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ABSTRACT. The water quality standard setting process usually relies on mathematical models with
strong mechanistic basis, as this provides assurance that the model will more realistically project the
effects of alternative management schemes. From an operational standpoint, the interpretation of model
results should be coupled with rigorous error analysis and explicit consideration of the predictive uncer-
tainty and natural variability. In this study, our main objective is to attain effective model calibration and
rigorous uncertainty assessment by integrating environmental mathematical modeling with Bayesian
analysis. We use a complex aquatic biogeochemical model that simulates multiple elemental cycles (org.
C, N, P, Si, O), multiple functional phytoplankton (diatoms, green algae and cyanobacteria) and zoo-
plankton (copepods and cladocerans) groups. The Bayesian calibration framework is illustrated using
three synthetic datasets that represent oligo-, meso- and eutrophic lake conditions. Scientific knowledge,
expert judgment, and observational data were used to formulate prior probability distributions and char-
acterize the uncertainty pertaining to a subset of the model parameters, i.e., a vector comprising the 35
most influential parameters based on an earlier sensitivity analysis of the model. Our study also under-
scores the lack of perfect simulators of natural system dynamics using a statistical formulation that
explicitly accounts for the discrepancy between mathematical models and environmental systems. The
model reproduces the key epilimnetic temporal patterns and provides realistic estimates of predictive
uncertainty for water quality variables of environmental management interest. Our analysis also demon-
strates how the Bayesian parameter estimation can be used for assessing the exceedance frequency and
confidence of compliance of different water quality criteria. The proposed methodological framework can
be very useful in the policy-making process and can facilitate environmental management decisions in the
Laurentian Great Lakes region.
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INTRODUCTION

In his 2006 review paper, D.W. Schindler high-
lighted the cultural eutrophication as one of the pre-
eminent threats to the integrity of freshwater
ecosystems worldwide. He also emphatically ar-
gued that our current understanding and manage-
ment of eutrophication has evolved from simple
control of point and non-point nutrient sources to
the explicit recognition that it often stems from the
cumulative effects of the human activities on cli-

mate, global element cycles, land use, and fisheries.
Therefore, alleviating eutrophication problems
often involves complex policy decisions aiming to
protect the functional properties of the freshwater
ecosystem community as well as to restore many of
the features of the surrounding watershed. In the
Great Lakes region, the growing appreciation of the
complexity pertaining to eutrophication control and
the need for addressing the combined effects of a
suite of tightly intertwined stressors has sparked
considerable confusion and disagreements (Hartig
et al. 1998, Bowerman et al. 1999). Much of this
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controversy has arisen as to whether the Great
Lakes Water Quality Agreement is a thrust for im-
proving water quality or for maintaining ecosystem
integrity, and the proposed transition from the
Water Quality/Fisheries Exploitation paradigms
into the Ecosystem Management paradigm has been
repeatedly debated in the literature (Bowerman et
al. 1999, Minns and Kelso 2000). The defenders of
the traditional paradigms have argued that the shift
of focus from water quality to ecosystem manage-
ment has also been accompanied by a shift from the
traditional identification of simple cause–effect re-
lationships to a multi-causal way of thinking to ac-
commodate the complexity of ecosystems. In this
context, the crux of the problem is that the ecologi-
cal complexity along with the underlying uncer-
tainty can be a major impediment for deriving the
straightforward scientific answers required from the
regulatory agencies to implement the provisions of
the Great Lakes Water Quality Agreement (Bower-
man et al. 1999, Krantzberg 2004).

Aside from the environmental thinking, the emer-
gence of the ecosystem approach has also pervaded
the contemporary mathematical modeling practice,
increasing the demand for more complex ecosystem
models. Earlier eutrophication modeling studies in
the Great Lakes provided long-term forecasts and
insightful retrospective analysis using as foundation
the interplay among nutrient loading, hydrodynam-
ics, phytoplankton response, and sediment oxygen
demand (Bierman and Dolan 1986, Lam et al.
1987a, DiToro et al. 1987). Yet, the current chal-
lenges make compelling the development of more
realistic platforms (i) to elucidate causal mecha-
nisms, complex interrelationships, direct and indi-
rect ecological paths of the Great Lakes basin
ecosystem; (ii) to examine the interactions among
the various stressors (e.g., climate change, urban-
ization/land-use changes, alternative management
practices, invasion of exotic species); and (iii) to
assess their potential consequences on the lake
ecosystem functioning (e.g., food web dynamics,
benthic-pelagic coupling, fish communities) (Mills
et al. 2003, Leon et al. 2005). In this regard, a char-
acteristic example is the integrated eutrophication-
zebra mussel bioenergetic model developed for
identifying the factors that promote the re-occur-
rence of Microcystis blooms in the Saginaw Bay,
Lake Huron (Bierman et al. 2005). It was shown
that the zebra mussels through selective cyanobac-
teria rejection, increased sediment-water phospho-
rus fluxes can cause structural shifts in the
phytoplankton community, and the impact of these

perturbations varies depending on the magnitude of
the zebra mussel densities and their distribution
among different age groups. The Bierman et al.
(2005) study is an example of how the increase of
the articulation level of our mathematical models
allows performing experiments that are technologi-
cally or economically unattainable by other means,
thereby gaining insights into the direct and syner-
gistic effects induced from the multitude of stres-
sors on the various lake ecosystem components. 

