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Abstract

Aquatic biogeochemical models have been an indispensable tool for addressing pressing environmental issues, e.g.,
understanding oceanic response to climate change, elucidation of the interplay between plankton dynamics and atmospheric CO,
levels, and examination of alternative management schemes for eutrophication control. Their ability to form the scientific basis for
environmental management decisions can be undermined by the underlying structural and parametric uncertainty. In this study, we
outline how we can attain realistic predictive links between management actions and ecosystem response through a probabilistic
framework that accommodates rigorous uncertainty analysis of a variety of error sources, i.e., measurement error, parameter
uncertainty, discrepancy between model and natural system. Because model uncertainty analysis essentially aims to quantify the
joint probability distribution of model parameters and to make inference about this distribution, we believe that the iterative nature
of Bayes’ Theorem is a logical means to incorporate existing knowledge and update the joint distribution as new information
becomes available. The statistical methodology begins with the characterization of parameter uncertainty in the form of probability
distributions, then water quality data are used to update the distributions, and yield posterior parameter estimates along with
predictive uncertainty bounds. Our illustration is based on a six state variable (nitrate, ammonium, dissolved organic nitrogen,
phytoplankton, zooplankton, and bacteria) ecological model developed for gaining insight into the mechanisms that drive plankton
dynamics in a coastal embayment; the Gulf of Gera, Island of Lesvos, Greece. The lack of analytical expressions for the posterior
parameter distributions was overcome using Markov chain Monte Carlo simulations; a convenient way to obtain representative
samples of parameter values. The Bayesian calibration resulted in realistic reproduction of the key temporal patterns of the system,
offered insights into the degree of information the data contain about model inputs, and also allowed the quantification of the
dependence structure among the parameter estimates. Finally, our study uses two synthetic datasets to examine the ability of the
updated model to provide estimates of predictive uncertainty for water quality variables of environmental management interest.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A recent examination of the citation patterns of 153
aquatic biogeochemical modeling studies provided over-
whelming evidence that modeling papers are cited mainly
based on the questions being asked or the ecosystem being
modeled (Arhonditsis et al., 2006). Models that aim to
elucidate oceanic patterns are more highly cited than
models developed for addressing local water quality
management issues regardless of their methodological
features and technical value. Using the citation frequency
as a criterion for the impact of an aquatic biogeochemical
modeling study, the same analysis identified several
influential studies that have received an impressively
high number of citations (e.g., Fasham et al., 1990; Fasham
et al., 1993; Doney et al., 1996; Six and Maier-Reimer,
1996). Viewed from this perspective, the field of aquatic
biogeochemical modeling follows the usual trajectory that
most of the fields of knowledge follow, i.e., there are some
breakthrough ideas that inspired a great deal of the research
that has occurred over the past 15 years, while the rest of the
studies represent incremental learning without the capacity
to truly stimulate future research. However, this point does
invite one to ask what it would take to prime the pump for
the new breakthroughs to come along? Recognizing the
role of mathematical modeling as a key research tool for
understanding aquatic ecosystem dynamics, several re-
view/synthesis papers recently debated the outstanding
challenges and future directions of the field. Some
researchers advocated the establishment of a systematic
methodological protocol along with globally accepted
performance criteria (Arhonditsis and Brett, 2004), others
highlighted the importance of effectively coupling physical
and biogeochemical models (Fennel and Neumann, 2001;
Franks, 2002), while others identified the pressing
modeling issues, technical/conceptual advances and pin-
pointed the areas where extra complexity should be
incorporated (Doney, 1999; Anderson, 2005).

The latter topic, i.e., the demand for increasing model
complexity, has been a controversial issue in the aquatic
biogeochemical modeling practice, where the inevitable
trade-off among complexity, generality and accuracy
entails compromises that reflect different philosophical
viewpoints and research priorities (Levins, 1966; Cost-
anza and Sklar, 1985; Anderson, 2005). Recently, there is
a trend towards increasing the articulation of aquatic
ecosystem models with regards to the representation of
specific plankton functional types (e.g., coccolithophor-
ids, diatoms, nitrogen fixers) more closely linked to
biogeochemical cycling in aquatic systems (Moore et al.,
2002; Gregg et al., 2003), but the rate of this increase has
also been argued in the aquatic biogeochemical modeling

literature (Le Quere, 2006; Flynn, 2006; Anderson, 2006).
For example, there are views that this increase of
complexity needs to be done in a gradual manner along
with a “healthy dose of scepticism regarding model
outcomes” (Anderson, 2005), whereas others claim that
our theoretical understanding of ecosystem functioning is
already far behind and the building rate of new
parameterizations should be faster (Le Quere, 2006).
Another interesting angle of the model complexity issue
was illuminated by Flynn (2006) who pointed out that the
problem is far more complex than simply the lack of
sufficient data to support the more detailed simulations.
Namely, the physiological basis of plankton dynamics
involves an inconceivably wide array of direct and
synergistic effects (trophic functionality, allelopathy,
omnivory) that can never be effectively depicted in the
models (Flynn, 2006). The same study even questioned
our ability to simulate the variability of a single clone of a
plankton species under “real world” conditions; thus the
most defensible (and convenient) strategy is the descrip-
tion of general patterns that the aggregated models (e.g.,
nutrient—phytoplankton—zooplankton—detritus) can offer.
While not all ecosystem modelers accept such pessimistic
views, there is no doubt that the ubiquitous natural
complexity imposes insurmountable barriers for attaining
parsimonious ecological models (Anderson, 2006).
Implicit in the debate of increasing complexity is the
importance of tightly connecting the model development
process with uncertainty analysis methods that can
accommodate rigorous error analysis (Pappenberger and
Beven, 2006). The adoption of a reductionistic description
of natural system dynamics that considers higher number
of biotic subunits along with the underlying interconnec-
tions will inevitably accentuate the disparity between
what ideally we want to learn and what can realistically be
observed (Beck, 1987). As a result, our ability to set
quantitative (or even qualitative) constraints as to what is
realistic/behavioural simulation of an ecological structure
will be decreased, and the resulting underidentified
models will have limited predictive power and learning
capacity (Flynn, 2006). The explicit recognition of the
uncertainty that underlies both model structures and data
also implies that the search for a single set of parameter
values (global optimum) that reproduces real world
patterns is not a reasonable expectation (Reichert and
Omlin, 1997). Rather, the only legitimate approach is the
assessment of the likelihood of different input factors
(model structures/parameter sets) being acceptable simu-
lators of the natural system, the so-called “model
equifinality” (Beven and Binley, 1992). In this context,
novel error analysis techniques are an essential advance-
ment for quantifying the uncertainty in model equations



10 G.B. Arhonditsis et al. / Journal of Marine Systems 73 (2008) 8-30

(structural uncertainty) and the effects of input uncertain-
ties (model parameters, initial conditions, forcing func-
tions) on model outputs. However, despite several
attempts in the literature to address structural and
parametric errors (Hornberger and Spear, 1981; Dilks et
al., 1992; Omlin and Reichert, 1999; Brun et al., 2001),
uncertainty analysis is not considered an indispensable
step in the model development process; aquatic mecha-
nistic modellers are still reluctant to assess the reliability
of the critical planning information generated by the
models, and the methodological consistency (whether or
not the model has been subject to thorough uncertainty
analysis and/or predictive/structural validation) of the
original modeling papers is not considered a significant
criterion for their citation (Arhonditsis and Brett, 2004;
Arhonditsis et al., 2006).

