [MEF = 1 � S(Predicted values �
Observed values)2/S(Observed values � Observation aver-
age)2] [Stow et al., 2003].

2.4. Bayesian Methodological Framework

[17] Our presentation examines three statistical formula-
tions that aim to combine field observations and simulation
model outputs to update the uncertainty of model parame-
ters, determine their correlation structure, and then use the
calibrated model to give predictions (along with uncertainty
bounds) of the natural system dynamics. The three
approaches can be distinguished by the following assump-
tions: (1) the eutrophication model is a perfect simulator of
the environmental system (i.e., the difference between
model and lake dynamics was assumed to be caused only
by the observation error) (Model 1), (2) the eutrophication
model is an imperfect simulator of the environmental
system and the model discrepancy is invariant with the
input conditions (i.e., the difference between model and lake
dynamics was assumed to be constant over the annual cycle
for each state variable) (Model 2), and (3) the eutrophication
model is an imperfect simulator of the environmental
system and the model discrepancy varies with the input
conditions (i.e., there is seasonally varying discrepancy
between model and lake dynamics for each state variable)
(Model 3).
2.4.1. Model 1
[18] The first statistical formulation is based on the

assumption that our model perfectly describes the dynamics
of the environmental system and the observations y for the
four state variables is given by

yi ¼ f q; xi; y0ð Þ þ ei; i ¼ 1; 2; 3; . . . ::; n; ð3Þ

Table 2. Prior and GLUE Estimates of the Mean Values and

Standard Deviations of the Eutrophication Model Parametersa

Parameter

Prior GLUE

Mean SD Mean SD

a 1.297 0.221 1.071 0.161
d 0.175 0.016 0.174 0.016
pred 57.55 10.06 59.81 10.04
e 15.03 4.500 18.59 3.549
k 0.035 0.007 0.034 0.007
r 0.095 0.025 0.098 0.025
s 0.055 0.020 0.044 0.009
a 0.401 0.090 0.425 0.077
b 0.325 0.078 0.328 0.074
g 0.325 0.078 0.332 0.080
l 0.624 0.078 0.650 0.074
m 7.016 1.350 6.353 1.217
8 0.225 0.078 0.238 0.074
y 0.080 0.032 0.044 0.024

aGLUE, generalized likelihood uncertainty estimation.
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where f(q, xi, y0) denotes the eutrophication model, xi is a
vector of time-dependent control variables (e.g., boundary
conditions and forcing functions) describing the environ-
mental conditions, the vector q is a time-independent set of
the calibration model parameters (i.e., the 14 parameters in
Table 1), y0 corresponds to the concentrations of the four
state variables at the initial time point t0, and ei denotes the
observation (measurement) error that is usually assumed to
be independent and identically distributed following a
Gaussian distribution. The observed Lake Washington
patterns provide evidence of a multiplicative measurement
error [Arhonditsis et al., 2003, Figure 2], and thus we
assumed the standard deviation to be proportional to the
average monthly values for each state variable [Van Oijen et
al., 2005].
[19] On the basis of the previous assumptions, the like-

lihood function that evaluates how well the simulation
model is able to reproduce the observed data y at each
value of q, is given by

p yjf q; x; y0ð Þð Þ ¼
Ym
j¼1

2pð Þ�n=2 Sej
�� ���1=2

� exp
�
� 1

2
yj � fj q; x; y0ð Þ
	 
T

� S�1
ej yj � fj q; x; y0ð Þ
	 
�

; ð4Þ

where m and n correspond to the number of state variables
(m = 4) and the number of observations in time used to
calibrate the model (n = 12 average monthly values),
respectively; yj = [y1j , . . ., yn j]

T and fj (q, x, y0) = [fj (q, xi, y0),
. . ., fj (q, xn, y0)]T correspond to the vectors of the field
observations and model predictions for the state variable j;
andSej = In � (0.15)2 � yjT � yjwhere the factor 0.15 reflects our
assumption that the monthly standard deviations are 15% of
the mean monthly values; a fraction that comprises both
analytical error and interannual variability at the deeper
(middle) sections of the lake. In the context of the Bayesian
statistical inference, the posterior density of the parameters q
and the initial conditions of the four state variables y0 given
the observed data y is defined as

p q; y0jyð Þ ¼ p yjf q; x; y0ð Þð Þp qð Þp y0ð ÞZZ
p yjf q; x; y0ð Þð Þp qð Þp y0ð Þdqdy0

/ p yjf q; x; y0ð Þð Þp qð Þp y0ð Þ; ð5Þ

where p(q) is the prior density of the model parameters q and
p(y0) is the prior density of the initial conditions of the four
state variables y0. In a similar way to the measurement errors,
the characterization of the prior density p(y0) was based on
the assumption of a Gaussian distribution with a mean value
derived from the January monthly averages during the study
period and standard deviation that was 15% of themean value
for each state variable j; a fraction that comprises both
analytical error, interannual variability at the deeper (middle)
sections of the lake, and difference between the starting date

of the simulation period (1 January) and the usual sampling
dates of the King County/Metro sampling program. Thus the
resulting posterior distribution for q and y0 is given by

p q; y0jyð Þ /
Ym
j¼1

2pð Þ�n=2 Sej
�� ���1=2

� exp � 1

2

�
yj � fj q; x; y0ð Þ
	 
TS�1

ej yj � fj q; x; y0ð Þ
	 
�


 2pð Þ�l=2 Sqj j�1=2
Yl
k¼1

1

qk

� exp � 1

2
log q� q0½ �TS�1

q log q� q0½ �
� �


 2pð Þ�m=2

� Sy0

�� ���1=2
exp � 1

2
y0 � y0m½ �TS�1

y0 y0 � y0m½ �
� �

;

ð6Þ

where l is the number of the model parameters q used for the
model calibration (l = 14); q0 denotes the vector of the mean
values of q (logarithmic scale);Sq = Il � sqT � sq and sq = [sq1,
. . ., sql]