The main objective of this study is to introduce a
methodological framework that integrates aquatic
biogeochemical modeling with Bayesian analysis. Our
aim is to show how Bayesian calibration can be used to
obtain insight into the degree of information the data
contain about model inputs, refine our knowledge of
model input parameters, and obtain predictions along
with uncertainty bounds for modeled output variables.
Because model uncertainty analysis basically aims to
quantify the joint probability distribution of model
inputs (parameters, forcing functions, and initial condi-
tions) and to make inference about this distribution, we
suggest that the iterative nature of Bayes’ Theorem is a
convenient means to incorporate existing knowledge
and update the joint distribution as new information

becomes available. Our illustration is based on a six
state variable (nitrate, ammonium, dissolved organic
nitrogen, phytoplankton, zooplankton, and bacteria)
model developed for gaining insight into the ecological
processes that drive plankton dynamics in a coastal
embayment; the Gulf of Gera, Island of Lesvos, Greece.
Our study also acknowledges the lack of perfect
simulators of natural system dynamics and introduces
two statistical formulations that can explicitly account
for the discrepancy between mathematical models and
environmental systems. Finally, we use two synthetic
datasets to examine the ability of the updated model to
provide estimates of predictive uncertainty for water
quality variables of environmental management interest.

2. Methods
2.1. Case study and model description

The case study for the examination of the Bayesian
calibration framework was the Gulf of Gera, Island of
Lesvos, Greece; a shallow semi-enclosed marine
ecosystem that receives significant point and non-point
nutrient loads from the surrounding watershed (Arhon-
ditsis et al., 2002a). Based on a trophic classification
scheme proposed for the Aegean Sea (Ignatiades et al.,
1992), the Gulf of Gera can be characterized as
mesotrophic with plankton dynamics driven by two
main factors, i.e., the nitrogen availability and the rate of
water renewal in the embayment (Arhonditsis et al.,
2003a). Both field observations and simulation results

Fig. 1. The eutrophication model used for reproducing the coastal embayment dynamics. Arrows indicate flows of matter through the system. System
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equations and parameter definitions are provided in Tables 1 and 2.
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have provided overwhelming evidence of a bimodal
circulation pattern that closely determines the interplay
between the abiotic environment and the biotic
components of the system (Arhonditsis et al., 2000).
Specifically, during the colder period of the year, the
ambient temperature and the runoff inflows increase the
water density in the shallow embayment and constrain
the intrusion of the oligotrophic water masses from the
Aegean Sea. The isolation phase of the system usually
coincides with the period when the external loading is
significantly increased and non-point sources account
for about 40—60% of the total nutrient stock (Arhondit-
sis et al., 2002b). Given the latitude and local climatic
conditions, the incoming solar radiation can result in an
algal biomass increase up to 2—3 pg chl /L, even in the
middle of winter. When physical conditions (warm
temperature, spring tides, and northern winds) are not
restrictive, the water renewal rates can be less than ten
days and the significant exchanges with the open sea can
flush the excessive nutrient loads out of the system.
Under these conditions, the embayment is nitrogen
limited and the phytoplankton biomass is very low (0.5—
1 pg chl a/L) (Arhonditsis et al., 2002b).

The basic conceptual design of our model builds upon
the results of earlier local modeling studies and considers
the basic ecological processes underlying plankton
dynamics in the coastal embayment (Arhonditsis et al.,
2000, 2002b). For the sake of simplicity, the spatially
explicit (2-D) character of the original model was reduced
to a zero-dimensional (single compartment) model that
considers the interactions between the six state variables:
nitrate (NO3), ammonium (NHy), phytoplankton (PHYT),
zooplankton (ZOOP), bacteria (BACT) and dissolved
organic nitrogen (DON) (Fig. 1). To accommodate the
spatial (horizontal) variability observed in the coastal
embayment and thus minimize the effects of the
simplified model segmentation, we accordingly increased
the measurement/observation error of the data used for
model calibration (see Bayesian configuration of the
model). The mathematical description of the ecological
model and the definition of the model parameters can be
found in Tables 1 and 2, respectively. The simulation
model was solved numerically using the fourth-order
Runge—Kutta method with a time step of one day.

2.2. Phytoplankton

The equation for algal biomass considers phyto-
plankton production and losses due to mortality and
herbivorous zooplankton grazing. Our model explicitly
considers the role of new and regenerated production
using separate formulations for nitrate and ammonium

Table 1
The specific functional forms of the eutrophication model
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Table 2

Parameter definitions of the eutrophication model

Parameter Description Units

¥ Fraction of phytoplankton
production exudated as DON

mpy* Phytoplankton mortality rate day !

my* Bacterial mortality rate (ng C/L) ! -day !

m¥ Zooplankton mortality rate day !

NH* Half saturation constant for ng N/L
nitrate phytoplankton uptake

AH* Half saturation constant for ng N/L
ammonium phytoplankton uptake

Hmaxphyy  Maximum growth rate for dayf1
phytoplankton

as,, Zooplankton assimilation 0.70
efficiency for phytoplankton

asy, Zooplankton assimilation 0.70
efficiency for bacteria

DH* Half saturation constant for ug N/L
bacterial uptake

¥ Half saturation light intensity MJ/m*-day”

kpacit Background light extinction m!
coefticient

kena® Light extinction coefficient L-(ug chla'm) !
due to chlorophyll a

U Strength of the ammonium (ng N/L)™!
inhibition for nitrate uptake

v Ratio of bacterial ammonium to  0.75
DON uptake

€ Shape parameter for the 0.50
trigonometric functions o)
and o

Hmaxoac®  Maximum bacterial uptake rate  day ™'

Gmax” Zooplankton maximum day ™!
grazing rate

K7 Half-saturation constant for ug C/L
zooplankton grazing

Kg* Half-saturation constant for ng C/L
DON mineralization

Kminer” Maximum mineralization rate dayfl

N/Cphyto ~ Nitrogen to carbon ratio for 0.179 pg N (ug o'
phytoplankton

N/Chact Nitrogen to carbon ratio 0.222 pg N (ng €)'
for bacteria

N/C,o0p ~ Nitrogen to carbon ratio for 0.167 pg N (ug €)'
zooplankton

ap(DON) Fraction of phytoplankton 0.30
mortality becoming DON

Ap(NH4) Fraction of phytoplankton 0.30
mortality becoming ammonium

AnDON) Fraction of bacterial mortality 0.30
becoming DON

Ap(NH4) Fraction of bacterial mortality 0.30
becoming ammonium

AZDON) Fraction of zooplankton 0.30
mortality becoming DON

Ay NH4) Fraction of zooplankton 0.30

mortality becoming ammonium

The asterisks indicate parameters used during the Bayesian calibration

of the model.

phytoplankton uptake (Eppley—Peterson f-ratio para-
digm; Eppley and Peterson, 1979). Amongst the variety
of light saturation curves (see Jassby and Platt, 1976), we
used Steele’s equation along with an extinction coeffi-
cient determined as the sum of the background light
attenuation and attenuation due to chlorophyll a (self-
shading effects). The effects of the seasonal temperature
cycle on phytoplankton are described by a trigonometric
function .

2.3. Zooplankton

Zooplankton grazing and losses due to natural
mortality/consumption by higher predators are the main
two terms in the zooplankton biomass equation. Zoo-
plankton has two alternative food sources (phytoplankton
and bacteria) grazed with preference that changes
dynamically as a function of their relative proportion
(Fasham et al., 1990). Zooplankton grazing was modeled
using a Michaelis—Menten equation and the fraction
assimilated fuels growth. In the absence of information to
support more complex forms, we selected a linear closure
term that represents the effects of a seasonally invariant
predator biomass (see Edwards and Yool, 2000). The
effects of temperature on zooplankton metabolic activities
were modeled by a trigonometric function similar to the
one used for phytoplankton. We also considered a lagged
zooplankton growth response (=30 days) during the
spring warming period represented by a phase shift of
—0.5 radians. To more effectively guide the Bayesian
calibration of the model, we overcame the lack of
consistent zooplankton biomass data by creating a semi-
synthetic dataset, i.e., based on earlier simulations and
existing observations from the system, the zooplankton
biomass values were considered half of the contempora-
neous phytoplankton biomass along with random terms
sampled from normal distributions with zero mean values
and standard deviations equal to 15% of the respective
(generated) monthly values.

2.4. Bacteria

Bacterial growth depends on dissolved organic
nitrogen and ammonium availability. Our parameteriza-
tion is conceptually similar to the one introduced by
Fasham et al. (1990), and considers a total bacterial
nitrogenous substrate S to ensure balanced growth with
a constant ratio of bacterial ammonium to DON uptake.
Loss of bacterial biomass due mortality/excretion has
been modeled using a quadratic function. The latter
form corresponds to a loss rate dependent on the bac-
terial biomass itself and, aside from the metabolic
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losses, may be interpreted as representing bacterivory
by other consumers (e.g., heterotrophic nanoflagellates,
mixotrophic flagellates, ciliates) whose biomass is pro-
portional to that of bacteria. Zooplankton grazing is
another loss term in the bacterial biomass equation.

2.5. Ammonium and nitrate

Both ammonium and nitrate equations consider
phytoplankton uptake by taking into account ammonium
inhibition of nitrate uptake (Wrobleski, 1977). The former
equation also considers the proportion of zooplankton and
bacterial excretion and mortality/predation that is returned
back to the system as ammonium. Ammonium is fuelled
by the bacteria-mediated DON mineralization, but is also
utilized by bacteria as a source of nitrogen for cell protein
synthesis (Fasham et al., 1990).

2.6. Dissolved organic nitrogen

A fraction of the primary production is exuded by
phytoplankton as DON. The model also considers the
contribution of phytoplankton, bacterial and zooplank-
ton mortality to the organic nitrogen pool. Bacteria also
uptake DON to obtain their carbon (i.e., DON is used as

3. Bayesian configuration of the model

3.1. Statistical formulations

a proxy for DOC) and seasonally forced mineralization
processes transform DON to ammonium.

2.7. Boundary conditions

Ammonium, nitrate and dissolved organic nitrogen
loadings from the watershed were based on predictions
from two different models, i.e., runoff curve number
(RCN) equation and mass response functions (MRFs)
appropriate for low/intermediate and high intensity
rainfall events, respectively (Arhonditsis et al., 2002a).
To more realistically account for the effects of the
external loading conditions on the coastal embayment
patterns, we also employed a stochastic treatment of the
forcing functions of the model; i.e., the predicted nitro-
gen loads provided the mean of a Gaussian distribution
with standard deviation assumed to be equal to the
product of the mean relative error with the respective
model predictions. Finally, a term that corresponds to the
seasonally varying exchanges with the open sea was also
included in the six differential equations, and the sea-
sonal variation of the six state variables in the Aegean
Sea (denoted with the subscript (O) in Table 1) was
represented by trigonometric functions fitted to mea-
sured data during the study period.

Our Bayesian framework comprises three statistical formulations that can be distinguished by the following
assumptions: i) the ecological model is a perfect simulator of the coastal embayment [Model 1], ii) the ecological
model is an imperfect simulator of the coastal embayment and the model discrepancy is invariant with the input
conditions (i.e., the difference between model and natural system dynamics is constant over the annual cycle for each
state variable) [Model 2], and iii) the ecological model is an imperfect simulator of the coastal embayment and the
model discrepancy varies with the input conditions (i.e., there is seasonally varying discrepancy between model and
the environmental system for each state variable) [Model 3]. The three probabilistic approaches aim to combine field
data and model outputs to update the uncertainty of model parameters, determine their covariance structure, and then
use the calibrated model to give predictions (along with uncertainty bounds) of the plankton dynamics in the coastal
embayment.

1) Model 1: The first statistical formulation is based on the assumption that our model perfectly describes the
dynamics of the environmental system and the observations y for the six state variables are given by:

vi = f(0,xi,y0, Nexog) + &i,i = 1,2,3,...,n (1)

where 1(0, x;, vo, Nexog) denotes the ecological model, x; is a vector of time dependent control variables (e.g.,
boundary conditions, forcing functions) describing the environmental conditions, the vector 6 is a time independent
set of the calibration model parameters (i.e., the 17 parameters in Table 2), y, corresponds to the concentrations of the
six state-variables at the initial time point #,, Ngxog represents the exogenous nitrogen loadings (NOszgxog.
NH4exog, DONgxog) into the system, and ¢; denotes the observation (measurement) error that is usually assumed
to be independent and identically distributed following a Gaussian distribution. The observed spatiotemporal
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patterns in the Gulf of Gera provide evidence of a multiplicative measurement error (Arhonditsis et al., 2000), and
thus we assumed the standard deviation to be proportional to the average monthly values for each state variable (Van
Oijen et al., 2005). Specifically, we chose the monthly standard deviations to be 15% of the mean monthly values; a
fraction that comprises both analytical error and spatial variability in the coastal embayment.

Based on the previous assumptions, the likelihood function that evaluates how well the simulation model is able to
reproduce the observed data y at each value of 0, y,, Ngxog 1S given by:

n - 1 -
PO (03,30, Nexo)) = [T (2m) 125" exp| =2 Iy — (6,0, Nexoo)] 27 by —£(0.,30, Nexoo)

J=1

(2)
where m and n correspond to the number of state variables (7= 6) and the number of observations in time used to
calibrate the model (n=17 average monthly values), respectively; y;=[y...., y,,j]T and f(0, x, yo)=[f{(0, x1, yo,
NexoG)s - S0, X, Yo, NEXOG)]T correspond to the vectors of the field observations and model predictions for the
state variable j; and 2;=1,(0.1 5)2'ij ;- In the context of the Bayesian statistical inference, the posterior density of
the parameters 6, the initial conditions of the six state variables y, and the exogenous nitrogen loading Ngxog given
the observed data y is defined as:

P (0,x, 0, Nexoc) )P (0)p(yo)p(Nexoc) 3)
/p()’|f(07x7J’07NEXOG))p(Q)p()’O)P(NEXOG)d‘gdyOdNEXOG

ap(y|f(0,x,0, Nexoa))p(0)p(vo)p(Nexoa)

where p(0) is the prior density of the model parameters 6, p(y) is the prior density of the initial conditions of the six
state variables y,, and p(Ngxog) is the prior density of the exogenous nitrogen loading Ngxog. The formulation of
the prior parameter distributions was based on the identification of the minimum and maximum values for each
parameter from the pertinent literature (Fasham et al., 1990; Jorgensen et al., 1991; Arhonditsis et al., 2000, 2002b),
and then we assigned lognormal distributions that 95% of their values were lying within the identified ranges
(Steinberg et al., 1997) [For the sake of simplicity of this illustration, we used lognormal distributions for all the
parameters but it should be noted that a whole suite of probability distributions (e.g., beta, triangular, uniform) can be
considered to reflect different prior information (Hong et al., 2005)]. In a similar way to the measurement errors, the
characterization of the prior density p(y,) was based on the assumption of a Gaussian distribution with a mean value
derived from the observed average in the system during the first sampling date (June 11, 1996) and standard
deviation that was 15% of the mean value for each state variable j; a fraction that comprises both analytical error, and
spatial variability among the six sampling stations in the embayment. The prior density p(Ngxog) of the exogenous
nitrogen loading was also based on probabilistic (Gaussian) treatment of model-based estimates using standard
deviations that reflected the watershed model error (Arhonditsis et al., 2002a).Thus, the resulting posterior
distribution for 6, y, and Ngxog is given by:

(0,0, Nexogly) =

m “n _ 1 _
P(H,J/mNEXOGb/)Of]l:_[l (2m) " 2] l/zexp[—ELVj — £(0,x,30, Nexoa)]" Z5' ) _ﬁ(97x7y07NEXOG)]:|
I
><(27r)7l/2129\71/2k1_[1 Olexp [—%[log@ — 00)" 25 [logh — 00]}
=1 Ok

m _ 1 _
x (2m) "1 250" Pexp [— 7 Vo — you]" Z59' [0 — yom]}

« I1 (27) 7|5y,

T
k=1 E ]

-1
2y [Nexocr — NEXOGmk]]
EXOG/

(4)
where / and p are the number of the model parameters 6 used for the model calibration (/=17) and number of days of
the simulation period (p=488); 6, denotes the vector of the mean values of 6 (logarithmic scale); Xy=1;- ob ogand
o0=[00¢1..... 0] corresponds to the vector of the shape parameters of the / lognormal distributions (standard
deviation of log 0); the vector y,, = [V11....16]” indicates the average values of the six state variables observed in the
system during the first sampling date; 2,,=1,," (0.1 5)2 Yo Yoms 0 (=3) corresponds to the three exogenous nitrogen
loading forms (NO3, NH4, DON) with model-based mean values NEXOGmk = [NEXOGmlka‘ e NEXOGmpk]T and

_ 1
oot | exp [— 3 [NexoGk — NexoGmk
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covariance matrix Xxgxocr =1, (REp)2 * NExoGmi Nexocmi and RE), represents the mean relative error of the daily
exogenous nitrogen loading estimates from the watershed models (Arhonditsis et al., 2002a).

il) Model 2: An advancement of the previous statistical formulation explicitly considers that the model imperfectly
represents the dynamics of the coastal embayment. In this case, an observation i for the state variables j, y;;, can
be described as:

Vij :f(H,xi,yo,NEXOG) —|—(Sj —I—Sij,i =1,2,3,...n andj =1,...,m (5)

where the stochastic term ¢; accounts for the discrepancy between the model f{0, x, vy, Nexog) and the natural
system, which is assumed to be invariant with the input conditions x (i.e., the difference between model and
coastal embayment dynamics was assumed to be constant over the annual cycle for each state variable). With this
assumption, the likelihood function will be:

m

“n - 1 -
POLF(0.5.30, Nexoa)) = I (2m) 12| exp | =3 by £ (0,x,70, Nexoo)I" 25 3y = £(0..30, Nexo)]

(6)

Sy =Zy+ Iy (7)

where X5;=1," ajz corresponds to the additional stochastic term of Model 2; and the prior densities p(ajz) were
based on the conjugate inverse-gamma distribution (Gelman et al., 1995). Thus, the resulting posterior
distribution for 6, y,, Ngxog and o’ is:

m n _ 1 B
(0,0, Nexog, 0°| y) O(jl;ll (2m) /2|2Tj| Uzexp[—gb’j _ﬁ(eaxvYOaNEXOG)]TZTj][yj _ﬁ(e’xa)’mNEXOG)]]

U 1
><(27r)_1/2|29|_1/2k1;[1 g o [— 5 llogh 00)" =, [logf) — 90]]

“m _ 1 _
X (27[) /2‘2y0| I/Zexp |:_ E [yO - yOm]TZy()1 [)/o _yOm]]

0 B B 1 B
X /}31 (2m) 72 12N | 2exp [ 3 [Nexock — Nexocmk] ' 2 Nglxock [NexoGr — NEXOGmk]:|
mo B oG B;
I J ; b _
R T Py (8)

where a; (=0.01) and ; (=0.01) correspond to the shape and scale parameters of the m non-informative inverse-
gamma distributions used in this analysis.

iil) Model 3: The third statistical formulation also explicitly recognizes that the model imperfectly represents the
dynamics of the environmental system but now the corresponding stochastic term varies with the input
conditions x. In this case, an observation i for the state variables j, y;;, can be described as:

Vi =f(0,x:,50,Nexog) + 0 + &5, i=1,2,3,..nandj=1,...,m. 9)

The modeling for all the previous terms remains unchanged. We also specify a Gaussian first order random walk
model for the discrepancy term J; to reflect that these error terms are correlated (Shaddick and Wakefield, 2002).
Specifically, the vector ;= {dy;,...,017;}, /=NHy, NO3, PHYT, BACT, ZOOP, DON can be expressed as:

N(5,~+1j,a)]2) fori=1,

2
(85155, 02) ~ N(M “
ij|0—ij, @; )

7 7) fori=2,..,16 (10)
N(éi,lj,a)}) fori=17,
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where 6_; denotes all elements of 6; except the Jy, cojz is the conditional variance and the prior densities p(wjz)
were based on conjugate inverse-gamma (0.01, 0.01) distributions (Gelman et al., 1995).

3.2. Markov chain Monte Carlo

Sequence of realizations from the posterior distribution of the models was obtained using Markov chain Monte
Carlo (MCMC) simulations (Gilks et al., 1998). MCMC is a general methodology that has several advantages
particularly useful for environmental modeling, i.c., it can efficiently sample multi-dimensional parameter spaces and
can easily handle multivariate outputs as well as large numbers of nuisance parameters (Gelman et al., 1995). In this
study, we used the general normal-proposal Metropolis algorithm as implemented in the WinBUGS software
(Spiegelhalter et al., 2003); this algorithm is based on a symmetric normal proposal distribution, whose standard
deviation is adjusted over the first 4000 iterations such as the acceptance rate ranges between 20% and 40%. We also
used an ordered over-relaxation, which generates multiple samples per iteration and then selects one that is negatively
correlated with the current value of each stochastic node (Neal, 1998). The latter option resulted in an increased time
per iteration but reduced within-chain correlations. The posterior simulations were based on three parallel chains with
starting points: (i) a vector that consists of the mean values of the prior parameter distributions, (ii) a vector fairly
similar to the one obtained from an earlier model calibration (Arhonditsis et al., 2000), and (iii) a vector that resulted
from the optimization of the model with the Fletcher—Reeves conjugate-gradient method (Chapra and Canale, 1998).
We used 30,000 iterations and convergence was assessed with the modified Gelman—Rubin convergence statistic
(Brooks and Gelman, 1998). The accuracy of the posterior estimates was inspected by assuring that the Monte Carlo
error (an estimate of the difference between the mean of the sampled values and the true posterior mean; see
Spiegelhalter et al., 2003) for all the parameters was less than 5% of the sample standard deviation. Our framework was
implemented in the WinBUGS differential Interface (WBDift); an interface that allows numerical solution of systems
of ordinary differential equations within the WinBUGS software.