T corresponds to the vector of the shape parameters of
the l lognormal distributions (standard deviation of log q); the
vector y0m = [y11, . . ., y14]

T corresponds to the average values
of the four state variables observed in January during the
study period (1994–2003); and Sy0 = Im � (0.15)2 � y0mT � y0m.
2.4.2. Model 2
[20] An augmentation of the previous statistical formulation

explicitly recognizes that the model imperfectly represents the
dynamics of the environmental system. In this case, an
observation i for the state variables j, yij, can be described as

yij ¼ f q; xi; y0ð Þ þ dj þ eij; i ¼ 1; 2; 3; . . . ::n and j ¼ 1; . . . ;m;

ð7Þ

where the stochastic term dj accounts for the discrepancy
between the model f(q, x, y0) and the natural system, which
is assumed to be invariant with the input conditions x (i.e.,
the difference between model and lake dynamics was
assumed to be constant over the annual cycle for each state
variable).With this assumption, the likelihood function will be

p yjf q; x; y0ð Þð Þ ¼
Ym
j¼1

2pð Þ�n=2 STj

�� ���1=2

� exp � 1

2

�
yj � fj q; x; y0ð Þ
	 
TS�1

Tj

� yj � fj q; x; y0ð Þ
	 
�

; ð8Þ

STj ¼ Sdj þ Sej; ð9Þ

where Sdj = In � sj
2 corresponds to the additional stochastic

term of Model 2; and the prior densities p(sj
2) were based on

uniformdistributions to overcome some problems caused from
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the conjugate inverse-gamma distribution [Gelman, 2005].
Thus the resulting posterior distribution for q, y0, and s2 is

p q; y0;s2
��y� �

/
Ym
j¼1

2pð Þ�n=2 STj

�� ���1=2

� exp � 1

2

�
yj � fj q; x; y0ð Þ
	 
TS�1

Tj yj � fj q; x; y0ð Þ
	 
�


 2pð Þ�l=2 Sqj j�1=2
Yl
k¼1

1

qk

� exp � 1

2
log q� q0½ �TS�1

q log q� q0½ �
� �


 2pð Þ�m=2 Sy0

�� ���1=2

� exp � 1

2
y0 � y0m½ �T

�
S�1

y0 y0 � y0m½ �
�



Ym
j¼1

1

upj � loj
; ð10Þ

where the location parameters lo and up correspond to the
lower and upper limit of the range of the m uniform
distributions.
2.4.3. Model 3
[21] The third statistical formulation also explicitly rec-

ognizes that the model imperfectly represents the dynamics
of the environmental system but now the corresponding
stochastic term varies with the input conditions x. In this
case, an observation i for the state variables j, yij, can be
described as

yij ¼ f q; xi; y0ð Þ þ dij þ eij; i ¼ 1; 2; 3; . . . ::n and j ¼ 1; . . . ;m:

ð11Þ

The modeling for all the previous terms remains unchanged.
We also specify a Gaussian first-order random walk model
for the discrepancy term dij to reflect that these error terms
are correlated [Shaddick and Wakefield, 2002]. Specifically,
the vector dj = {d1j, . . ., d12j}, j = PO4, det, chla, zoop, can
be expressed as

p dijjd�ij;w2
j

� �
�

N diþ1j;w2
j

� �
for i ¼ 1;

N
di�1j þ diþ1j

2
;
w2
j

2

 !
for i ¼ 2; . . . ; 11

N di�1j;w2
j

� �
for i ¼ 12;

8>>>>>><
>>>>>>:

;

ð12Þ

where d�ij denotes all elements of dj except the dij, w j
2 is the

conditional variance and the prior densities p(wj
2) were

based on conjugate inverse-gamma (0.01, 0.01) distribu-
tions [Gelman et al., 1995]. Finally, it is interesting to note
that the third statistical formulation has conceptual simila-
rities with the hierarchical dynamic linear modeling (DLM)
[Pole et al., 1994] and the Kalman filter [Meinhold and
Singpurwalla, 1983].
[22] Assessment of the goodness-of-fit between the

model predictions and the observed data was based on the
posterior predictive p value, that is, the Bayesian counter-
part of the classical p value. In brief, the posterior predictive
p value is defined as the probability that the replicated data

(the posterior predictive distribution) could be more extreme
than the observed data. The null hypothesis H0 (i.e., there
are no systematic differences between the simulations and
the data) is rejected if the tail-area probability is close to 0.0
or 1.0; whilst the model can be regarded as plausible if the p
value is near to 0.5. The ‘‘discrepancy variable’’ chosen for
carrying out the posterior predictive model checks was the x2

test (see alsoGelman et al. [1996] for a detailed description of
the posterior predictive p value). The comparison between
the two alternative models was based on the use of the Bayes
factor, that is, the posterior odds of one model over the other
(assuming the prior probability on either model is 0.5). IfM1

andM2 denote the two alternative models, the Bayes factor is

B12 ¼
pr yjM1ð Þ
pr yjM2ð Þ : ð13Þ

For model comparison purposes, the model likelihood
(pr(yjMw); w = 1, 2) is obtained by integrating over the
unknown element (initial conditions, model parameters, error
terms) space:

pr yjMwð Þ ¼
Z

pr yjMw;Qwð Þp QwjMwð ÞdQw; ð14Þ

where Qw is the unknown element vector under model Mw

and p(QwjMw) is the prior density of Qw. Using the MCMC
method, we can estimate pr(yjMw) from posterior samples of
Qw. Letting Qw