3.3. Model updating

We also used the MCMC estimates of the mean and standard deviation parameter values along with the covariance
structure to update the model (Gelman et al., 1995). Under the assumption of a multinormal distribution for the raw (or
log transformed) parameter values, the conditional distributions are given by:

Zil/’:Zi_ZNZ]lZu je {i+1,...n} (12)

where é,-‘ ; and 2;; correspond to the mean value and the dispersion matrix of the parameter i conditional on the
parameter vector j; the values of the elements X; X, ; and X; correspond to the variance and covariance of the two subset
of parameters; and 6, 0, 0; correspond to the posterior mean and random values of the parameters 7 and j, respectively.
To examine the predictive uncertainty of the updated model, we generated two datasets from normal distributions with
mean values the observed averages and standard deviations that were 15 and 25% of the mean monthly values for each
state variable. The former dataset represented conditions similar to those used to calibrate the model, while the latter
was characterized by an increased month-to-month variability. In a similar way to the original calibration, the
measurement error was considered to be 15% of the (generated) monthly values for each state variable.

3.4. Model evaluation

Assessment of the goodness-of-fit between the model outputs and the observed data was based on the posterior
predictive p-value, i.e., the Bayesian counterpart of the classical p-value. In brief, the p-value is defined as the
probability that the replicated data (the posterior predictive distribution) could be more extreme than the observed data.
The null hypothesis H, (i.c., there are no systematic discrepancies between the simulation model and the data) is rejected
if the tail-area probability is close to 0.0 or 1.0; whilst the model can be regarded as plausible if the p-value is near to 0.5.
The discrepancy variable chosen for carrying out the posterior predictive model checks was the x test [see also Gelman
et al. (1996) for a detailed description of the posterior predictive p-value]. The comparison between the two alternative
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Table 3
Markov chain Monte Carlo posterior estimates of the mean values and standard deviations of the model stochastic nodes

Prior Model 1 Model 2 Model 3
Parameter Mean S.D. Mean S.D. Mean S.D. Mean S.D.
Y 0.062 0.034 0.056 0.028 0.055 0.027 0.056 0.038
my, 0.072 0.021 0.083 0.024 0.067 0.018 0.066 0.023
my 0.062 0.034 0.073 0.019 0.101 0.023 0.087 0.027
m, 0.062 0.034 0.030 0.012 0.052 0.027 0.048 0.025
NH 7.452 2.720 7.591 2.798 7.473 2.740 7.532 2.764
AH 7.452 2.720 5.261 1.123 4435 1.461 7.265 2.743
Hmax(phyt) 1.801 0.515 4.006 0.608 2.812 0.489 3.539 0.689
DH 7.452 2.720 8.453 3.202 7.442 2.471 7.654 2.966
I 1.947 0.834 0.422 0.066 0.478 0.273 1.139 0.577
Kback 0.246 0.026 0.193 0.017 0.201 0.020 0.241 0.037
Kehta 0.043 0.016 0.026 0.007 0.032 0.010 0.044 0.022
Y 1.596 0.583 1.879 0.550 1.630 0.573 1.671 0.558
Hmax(bact) 1.801 0.515 1.167 0.260 1.502 0.316 1.356 0.369
&max 0.794 0.180 0.915 0.147 0.677 0.156 0.968 0.149
Ky 42.59 15.54 47.16 11.51 50.58 17.40 40.13 12.137
Kr 16.25 3.852 16.24 3.689 15.53 3.600 15.35 3.752
Kminer 0.040 0.042 0.090 0.014 0.100 0.023 0.147 0.022
ONH4 1.550 0.935
ONO3 4.002 0.889
ODPON 22.19 5.020
OPHYT 17.66 5.061
T 200p 13.70 3.452
Obact 0.237 0.258
ONH4 1.213 0.631
ONO3 4.136 1.669
WPON 20.45 8.728
OPHYT 24.54 6.147
Oz00p 9.809 2.728
Obact 0.317 0.238
NH4,, 17.08 2.562 17.31 0.862 17.25 0.860 17.15 0.864
NO3) 4252 0.638 4.294 0.213 4.285 0.216 4.300 0.217
DONy, 91.05 13.66 92.12 4.647 91.95 4.640 91.35 4.564
PHY T, 9.094 1.364 9.232 0.458 9.159 0.463 9.177 0.465
ZOOP 3.422 0.513 3.512 0.179 3.448 0.175 3.450 0.176
BACTy, 16.29 2.444 16.48 0.830 16.45 0.830 16.43 0.826

models was based on the use of the Bayes factor, i.e., the posterior odds of one model over the other (assuming the prior
probability on either model is 0.5). If M, and M, denote the two alternative models, the Bayes factor is:
_ pr(yM,) (13)
pr(y|Ms)
For model comparison purposes, the model likelihood (pr(y|M)); k=1, 2) is obtained by integrating over the
unknown element (initial conditions, model parameters, error terms) space:

pr(y|My) = / pr(y|My, ©)(O4|M;)d6, (14)

where @, is the unknown element vector under model M; and m(©,]M;) is the prior density of O,. Using the
MCMC method, we can estimate pr(y|M}) from posterior samples of @,. Letting Of be samples from the posterior
density pr(©,|M,), the estimated pr(y|M)) is:

-1

pr(v[My) = Z pr(vim;, 00) ! (15)

the harmonic mean of the likelihood values (Kass and Raftery, 1995).
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Fig. 2. Prior (thin grey lines) and posterior (Model 1: thick grey lines, Model 2: thin black lines, and Model 3: thick black lines) distributions of the
eutrophication model. The posteriors depict smoothed kernel density estimates based on 12,500 MCMC samples from the three models.
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Table 4

Correlation matrix of the eutrophication model parameters based on MCMC posterior samples (Model 2)

kchla kminer

kback

I

AH

NH

DH

;umax(bact) mp my my KR KZ &max

Hmax( phyt)

.umax(phyt)
,umax(bact)

—0.041

—0.007

0.119
—0.005

—0.004
—0.001

0.983
—0.039
—0.009
—0.060

—0.024
—-0.013
—0.019

0.025
—0.033

—-0.010

0.016

Kr

0.011

0.002
—0.018
-0.019

0.012
-0.017
—0.050
—0.008
-0.017
—0.084

0.054
—0.213

Kz

0.070 0.028 0.131
—0.026
—0.012

0.128
0.014

gmax

G.B. Arhonditsis et al. / Journal of Marine Systems 73 (2008) 8-30

0.012
—0.080

0.001
—0.025

0.007

—0.020

0.072

=~

0.012

0.002
-0.013
—0.059
—0.008
—0.091
—0.052
-0.014

0.044

0.007
—0.013

DH
NH
AH

0.019
—0.045
—0.015
—0.060
—0.047
-0.019

0.004 0.006

0.286
—0.002

0.005
—0.144

0.014

0.003

0.008

0.004
—0.001
—0.002
—0.001
-0.016

0.019
—0.008

0.013

0.133
—0.006

0.174
—0.009

0.097
0.000
—0.532
-0.216
—0.064

—0.005
—0.010
—0.007

—0.032
0.446

0.453 0.050

0.003
-0.199
-0.130
—0.082

0.014
0.014

0.128
0.132
0.064
-0.299

0.015
—0.005
—0.003

0.185
0.174
0.079
—-0.353

0.336
0.142
—0.449

0.241

0.009
0.046

0.328

0.039
—0.007

kback

0.057
-0.272

0.138
-0.371

0.093
—-0.301

0.000
0.094

kchla

-0.164

0.019

0.014 0.007

0.031

0.498 0.140

0.053

0.324

kminer

Bold numbers correspond to correlation coefficients with absolute value greater than 0.250.

4. Results

The three MCMC sequences of the three models
converged rapidly (= 5000 iterations) and the statistics
reported in this study were based on the last 25,000
draws by keeping every 6th iteration (thin=6). Based on
the shifts in the most possible value and the reduction of
the parameter uncertainty, we evaluated the degree of
updating of model input parameters from prior to
posterior. The central tendency along with the uncer-
tainty underlying the values of the 17 model parameters
after the MCMC sampling is depicted on the respective
marginal posterior distributions (Table 3 and Fig. 2). The
mean value of several updated distributions was shifted
relative to the prior assigned values. For example,
maximum phytoplankton growth and mineralization
rates for Models 1, 2 and 3; zooplankton mortality,
light extinction coefficient due to chlorophyll ¢ and
maximum bacterial uptake rate for Model 1; half
saturation light intensity for Models 1 and 2; half
saturation constant for ammonium phytoplankton uptake
for Model 2; and bacterial mortality rate for Models 2
and 3. The standard deviations of the posterior parameter
distributions were significantly reduced with the first
statistical formulation (Model 1); characteristic exam-
ples were the zooplankton mortality rate, the half
saturation constant for ammonium phytoplankton up-
take, the half saturation light intensity, the light
extinction coefficient due to chlorophyll @, the maximum
bacterial uptake rate and the maximum mineralization
rate with a relative decrease higher than 50%. On the
other hand, the inclusion of the seasonally invariant
stochastic term that accounts for the discrepancy
between the model and the coastal embayment resulted
in higher standard deviation values for most of the
parameters. The same result was more evident after the
addition of the seasonally variant discrepancy term
(Model 3), and there were parameter distributions in
which the posterior uncertainty estimates were even
higher than the pre-specified ones, e.g., phytoplankton
maximum growth rate, light extinction coefficient due to
chlorophyll ¢ and background light attenuation. Regard-
less of the statistical formulation used, three parameters
of the calibration vector remained unaltered with respect
to the first and second order moments of their posterior
distributions, i.e., half saturation constant for nitrate
phytoplankton uptake, strength of the ammonium
inhibition for nitrate uptake, and half saturation constant
for bacterial uptake. This finding probably stems from
the nature of the data used to calibrate the model
(bacterial biomass concentrations, relative magnitudes
and temporal variability of nitrate/ammonium levels)
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that did not offer insights into the role of the associated
ecological processes (e.g., bacterial control on the DON
mineralization rate) or supported the hypothesis under-
lying the prior parameter specifications (e.g., strong
ammonium inhibition for nitrate uptake).

We also used the MCMC posterior samples from the
Model 2 to determine the correlation structure of the
seventeen model parameters (Table 4). Some of these

21

relationships have plausible physical explanation. For
example, a higher maximum bacterial growth rate can be
balanced by a higher bacterial mortality rate to accurately
represent the observed bacterial biomass values in the
system; a higher maximum mineralization rate can be
balanced by a higher half-saturation constant for DON
mineralization or by a lower bacterial mortality rate that
reduces the amount of DON/ammonium being directly
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Fig. 3. Posterior distributions of the o (seasonally invariant discrepancy between the simulation model and the natural system) and o (conditional
variance of the seasonally variant discrepancy) terms of the second and third statistical formulations, respectively.
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Fig. 3 (continued).

released in the water column; hence, the model can still
fit the observed data. There were also some relationships
that seem counter-intuitive and invite further explana-
tion, such as the negative correlation between the
maximum growth rate and the half-saturation constant
for light intensity. Given the role of the two parameters
on phytoplankton growth, a positive relationship where
the two terms cancel each other out would have seemed
more plausible. The negative correlation is probably
driven by the two phytoplankton peaks observed in the
winter months and indicates that high maximum growth
rates combined with low half saturation light intensity
constants (i.e., ability to attain optimal growth rates
under low solar radiation availability) is the main
strategy to reproduce the high winter phytoplankton
biomass levels. The latter result is also reflected on the
major central tendency shifts of the two parameters, i.e.,
the significantly higher/lower posterior mean values of
the maximum growth rate and half saturation light
intensity, respectively. While the winter phytoplankton
community is dominated by several diatom species (e.g.,
Fragilaria crotonensis, Fragilaria schulzi) that can
exhibit high growth rates (Arhonditsis et al., 2003b),
the posterior mean values of the corresponding param-
eter were somewhat higher (especially for models 1 and
3) than those usually reported in the literature. To avoid
parameter value shifts in areas not supported by existing
evidence, one strategy is to implement a censored
MCMC scheme that limits the posterior samples within
the observed ranges (Spiegelhalter et al., 2003).

The posterior distributions of the error terms that
correspond to the seasonally invariant discrepancy
between the simulation model and the natural system
are shown in Fig. 3. In the second statistical formulation,
these terms reflect the model imperfection and delineate
a constant zone around the model estimates for the six

state variables [i.e., the term f{0, x;, v, Nexog) in Eq.
(5)], and it is worth noting the relatively high coefficient
of variation (CV) values of the bacteria error term
(oBacT). Furthermore, to gain insight into the third
statistical formulation, we plotted the model estimates
vis-a-vis the discrepancy (error) terms for the nitrate,
ammonium, dissolved organic nitrogen, phytoplankton,
zooplankton, and bacteria biomass concentrations
(Fig. 4). Despite some structural differences between
earlier versions and the current model (Arhonditsis
et al., 2000, 2002b), the model estimates [i.e., the term
f(0, xi, o, Nexog) in Eq. (9)] provided relatively
similar results. Additionally, in contrast to the original
calibration, the Bayesian calibration did not introduce
bias (i.e., overestimation) of the bacteria biomass
concentrations but it does provide evidence of more
dynamic seasonal zooplankton fluctuations in the
embayment [It should be noted, however, that the
latter result is probably driven by the zooplankton data
generated for the Bayesian calibration, whereas earlier
model calibrations were based on qualitative informa-
tion mainly to constrain zooplankton biomass within a
plausible range.]. The discrepancy error terms [i.e., the
term ¢;; in Eq. (5)] can be interpreted as an indicator of
how well the model is matching reality. For example,
the model’s inability to closely reproduce the winter
plankton dynamics can explain the higher December—
January dppy¢ and 0,40p values, while the higher 0 ygust,
~H4 also reflects the lower contemporaneous ammonium
concentrations relative to the observed peaks in the
system (August 1997). Finally, the posterior conditional
variances (w;) of the seasonally variant discrepancies are
also shown in Fig. 3.