(i) be samples from the posterior density
pr(QwjMw), the estimated pr(yjMw) is

pr yjMwð Þ ¼ 1

m

Xm
i¼1

pr yjMw;Q ið Þ
k

� ��1

( )�1

; ð15Þ

the harmonic mean of the likelihood values [Kass and
Raftery, 1995].
2.4.4. Markov Chain Monte Carlo
[23] Markov Chain Monte Carlo (MCMC) is a general

methodology that provides a convenient means for sampling
multidimensional distributions for the purpose of numerical
integration. The idea underlying the MCMC implementa-
tion in Bayesian inference is to construct a random walk or
Markov process whose stationary distribution is p( f (q, x)jy)
(i.e., the combination of the prior information with the
model likelihood under the observed data) and then run the
process long enough so that we produce an accurate
approximation of the posterior model distribution [Gilks et
al., 1998]. There are many methods (e.g., Gibbs sampler)
for obtaining sequence of realizations from the posterior
model distributions [Gelfand and Smith, 1990; Casella and
George, 1992], but all of them are special cases of the
general Metropolis-Hastings algorithm [Metropolis, 1953;
Hastings, 1970].
[24] To generate samples from a target posterior distribu-

tion p( f (q, x)jy), we need to know that distribution up to a
proportional constant and the simplest form of the
Metropolis-Hastings algorithm is summarized as follows:
(1) select an initial value qt=0, for which p( f (qt=0, x)jy) > 0,
from a prior distribution p(q), (2) generate q* from a
symmetric distribution (i.e., the chance of generating q*
given qt is the same as generating qt given q*) and u from
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the uniform distribution U(0,1), (3) compute the ratio of the
densities,

r ¼ p q*jyð Þ
p qtjyð Þ

; ð16Þ

(4) compute the probability of move a as

a qt; q*ð Þ ¼ min r; 1½ �; ð17Þ

(5) if u � a, set qt+1 = q*; else set qt+1 = qt, and (6) repeat
steps 2–5, starting at qt+1.
[25] This simple but general procedure has several advan-

tages that are particularly useful for environmental model-
ing; that is, it can efficiently sample multidimensional
parameter spaces and can easily handle multivariate outputs
as well as large numbers of nuisance parameters [Gelman et
al., 1995].
[26] In this study, we used the general normal-proposal

Metropolis algorithm as it is implemented in the WinBUGS
software (WinBUGS User Manual, version 1.4, D. Spiegel-
halter et al., 2003, available at http://www.mrc-bsu.cam.
ac.uk/bugs); this algorithm is based on a symmetric normal
proposal distribution, whose standard deviation is adjusted
over the first 4000 iterations such as the acceptance rate
ranges between 20% and 40%. We also used an ordered
over-relaxation, which generates multiple samples per iter-
ation and then selects one that is negatively correlated with
the current value of each stochastic node [Neal, 1998]. The
latter option resulted in an increased time per iteration but
reduced within-chain correlations. The posterior simulations
were based on multiple chains from starting points
dispersed around the parameter space [Steinberg et al.,
1996]. We found that some of the initial parameter vectors
resulted in unstable solutions that tended to infinity, while
the presented results are based on two parallel chains with
starting points: (1) a vector that consists of the mean values
of the prior parameter distributions and (2) a vector that
resulted from the optimization of the model with the
Fletcher-Reeves conjugate-gradient method [Chapra and
Canale, 1998]. We used 30,000 iterations and convergence
was assessed with the modified Gelman–Rubin conver-
gence statistic [Brooks and Gelman, 1998]. The accuracy of
the posterior estimates was inspected by assuring that the
Monte Carlo error (an estimate of the difference between the
mean of the sampled values and the true posterior mean; see
the WinBUGS User Manual, version 1.4, D. Spiegelhalter et
al., 2003, available at http://www.mrc-bsu.cam.ac.uk/bugs)
for all the parameters was less than 5% of the sample
standard deviation. Given the advantages of the MCMC
methodology, the characterization of the prior density
functions were somewhat more realistic (less constrained)
relative to those used for the GLUE applications; that is, we
assigned lognormal distributions that 95% of their values
were lying within the identified ranges for each parameter
[Steinberg et al., 1997].

3. Results

3.1. Generalized Likelihood Uncertainty Estimation

[27] The selection of the behavioral runs for the GLUE
analysis was based on the overall model likelihood
(equation (1)), using as a threshold level the lowest L value

that resulted in less than 20% (10 out of 48) and no
violations of the bands defined by the monthly averages ±1
and 2 standard deviations (0.15 
 monthly average),
respectively. We found that 832 runs met this criterion
and the corresponding likelihood measures were then
rescaled such that the sum of all the likelihood values was
equal to 1. The distribution of the rescaled likelihood
measures for six of the model parameters (a, e, s, a, m, and
y) is shown in Figure 2. These scatterplots represent the
projection of the 14-dimensional parameter response surface
onto single parameter axes, where it can be seen that good
simulations were produced throughout the chosen parameter
ranges. Although we were able to locate some parameter
subregions with more frequent occurrences of high model
performance (L > 0.004), the general patterns suggest that
the likelihood surface is very complex with many smaller
peaks, so that no single global optimum parameter set could
be identified (see also section 4). Consequently, individual
parameter values are not particularly important in the
prediction of lake dynamics if taken outside the context of
the values of the other parameters [Schulz et al., 1999]. In
this regard, one of the advantages of the GLUE methodology
is that the parameters are treated as sets, and thus the effect of
such interactions are implicitly reflected in the likelihood
value associated with each set [Zak and Beven, 1999].
[28] The likelihood-weighted mean values indicate that