The three statistical formulations were favourably
supported by the data and were accepted on the basis of
their posterior predictive p-values (0.098, 0.385 and
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0.303 for Model 1, 2 and 3, respectively). The Bayes
factor values B,;=2.95, B3;=2.61, B,3=1.23 did not
provide strong evidence in support of one of the three
alternative models but did reflect a higher performance
of the Model 2 (Kass and Raftery, 1995; page 777). The
comparison between the observed and posterior predic-
tive monthly distributions for the three statistical
formulations illustrates some features of the Bayesian
calibration. The Model 1 consistently underestimates
the nitrate levels throughout the study period, while both
mean predictions and 95% credible intervals failed to
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reproduce/include several observed ammonium, dis-
solved organic nitrogen and winter plankton biomass
peaks (Fig. 5). The addition of the discrepancy terms
in the third statistical formulation has significantly
improved the results, although there are still observed
nitrate and ammonium monthly values not included
within the 95% credible intervals of the third model’s
predictions (Fig. 5). On the other hand, the second
model provided the most accurate representation of
the system dynamics, i.e., the central tendency of the
majority of the predictive monthly distributions was

JJTASONDJFMAMJJASO
1996 1997

JJASONDJIJFMAMIJJASO
1996 1997

16

- - _——

JJASONDJFMAMJJASO
1996 1997

Fig. 4. Time series plots of the model estimates (black lines) and the error terms along with the 95% credible intervals (grey lines), for the ammonium,
nitrate, dissolved organic nitrogen, phytoplankton, bacteria, and zooplankton biomass concentrations (Model 3). The error terms represent the

discrepancy between the model and the natural system.
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Fig. 5. Comparison between the observed and posterior predictive monthly distributions for ammonium, nitrate, dissolved organic nitrogen,
chlorophyll a (1 g carbon=20 mg chlorophyll), bacteria, and zooplankton biomass based on 12,500 Markov chain Monte Carlo posterior samples
from Models 1 (black lines) and 3 (grey lines). Continuous and dashed lines correspond to the mean predictions and the 95% credible intervals,
respectively. The error bars express the measurement error/spatial variability relative to the observed data.

fairly close to the observed values of the six state
variables, while the unusually high ammonium concen-
tration observed in August 1997 was the only one not
bracketed by the model uncertainty bounds (Fig. 6).
The highest performing statistical formulation
(Model 2) was also used to examine the predictive
ability of the updated model under two different
conditions representing similar overall mean values
and similar (dataset 1) or higher month-to-month
(dataset 2) variability for the six state variables. As
previously described, the updated parameter conditional

distributions were based on the MCMC estimates of the
respective mean and standard deviation values along
with their covariance structure, while the shape and
scale parameters of the inverse-gamma distributions
used to represent our updated beliefs for the values of
the seasonally invariant discrepancy terms were esti-
mated with the method of moments (Bernardo and
Smith, 1994; pages 434). Not surprisingly, the first
dataset did not alter the central tendency and standard
deviation of the majority of the posterior parameter
distributions (Table 5); the main exceptions were the
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Fig. 6. Comparison between the observed and posterior predictive monthly distributions for ammonium, nitrate, dissolved organic nitrogen,
chlorophyll a, bacteria, and zooplankton biomass based on 12,500 Markov chain Monte Carlo posterior samples from Model 2.

bacterial maximum growth and mortality rate along with
the half saturation constant for light intensity in which
the relative decrease of the standard deviation values
was higher than 75%. Furthermore, the central tendency
(=20%) and standard deviation (=55%) of the
ammonium error term (onp4) Were also reduced mainly
due to the lower August concentration used in this
dataset (Fig. 7). With the second dataset, we formulated
two different prior parameter distributions: 1) the first set
of priors was similar to the one used with the first dataset
(Priors #1), and ii) the second set had parameter
precisions reduced in half and aimed to provide a less
constrained (flatter) prior parameter space for detecting

shifts of the joint and marginal posterior distributions
(Priors #2). The first approach gave relatively similar
results to those found with the first dataset, whereas the
mean values of the ammonium (onp4), dissolved
organic nitrogen (opon), and bacteria (op,e) error
terms were significantly increased (Table 5). The latter
finding probably indicates that the terms reflecting the
mismatch between mathematical system and coastal
embayment were mainly used to accommodate the
pronounced month-to-month variability of the second
dataset. Even higher posterior values for these discrep-
ancy terms along with distinct changes of the moments
(shifted mean values/increased standard deviation) of



26 G.B. Arhonditsis et al. / Journal of Marine Systems 73 (2008) 8—30

Table 5
Markov chain Monte Carlo estimates of the model stochastic node
mean values and standard deviations after the second updating

Parameter Dataset 1 Dataset 2
Priors #1 Priors #2
Mean S.D. Mean S.D. Mean S.D.

b 0.057 0.026 0.060 0.028 0.070 0.049
m, 0.069 0.021 0.069 0.019 0.076 0.034
my, 0.088 0.005 0.093 0.010 0.084 0.014
m, 0.051 0.023 0.051 0.024 0.048 0.031
NH 7.944 2.857 7.966 2.958 8.252 4268
AH 4.204 1.033 4.386 1.076 4.699 1.748

Hmaxhyy 3031 0353 3.063 0370 3236 0.628
DH 7199 2852 7244 2548 6213 3.153

I 0412  0.044 0434 0054 0448  0.081
Kouck 0.184 0.015 0.184 0017 0.178  0.021
ket 0.030  0.008  0.030 0.008 0029 0.011
" 1.775 0610 1763  0.601 1924  0.924
Hmaxacy 1341 0082 1431 0125 1327  0.169
Gmax 0.581  0.111  0.690 0.135  0.671  0.169
K, 62.16 2053 5600 1832  60.70  24.81

K 1332 2057 1464 2689 1344 3618
Kaminer 0.110  0.015 0.114 0020 0.110  0.024
Onba 1241 0405 2257 0663 2351  0.738
N3 3867  0.626  4.057  0.668 4.135  0.780
TDON 2294 5428 3054 8025 3283  9.118
Cehla 16,79 3223 18.84 3425 19.65  4.021
O s00p 1455 2950 1451  3.005 1504  3.377
Chact 0238 0266 1978 1.156 2346  0.966

NH40) 17.18 0.853 17.31 0.875 17.30 0.881
NO3 0 4283 0217 4292 0220 4287 0.221
DON0, 91.71 4.551 92.26 4771 9231 4.708
PHYT 0, 9.156 0460  9.158 0468  9.144  0.481
ZOOP 3.442  0.173 3442  0.170 3442  0.175
BACTy 1647 0.841 16.53 0.846 16.51 0.843

the seventeen marginal posterior parameter distributions
were sampled from the wider prior parameter space
(Priors #2). Moreover, the second dataset resulted in
reduced CV value of the bacteria error which is probably
evidence that the previously reported high value was
mainly driven by the low bacteria biomass variability in
the system. The performance of the updated model did
not differ between the two datasets, and the results were
qualitatively similar to those reported from the Bayesian
calibration of the original Model 2; i.e., the mean values
of the predictive monthly distributions were again close
to the observed values of the six state variables, and the
high late-summer ammonium concentration was the
only one not included within the 95% credible intervals.