the majority of the posterior parameter distributions were
characterized by minor shifts of their central tendency
relative to the prior assigned distributions (Table 2). The
only exception was the detritus sinking rate (y) with a 45%
decrease of the posterior mean (0.044 from 0.08), which
was also accompanied by a 24% relative decrease of the
respective standard deviation. On the other hand, the
maximum phytoplankton growth rate (a), the half-saturation
constant for PO4 uptake (e), the phytoplankton sinking rate
(s), the zooplankton assimilation efficiency (a), and the
detritus sinking rate (y) showed the most significant relative
decrease (14 to 55%) of their standard deviations, while the
knowledge gained for the rest parameters was fairly
minimal (�10% relative reduction). The behavioral subset
can also be used to determine the correlation structure
among the model parameters (Table 3), although it must be
noted that the global correlation coefficients (derived from
all the behavioral samples) can be misleading because the
local interaction between parameters are more important; for
example, there might be cases in which positive interactions
in one part of the space can produce a behavioral model,
while elsewhere there might be a negative interaction.
Despite the aforementioned caution regarding the global
correlation coefficient values, some of the manifested
relationships have plausible physical explanation. For
example, a high maximum phytoplankton growth rate can
be balanced by a high half-saturation constant for PO4

uptake (e) or phytoplankton sinking loss rate (s) to accurately
represent the observed epilimnetic phytoplankton dynamics.
There were also some relationships that seem counter-
intuitive, such as the positive correlation between the
detritus mineralization (8) and sinking rates (y). Given that
both parameters reflect detritus losses from the system, a
negative relationship where the two terms cancel each other
out would have seemed more plausible. The positive
correlation probably reflects the predominance of other
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ecological paths considered in our eutrophication model; for
example, higher detritus sinking rates require higher detritus
mineralization rates to fuel phytoplankton growth and
compensate for the zooplankton food deficit, while the
detritus pool is fuelled by both the increased phytoplankton
respiration and zooplankton grazing and thus the model can
still provide a reasonable fit to the observed data.

[29] The comparison between the observed data and the
model outputs shows that the majority of the phosphate,
chlorophyll a and zooplankton biomass monthly values
were included within the 2.5 and 97.5% uncertainty bounds
(Figure 3). Nonetheless, the likelihood-weighted mean
predicted phytoplankton and zooplankton values underrep-
resented the observed spring plankton dynamics and
approximately half of the modeled total phosphorus con-
centrations were not bracketed by the respective confidence

Table 3. Correlation Matrix of the Eutrophication Model Parameters Based on GLUE Analysisa

a d Pred e k r s a b g l m 8 Y

�0.062 0.002 0.471 �0.008 0.072 0.362 �0.061 0.046 0.088 0.013 �0.131 �0.020 �0.168
a 0.084 0.005 �0.018 0.042 �0.066 0.112 0.011 0.062 0.053 �0.053 0.023 �0.051
d 0.025 0.018 �0.081 0.035 �0.085 0.011 0.000 �0.080 0.099 0.155 0.203
Pred �0.040 �0.147 �0.242 0.027 0.001 �0.013 �0.077 0.038 0.017 0.140
e 0.061 0.106 �0.040 0.043 �0.007 0.041 0.052 0.022 �0.045
k �0.198 �0.055 0.051 �0.022 �0.042 0.091 �0.030 �0.266
s �0.046 0.074 0.127 0.056 �0.177 0.103 �0.401
a 0.023 0.086 �0.094 0.150 0.205 0.157
b �0.044 0.029 0.002 �0.054 �0.046
g 0.016 �0.029 0.021 0.080
l 0.144 0.036 0.101
m �0.107 �0.260
8 0.420
y

aBold numbers correspond to correlation coefficients with absolute value greater than 0.250.

Figure 2. Scatterplots of the likelihood measure 1/s2 versus the eutrophication model parameters a, e, s,
a, m, and y .

W01420 ARHONDITSIS ET AL.: UNCERTAINTY IN EUTROPHICATION MODELS

9 of 19

W01420



limits. Interestingly, the optimization of the model (not
presented here) using Powell’s direct pattern search and
Fletcher-Reeves conjugate gradient method along with a
cost function that equally weights the four state variables
gave almost the same results and only slightly improved the
representations of the mid/late spring plankton dynamics.
Thus we hypothesized that the former result is probably
associated with the model error structure, while the latter
stems from the inaccuracy of the proxy used for the
representation of the particulate phosphorus exogenous
loadings. Whether the model lack of fit along with the
minor shifts of the updated parameter distributions reflect
inefficient sampling from misformulated prior parameter
distributions or model misspecification (e.g., inadequate
model structure and/or inaccurate boundary conditions)
was further examined with the MCMC sampling scheme.
Finally, the use of alternative likelihood measures, that is,
the relative error (threshold value � 40%) and the modeling
efficiency (�0.4), provided relatively similar results regarding
the posterior parameter statistics and the predictive uncer-
tainty bounds, although we found a 60–80% overlap
among the three subsets of behavioral runs derived from
the different measures of fit.

3.2. Bayesian Formulations

[30] The two MCMC sequences of the three models
converged rapidly (�5000 iterations) and the statistics
reported in this study were based on the last 25,000 draws

by keeping every 10th iteration (thin = 10). The uncertainty
underlying the values of the 14 model parameters after the
MCMC sampling is depicted on the respective marginal
posterior distributions (Table 4 and Figure 4). Generally, the
standard deviation of the posterior parameter distributions
were significantly reduced with the first statistical formula-
tion (Model 1); characteristic examples were the half-
saturation constant for predation (pred), the cross-thermo-
cline exchange rate (k), the phytoplankton sinking loss rate
(s), the detritus mineralization (8) and sinking rates (y) with
a relative decrease higher than 80%. On the other hand, the
inclusion of the seasonally invariant stochastic term that
accounts for the discrepancy between the model and the real
system resulted in higher standard deviations for most of the
parameters, and, in some cases, our knowledge did not
improve relative to what we knew prior to the calibration
(e.g., higher predation on zooplankton (d), half-saturation
constant for predation (pred), and cross-thermocline
exchange rate (k)). The latter finding indicates that
the discrepancy term in Model 2 mainly improves our
knowledge on the natural system dynamics (see the
following results) but gives little information regarding
the values of the calibration vector [Arhonditsis et al.,
2007a]. The addition of a seasonally variant discrepancy
term (Model 3) was more informative for some parameters,
for example, the detritus mineralization (8) and sinking
rates (y), the phytoplankton maximum growth (a) and
sinking rates (s), and half-saturation constant for PO4 uptake

Figure 3. Observed monthly values versus the likelihood-weighted mean predicted values for total
phosphorus, phosphate, chlorophyll a (1 g carbon = 20 mg chlorophyll), and zooplankton biomass based
on the generalized likelihood uncertainty estimation (GLUE) analysis (black lines). Grey lines correspond
to the posterior predictive monthly distributions from Model 1. Dashed lines correspond to the 2.5 and
97.5% uncertainty bounds of the two models. Single dots and the respective black lines correspond to the
monthly averages and standard deviations, reflecting the analytical error and the interannual variability in
the lake over the 10-a period, 1994–2003. (The modeled total phosphorus concentrations comprise three
phosphorus pools, i.e., phosphate, detritus, and phosphorus sequestered in phytoplankton cells.)
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(e) (relative decrease >60%), while others remained
unaltered with respect to their standard deviations. Generally,
our results are fairly similar to those reported in theHigdon et
al. [2004] study (see their Figures 3 and 11), suggesting that
the effects of the discrepancy term on the parameter
posteriors can be quite variant depending on the prior model
specification and the system being modeled.
[31] In contrast with the GLUE analysis, it is interesting to

note that the central tendency of several updated distribu-
tions, that is, phytoplankton respiration rate (r), detritus
mineralization rate (8), zooplankton excretion fraction (b),
and regeneration of zooplankton predation excretion (g)
(Models 1, 2, and 3); zooplankton growth efficiency (a) and
grazing half-saturation coefficient (m) (Model 1), phyto-
plankton sinking loss rate (s) (Models 2 and 3), detritus
sinking loss rate (y) and half-saturation constant for PO4

uptake (e) (Model 3) were shifted relative to the prior
assigned values. We also used the MCMC posterior samples
from theModel 2 to determine the correlation structure of the
model parameters (Table 5). The comparison with the results
derived from the GLUE analysis (Table 3) shows that there
was considerable consistency between the two correlation
matrices, although there were relationships with stronger
signals (e.g., zooplankton growth efficiency (a) and phyto-
plankton sinking loss rates (s)/maximum zooplankton
grazing rate (l)) and others that were not manifested under
the MCMC sampling (e.g., detritus sinking rates (y) and
detritusmineralization (8)/zooplankton grazing half-saturation
coefficient (m)). Furthermore, we found similar to the
parameters patterns regarding the CV values of the prior
and posterior distributions of the initial conditions; the first
model was more informative and resulted in reduced CV
values (Figure 4 and Table 4).

[32] To gain insight into the third statistical formulation,
we plotted the model estimates vis-à-vis the discrepancy
(error) terms for the phosphate, detritus, phytoplankton, and
zooplankton biomass concentrations (Figure 5). The model
estimates (i.e., the term f(q, xi, y0) in equation (16)) provided
patterns similar to those found from the GLUE analysis; the
model underestimated the observed spring phytoplankton
(�300mg C/L or 6 mg chla/L) and zooplankton (�70 mg C/L)
dynamics. As hypothesized in the previous section, these
results probably stem from the model error structure along
with the inaccuracy of the boundary conditions and are
partly accounted for by the discrepancy error terms (i.e., the
term dij in equation (16)); an indicator of how well the
model is matching reality. For example, the model’s
inability to reproduce the Lake Washington spring plankton
dynamics can explain the higher April–May dphyt and dzoop
values, while the relatively higher dApril,PO4 also reflects the
lower contemporaneous phosphate (PO4m) concentrations.
The posterior conditional variances (wj) of the seasonally
variant discrepancies along with the four temporally
constant error (sj) terms are shown in Figure 6. In the
second statistical formulation, these error terms delineate a
constant zone around the model estimates for the four state
variables (i.e., the term f (q, xi, y0) in equation (12)) that
accounts for the discrepancy between the simulation model
and the natural system, and it is worth noting the relatively
high CV values of the detritus error term (sdet).
[33] The three statistical formulations sampled with the

MCMC scheme were favorably supported by the data and
were accepted on the basis of their posterior predictive p
values (0.103, 0.402 and 0.372 for Models 1, 2 and 3,
respectively). The Bayes factor values B21 = 2.92, B31 =
2.47, B23 = 1.15 did not provide strong evidence in support
of one of the three alternative models but did reflect a higher
performance of the Model 2 [Kass and Raftery, 1995,
p. 777]. The comparison between the observed (monthly
averages over the 10-a period, 1994–2003) and posterior
predictive monthly distributions for the three statistical
formulations illustrates some features of the Bayesian
calibration. The Model 1 provides relatively similar patterns
to those found from the GLUE analysis, although the
sampled prior distributions were less constrained (Figure 3).
For example, regarding the central tendency of the
predictive monthly distributions, we found that the
predicted median values were almost consistently lower
than the observed mean total phosphorus levels and also
underestimated the spring maximum phytoplankton and
zooplankton biomass. As noted before, these results can
partly be attributed to the inaccurate representation of the
boundary conditions (weather, exogenous loading, and
vertical mixing) by simple periodic functions, while the
relatively wide prediction bands for the spring plankton
dynamics also reflect the higher observation error used for
these months. The addition of the discrepancy terms in the
second and third statistical formulation has significantly
improved the results and now the model provides a good fit
to the four state variables; all the observed monthly values
were included within the 95% credible intervals (Figure 7).
To more realistically account for the effects of the physical
conditions on the Lake Washington patterns, we also
employed a stochastic treatment of the forcing functions
of the model (i.e., the trigonometric functions provided the