5. Conclusions
This paper addresses the urgent need for novel

methodological tools that can rigorously assess the
predictive uncertainty of aquatic biogeochemical models

(Flynn, 2005). The proposed framework aims to
combine the advantageous features of both mechanistic
and statistical approaches. Models that are based on
mechanistic understanding yet remain within the bounds
of data-based parameter estimation. The mechanistic
foundation improves the confidence in predictions made
for a variety of conditions, while the statistical methods
provide an empirical basis for parameter estimation that
can accommodate thorough error analysis (Borsuk et al.,
2001). The Bayesian nature of our framework also uses
past experience from the system along with present
ecological information to project future ecosystem
response. Thus, our hypothesis is that the Bayesian
techniques are more informative than the conventional
model calibration practices (i.e., mere adjustment of
model parameters until the discrepancy between model
outputs and observed data is minimized) and can be used
to refine our knowledge of model input parameters, and
obtain predictions along with credible intervals for
modeled output variables.

We examined the efficiency of our Bayesian
framework to elucidate the propagation of uncertainty
arising from unknown calibration parameters, error-
contaminated measurements, spatial variability, and
mis-specified initial conditions, model structure or
external forcing functions. The implementation of the
Bayesian calibration was based on a fairly straightfor-
ward MCMC algorithm (general normal-proposal
Metropolis) to efficiently sample the joint probability
distribution of the multiple stochastic nodes of our
plankton model. We found that 30,000 MCMC samples
gave adequate summary statistics of the marginal
posterior parameter distributions and the predictive
model outputs. These results are in accordance with
several modeling studies from a variety of disciplines
that advocated the use of MCMC schemes for sampling
high dimensional parameter spaces and multivariate
outputs (Hegstad and More, 2001; Lee et al., 2002; Van
Oijen et al., 2005). On the other hand, MCMC
appropriateness for overly complex models has not
been explored yet in the modeling literature, and it is
argued that different Bayesian (or Bayesian-like)
methodologies (GLUE, Sampling/Importance Resam-
pling) are perhaps conceptually better suited to high
dimensional input spaces with significant equifinality
problems (see discussion on the paper by Kennedy and
O’Hagan, 2001). Future research should involve the
examination of the MCMC suitability for more complex
models (=15-20 state variables) extensively used in
environment management.

The prior specification of the error structure can
strongly influence our ability to gain insight into the
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Fig. 7. Comparison between the two datasets (1: black lines and 2: grey lines) and posterior predictive monthly distributions for ammonium, nitrate,
dissolved organic nitrogen, chlorophyll a, bacteria, and zooplankton biomass based on 12,500 Markov chain Monte Carlo posterior samples from the
updated Model 2. Bayesian calibration results with the second dataset are based on the first set of prior parameter distributions (Priors #1).

degree of information the data contain about model
inputs and can significantly alter the predictive outputs,
i.e., mean predictions and credible intervals. Under the
assumption of a “perfect” ecological model, the main
sources of error considered in our analysis were the
observation error and the uncertainty pertaining to
exogenous nitrogen loading. The lower dimensions of
the sampled space resulted in narrow peaked distribu-
tions (good information) for most of the parameters, but
the problematic postulation of an ideal simulator was the
main reason for the relatively poor representation of
planktonic patterns in the coastal embayment. While the
usual antidote for alleviating model structure imperfec-

tions is the increase of complexity (e.g., inclusion of
ecological processes), we introduced an alternative
approach that explicitly acknowledges the mismatch
between model and natural system. This configuration
can be useful in cases where the lack of information
cannot reliably guide the model building process. The
posterior distribution of the seasonally (in)-variant
discrepancy terms is an indicator of how well the
simulator is matching reality, and their inclusion has
significantly improved the representation of the ob-
served system dynamics from the predictive monthly
distributions of the six state variables. In this study, the
presence of the discrepancy terms also made the
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interpretation of the posterior parameter distributions
difficult, and the knowledge gained for the majority of
the parameters was limited relative to the prior
specification. In a general context, however, our
experience has been that the effects of the discrepancy
terms on the parameter posteriors can be quite variant
depending on the prior model specification and the
system being modeled; the latter assertion has also been
supported by other recent studies (Higdon et al., 2004;
see the results reported in their Fig. 3 and 11).

The Bayesian nature of our framework also offers a
natural mechanism for sequentially updating our beliefs
regarding model inputs and structure. In this study, we
designed a second “training” of the model by generating
two datasets representing similar average conditions
with different temporal variability. Not surprisingly,
aside from minor adjustments of the parameter poster-
iors, we found that ecological information relatively
similar to the one used for the original model calibration
did not cause significant alterations of the updated
model. On the other hand, the consideration of data with
more pronounced temporal variability mainly changed
(inflated) the discrepancy term posteriors instead of the
model input parameters; namely, the terms that reflect
the model inadequacy and not the mathematical model
itself were used to accommodate the differences in the
calibration data. The latter result does not fully satisfy the
basic premise of our framework to attain realistic
ecological forecasts in the extrapolation domain (e.g.,
different nutrient loading conditions) while gaining
insights into the ecosystem dynamics. Although it is
probably driven by the “noisy” character of the dataset
produced for this exercise, the relative importance of
the discrepancy terms vis-a-vis mathematical model for
extrapolative tasks invites further examination. Finally,
regarding the simulation time, we found that the BUGS-
language specification of the updated model took appro-
ximately half of the time required to run the original
model (i.e., around 3 h on a 3.0 GHz PC machine). Hence,
the commonly proposed compromise between “fidelity of
the simulator” and “simulation speed” is probably not
always necessary (Higdon et al., 2004); at least not for
intermediate complexity models (< 10 state variables).

The increase of the articulation level of aquatic
biogeochemical models is certainly the way forward;
thorny environmental issues, such as the biotic response
to climate change or the objective evaluation of
management alternatives, require robust projections
out of the operational model domain that cannot be
accomplished without the explicit treatment of multiple
biogeochemical cycles or the increase of the functional
diversity of biotic communities. A major challenge of

the aquatic ecosystem community is to develop a
prudent strategy that can assist the evolution of the
current oversimplified abstractions to more sophisticat-
ed diagnostic/prognostic modeling constructs. After
several decades of modeling practice, aquatic ecosystem
modelers are realizing the difficulties to forecast
ecosystem behaviour; even in well-studied, data-rich
systems using very sophisticated models, accurate
predictions are not feasible (Arhonditsis and Brett,
2004). Differentiating the predictable from the unpre-
dictable patterns and increasing model complexity
accordingly requires careful consideration and should
be tightly coupled with critical evaluation of the model
outputs. In this context, our Bayesian framework is
more consistent with the scientific process of progres-
sive learning, and can be particularly useful for
quantifying the uncertainty associated with model
predictions.
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