Table 4. Markov Chain Monte Carlo Posterior Estimates of the

Mean Values and Standard Deviations of the Model Stochastic

Nodes

Parameter

Prior Model 1 Model 2 Model 3

Mean SD Mean SD Mean SD Mean SD

a 1.226 0.256 0.890 0.082 1.179 0.197 1.018 0.108
d 0.172 0.018 0.160 0.014 0.171 0.016 0.175 0.016
pred 54.11 11.54 36.37 1.367 48.76 9.883 46.84 9.016
e 12.16 5.212 13.78 2.169 15.87 4.110 6.709 1.176
k 0.032 0.008 0.021 0.001 0.032 0.007 0.037 0.007
r 0.082 0.028 0.140 0.008 0.124 0.020 0.128 0.016
s 0.038 0.024 0.031 0.004 0.055 0.014 0.078 0.010
a 0.360 0.103 0.537 0.044 0.438 0.076 0.348 0.069
b 0.287 0.090 0.380 0.051 0.377 0.054 0.414 0.055
g 0.287 0.090 0.392 0.065 0.405 0.063 0.437 0.079
l 0.606 0.090 0.638 0.063 0.550 0.061 0.542 0.061
m 6.500 1.540 9.425 0.463 6.574 1.054 6.474 1.306
8 0.163 0.093 0.055 0.004 0.076 0.020 0.057 0.006
y 0.049 0.038 0.039 0.003 0.031 0.007 0.016 0.003
sPO4 2.059 0.600
schla 72.79 29.90
szoop 25.44 8.631
sdet 1.009 1.082
wPO4 1.280 0.466
wchla 92.90 45.48
wzoop 18.80 6.845
wdet 1.636 0.778
PO4(0) 13.57 2.036 13.33 1.452 13.92 2.027 13.16 1.731
PHYT(0) 61.94 9.291 85.23 13.23 68.35 12.68 63.63 12.23
ZOOP(0) 15.97 2.396 16.73 1.437 18.74 3.174 19.97 6.368
DET(0) 15.68 2.352 15.76 1.745 14.58 1.970 17.14 2.691
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mean of a Gaussian distribution with standard deviation
assumed to be 10% of the mean values). The predicted
median spring plankton biomass levels were relatively
closer to the lake seasonal dynamics but, not surprisingly,
were also accompanied by wider prediction bands (not
presented here).

4. Discussion

[34] Elucidation of the equifinality and uncertainty pat-
terns in the multidimensional parameter spaces of mathe-
matical models involves two critical decisions: (1) selection
of the sampling scheme for generating input vectors, which
then are evaluated with regards to the model performance,
and (2) selection of the statistical problem description; that
is, which likelihood function should we use and why? The
former decision addresses the sampling efficiency of the
approach (Random sampling, Latin hypercube, MCMC),
while the latter one entails conceptual dilemmas (general-
ized or purely probabilistic likelihood functions) that can
significantly alter the results. In this study, we examined the
efficiency of two uncertainty analysis strategies with very
distinct features, a generalized likelihood uncertainty esti-
mation (GLUE) approach combined with a simple Monte
Carlo sampling scheme and a Bayesian framework along
with Markov Chain Monte Carlo (MCMC) simulations.
Given the differences in the configuration of the two
strategies, our aim was not to directly compare alternative
model likelihood functions (or sampling schemes), but
rather to illustrate the suite of techniques available for
addressing equifinality and uncertainty in eutrophication
models. Nonetheless, some of the (dis)similarities in the
patterns of the posterior parameter distributions, correlation
structure and predictive uncertainty can have prescriptive
value and/or dictate future directions of the modeling
practice.

4.1. Sampling Schemes

[35] Like other Bayesian-like algorithms, GLUE is typi-
cally combined with Monte Carlo sampling schemes, which
draw samples uniformly and independently from the plau-
sible parameter ranges. As a result, the Monte Carlo
samples can misrepresent (or insufficiently cover) regions
of high model likelihood; especially, when the joint prior
parameter distribution is very wide or the parameters are
highly correlated [Qian et al., 2003]. In contrast with the

large majority of the published GLUE applications, we
attempted to optimize the efficiency of our sampling
strategy by forming informative prior distributions from
existing scientific knowledge, past experience and results
from a preliminary exploratory analysis. With this config-
uration of our Monte Carlo sampling strategy, our intent
was to focus on a subregion of the parameter space where
there was evidence for higher likelihood of realistic
reproduction of the system dynamics. Nonetheless, the
resulting acceptance rate (�1.3%) was still not higher than
those reported in other studies, while the predictive outputs
of the ‘‘behavioral’’ subset were characterized by two
systematic errors; the misreproduction of the timing/
magnitude of the spring plankton dynamics and the
underestimation of the total phosphorus levels throughout
the annual cycle. Given that the degree of updating of the
model input parameters (i.e., reduction in the parameter
uncertainty and shifts in the most likely value) was
relatively limited, it was unclear whether these results were
mainly driven by inefficient sampling of an ill-defined prior
parameter space or by shortcomings of the eutrophication
model structure and forcing functions.
[36] The latter issue was unequivocally clarified by the

use of less constrained prior distributions along with the
implementation of a MCMC sampling scheme; a method
specifically designed to sample directly from the posterior
distribution and to converge to the most probable region
[Gelman et al., 1995]. In particular, the statistical formula-
tion that only considers the observation error (Model 1)
provided relatively similar patterns and verified that the
predictive bias is actually associated with the prior model
specification (e.g., inadequacy of the model structure and/or
inaccuracy of the boundary conditions). Generally, the
MCMC procedure provided a convenient means to
efficiently sample the parameter space of our intermediate
complexity eutrophication model; we found that 30,000
samples with a fairly straightforward algorithm (i.e., general
normal-proposal Metropolis) gave adequate summary
statistics of the posterior parameter distributions and the
predictive model outputs. Although more advanced proce-
dures are available [Gilks et al., 1998], several modeling
studies from a variety of disciplines indicated that even
simpler MCMC schemes can overcome the lack of
analytical expressions for the posterior probability distribu-
tion [Van Oijen et al., 2005]; typical problem with the

Table 5. Correlation Matrix of the Eutrophication Model Parameters Based on MCMC Posterior Samples, Model 2a

a d Pred e k r s a b g l m 8 Y

�0.037 0.059 0.583 0.119 0.176 0.398 �0.003 0.120 0.005 �0.068 �0.021 �0.117 �0.286
a 0.044 �0.097 �0.058 0.046 0.079 0.158 �0.008 0.038 0.051 �0.212 �0.036 0.008
d 0.062 �0.134 0.011 �0.029 �0.155 0.037 �0.010 �0.095 0.302 0.006 �0.024
Pred 0.007 �0.108 �0.351 �0.223 �0.083 �0.055 �0.005 0.013 �0.090 0.018
e 0.017 0.177 0.039 0.125 �0.045 0.016 0.035 �0.093 0.030
k �0.037 �0.045 0.063 �0.010 �0.111 0.087 �0.025 �0.067
s 0.347 0.208 0.096 �0.065 �0.056 0.015 �0.397
a �0.085 �0.032 �0.252 0.302 0.081 0.180
b 0.031 �0.085 0.145 �0.123 0.057
g �0.117 0.027 �0.080 �0.057
l 0.195 0.081 0.228
m �0.247 �0.050
8 0.190
y

aBold numbers correspond to correlation coefficients with absolute value greater than 0.250. MCMC, Markov Chain Monte Carlo.
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nonlinear parameterizations used in eutrophication model-
ing. Moreover, other model inputs (e.g., initial conditions
and boundary conditions) were also treated stochastically
without the need to generate significantly more MCMC
runs, which indicates that as long as the number of
parameters that drive the model outputs does not change
significantly, then the number of runs required to suffi-
ciently approximate the posterior will be roughly the same
[Jansen and Hagenaars, 2004]. In contrast, the simple
Monte Carlo sampling followed in the GLUE presentation

was less efficient; characteristic example was the unin-
formative patterns of the univariate marginal parameter
distributions (see Figure 2), despite the use of 60,000
samples (twice the number of the MCMC samples) from
relatively truncated prior parameter distributions and the
compromises made regarding the way initial conditions and
boundary conditions were handled. Although beyond the
scope of the present paper, an interesting topic for future
research will be the combination of MCMC schemes with
the GLUE methodology [Vrugt et al., 2002].

Figure 5. Time series plots of the model estimates (the term f(q, xi, y0) in equation (16)) and the error
terms (the term dij in equation (16)), representing the discrepancy between the model and the natural
system, for the phosphate, detritus, phytoplankton, and zooplankton biomass concentrations (Model 3).
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4.2. Likelihood Functions

[37] GLUE is a conceptually straightforward methodology
in which a broad range of likelihood measures can be used
to define the model error structure and to delineate plausible
regions of parameter values [Beven, 2001]. Generally, it is
believed that the GLUE methodology is perhaps concep-
tually better suited to highly dimensional input spaces with
significant equifinality problems, because model response
surfaces are more complex than smooth, single-peaked
distributions (see discussion in the paper by Kennedy and
O’Hagan [2001]). From a statistical inference viewpoint,
however, the lack of formal representation of the model
error has been criticized for providing biased parameter
estimates when not taking into account the correct model

error structure and for resulting in likelihoods that do not
correspond to the true probabilities of predicting an output
given the model [Thiemann et al., 2001]. Some of the
effects of the nonprobabilistic likelihood functions were
also manifested in our study. For example, the likelihood
function used for the presented results (equation (1))
depends heavily on an expectation that good model
solutions do not exist; thus, if a good parameter set is
actually found then the assigned likelihood weight can be
very high relative to all other sets. This effect can already be
seen in the best simulations of the scatter plots (Figure 2).
Furthermore, the use of alternative likelihood measures (i.e.,
the relative error and the modeling efficiency) resulted in a
60–80% overlap among the three subsets of behavioral runs
derived from the different measures of fit, despite the

Figure 6. Posterior distributions of the s (seasonally invariant discrepancy between the simulation
model and the natural system) and w (conditional variance of the seasonally variant discrepancy) terms of
the second and third statistical formulations, respectively.
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relatively similar posterior parameter statistics and pre-
dictive uncertainty bounds.
[38] On the other hand, the appropriateness of the formal

(e.g., Gaussian) likelihoods for complex overparameterized
mechanistic models frequently used in eutrophication re-
search has not been explored yet in the modeling literature.
In this study, we started with a statistical formulation that
assumed a ‘‘perfect’’ model structure and additive (or
multiplicative) measurement errors. Combined with a
MCMC scheme, this approach generates a series of model
realizations each of which is evaluated, assuming that the
model is correct [Beven, 2006]. The stretching of the model
likelihood surface implied by these assumptions should lead
to overconditioning of the parameter estimates owing to an
overestimation of the information content of the observa-
tions/residuals given the potential for model error. The latter
assertion can probably explain the narrow-shaped posterior
parameter distributions derived from the first statistical
formulation (Figure 4), which then may lead to nonbeha-
vioral simulations when used under different conditions.
[39] The introduction of two models that explicitly

acknowledge the lack of perfect simulators of natural
system dynamics is a conceptual advancement over the first
statistical formulation. In this study, we found that the
inclusion of error terms that explicitly account for the
(variant or invariant with the input conditions) discrepancy
between mathematical model and environmental system
improved the model predictions and all the observed
monthly values were included within the 95% credible
intervals. However, it should be emphasized that despite

the promising results, this modeling framework will possibly
require substantial modifications to accommodate highly
multivariate outputs. Although, in a follow up study, we
found that the inclusion of several more state variables
does not have an effect on the consistency of the results
[Arhonditsis et al., 2007b], the consideration of multiple
error sources often entails overparameterized formulations,
for example, the third model in which 12 parameters per
state variable are used to describe the seasonal variability in
the error variance. In this direction, several interesting ideas
have been proposed in the literature, such as dimension
reduction strategies, adaptive designs to overcome limited
number of simulation runs, and replacement of the
simulators with statistical models that encompass key
features of the modeled system [Craig et al., 2001; Wikle
et al., 2001; Goldstein and Rougier, 2004; Higdon et al.,
2004]. In the modeling practice, our experience is that only
a subset of the input parameters is influential on the model
outputs [Arhonditsis and Brett, 2005a], and therefore an
effective calibration does not necessarily require statistical
formulations framed in a hyperdimensional context
[Kennedy and O’Hagan, 2001]. An alternative strategy
will resemble the modeling framework used in this study;
intermediate complexity models that provide realistic plat-
forms for reproducing real world dynamics while conform-
ing to the parsimony principle.
[40] In conclusion, we examined the efficiency of two

methodological frameworks, a generalized likelihood un-
certainty estimation (GLUE) approach combined with a
simple Monte Carlo sampling scheme and a Bayesian

Figure 7. Comparison between the observed and posterior predictive monthly distributions for
phosphate, total phosphorus, chlorophyll a, and zooplankton biomass based on 5000 Markov Chain
Monte Carlo posterior samples from Model 2 (black line) and Model 3 (grey line). Single dots and the
respective black lines correspond to the monthly averages and standard deviations, reflecting the
analytical error and the interannual variability in the lake over the 10-a period, 1994–2003.
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methodological framework along with Markov Chain Monte
Carlo (MCMC) simulations, to quantify the information the
data contain about model inputs, to offer insights into the
covariance structure among parameter estimates, and to
obtain predictions along with uncertainty bounds for mod-
eled output variables. GLUE has been criticized for its
statistical correctness owing to the use of a variety of
goodness-of-fit measures, but the same relaxation of the
likelihood functions usedmake this methodology appropriate
for a wide range of model complexity. On the other hand, the
formal probabilistic models provide sound statistical infer-
ence, but the stretching of the model response surfaces by
inappropriate likelihoods can provide misleading results and
undermine their credibility for predicting future conditions.
The inclusion of multiple error sources (e.g., measurement
error, parametric error, and model structure imperfection)
into the probabilistic likelihoods provides a promising frame-
work for assessing predictive uncertainty, and future research
should involve the examination of its suitability for more
complex models extensively used in eutrophication manage-
ment. Our study also highlights the efficiency of MCMC
sampling schemes, specifically designed to sample directly
from the posterior distribution, to fully employ Bayesian
inference techniques which then can be easily integrated
with, at least, intermediate complexity mechanistic models
(�10 state variables). Given the substantial model forecast
uncertainty in most water quality models, the arbitrary
selection of higher, and often unattainable, threshold values
for environmental variables (quality goals/standards), risky
model-based management decisions and unanticipated system
responses are the norm in current management practice. The
development of novel methods that can accommodate rig-
orous and complete error analysis is an imperative challenge
for the future of environmental modeling [Pappenberger and
Beven, 2006; Arhonditsis et al., 2006].

Appendix A: Specific Functional Forms of the
Eutrophication Model

[41] The specific functional forms of the eutrophication
model.

dPO4

dt
¼ � PO4

eþ PO4

as tð ÞPHYT P=Cphyto

þ
bl PHYT � P=Cphyto

� �2þwDET2
� �

m2 þ PHYT � P=Cphyto

� �2 þ wDET 2
s tzð ÞZOOP P=Czoop

ðA1Þ

þgds tzð Þ
ZOOP3

pred2 þ ZOOP2
P=Czoop þ fs tð ÞDET

þ k 1� s tð Þ
� �

PO4 hypoð Þ � PO4

� �
þ PO4exog ðA2Þ

�outflows � PO4 ðA3Þ

s tð Þ ¼
1� e cos 2pt

365

� �� �
1þ e

s tzð Þ ¼
1� e cos 2pt

365
� 0:5

� �� �
1þ e

ðA4Þ

PO4 hypoð Þ ¼ 11þ 3 sin 2p t=365þ 0:3ð Þð Þ

PO4exog ¼ 0:047þ 0:02 sin 2p t=365þ 0:12ð Þð Þ

outflows ¼ 0:0028þ 0:0014 sin 2p t=365þ 0:12ð Þð Þ

ðA5Þ

dPHYT

dt
¼ PO4

eþ PO4

as tð ÞPHYT � rs tð ÞPHYT

�
l PHYT � P=Cphyto

� �2
m2 þ PHYT � P=Cphyto

� �2 þ wDET 2
s tzð ÞZOOP ðA6Þ

�sPHYT � outflows � PHYT ðA7Þ

dZOOP

dt
¼

al PHYT � P=Cphyto

� �2þwDET 2
� �

m2 þ PHYT � P=Cphyto

� �2 þ wDET 2
s tzð ÞZOOP

� ds tzð Þ
ZOOP3

pred2 þ ZOOP2
� outflows � ZOOP ðA8Þ

dDET

dt
¼ rs tð ÞPHYT P=Cphyto

þ
1� a� bð Þ PHYT � P=Cphyto

� �2� aþ bð ÞwDET 2
h i

l

m2 þ PHYT � P=Cphyto

� �2 þ wDET2

� s tzð ÞZOOP P=Czoop ðA9Þ

�8s tð ÞDET � yDET þ DETexog � outflows � DET ðA10Þ

DETexog ¼ 0:2þ 0:12 sin 2p t=365þ 0:16ð Þð Þ ðA11Þ
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