While the development of more holistic model-
ing constructs is certainly the way forward, the
question arising is: do we have the knowledge to
parameterize or even to mathematically depict the
new biotic relationships and their interactions with
the abiotic environment? More importantly, how
reliable are the long-term projections generated
from the current generation of mathematical mod-
els? Our experience is that the performance of ex-
isting mechanistic biogeochemical models declines
as we move from physical-chemical to biological
components of aquatic ecosystems (Arhonditsis
and Brett 2004). Because of the still poorly under-
stood ecology, we do not have robust parameteriza-
tions to support predictions in a wide range of
spatiotemporal domains (Anderson 2005). Despite
the repeated efforts to explicitly treat multiple bio-
geochemical cycles, to increase the functional di-
versity of biotic communities, and to refine the
mathematical description of the higher trophic lev-
els, modelers still haven’t gone beyond the phase
of identifying the unforeseeable ramifications and
the challenges that we need to confront so as to
strengthen model foundation (Anderson 2006).
Furthermore, the additional model complexity will
increase the disparity between what ideally we
want to learn (internal description of the system
and model endpoints) and what can realistically be
observed, thereby reducing our ability to properly
constrain the model parameters from observations
(Denman 2003). The poor model identifiability un-
dermines the predictive power of our models and
their ability to support environmental management
decisions (Arhonditsis et al. 2006). Thus, the most
prudent strategy is to incorporate complexity grad-
ually and this process should be accompanied by
critical evaluation of the model outputs; the latter
concern highlights the central role of uncertainty
analysis.

Uncertainty analysis of mathematical models has
received considerable attention in aquatic ecosys-
tem research, and there have been several attempts
to rigorously address issues pertaining to model



700 Zhang and Arhonditsis

structure and input error (Beck 1987, Reichert and
Omlin 1997, Stow et al. 2007). In this direction,
Arhonditsis et al. (2007) recently introduced a
Bayesian calibration scheme using intermediate
complexity mathematical models (4-8 state vari-
ables) and statistical formulations that explicitly
accommodate measurement error, parameter uncer-
tainty, and model structure imperfection. The
Bayesian calibration methodology offers several
technical advances, such as alleviation of the iden-
tification problem, sequential updating of the mod-
els, realistic uncertainty estimates of ecological
predictions, and ability to obtain weighted aver-
ages of the forecasts from different models, that
can be particularly useful for environmental man-
agement (Arhonditsis et al. 2007; 2008a, b).
Nonetheless, the capacity of this approach to be
coupled with complex mathematical models has
not been demonstrated yet and recent studies have
cautioned that this modeling framework will possi-
bly require substantial modifications to accommo-
date highly multivariate outputs (Arhonditsis et al.
2008b).  

In this paper, our main objective is to integrate
the Bayesian calibration framework with a com-
plex aquatic biogeochemical model that simulates
multiple elemental cycles (org. C, N, P, Si, O),
multiple functional phytoplankton (diatoms, green
algae, and cyanobacteria) and zooplankton (cope-
pods and cladocerans) groups. Because the model
structure and complexity is suitable for addressing
a variety of eutrophication-related problems
(chlorophyll a, water transparency, cyanobacteria
dominance, hypoxia), our presentation is highly
relevant to the Great Lakes modeling practice. This
illustration is based on three synthetic datasets rep-
resenting oligo-, meso-, and eutrophic lake condi-
tions. Our analysis also shows how the Bayesian
parameter estimation can be used for assessing the
exceedance frequency and confidence of compli-
ance of different water quality criteria. We con-
clude by pinpointing some of the anticipated
benefits from the proposed approach, such as the
assessment of uncertainty in model predictions and
expression of model outputs as probability distrib-
utions, the optimization of the sampling design of
monitoring programs, and the alignment with the
policy practice of adaptive management, which can
be particularly useful for stakeholders and policy
makers when making decisions for sustainable en-
vironmental management in the Laurentian Great
Lakes region. 

METHODS

Model Description

Model Spatial Structure and Forcing Functions

The spatial structure of the model is simpler than
the two-compartment vertical system of the original
model application in Lake Washington (Arhonditsis
and Brett 2005a, b). We considered a single com-
partment model representing the lake epilimnion,
whereas the hypolimnion was treated as boundary
conditions to emulate mass exchanges across the
thermocline. The external forcing encompasses
river inflows, precipitation, evaporation, solar radi-
ation, water temperature, and nutrient loading. The
reference conditions for our analysis correspond to
the average epilimnetic temperature, solar radiation,
vertical diffusive mixing, hydraulic and nutrient
loading in Lake Washington (Arhonditsis and Brett
2005b, Brett et al. 2005). The hydraulic renewal
rate in our hypothetical system is 0.384 year–1. The
fluvial and aerial total nitrogen inputs are 1,114 ×
103 kg year–1, and the exogenous total phosphorus
loading contributes approximately 74.9 × 103 kg
year–1. The exogenous total organic carbon supplies
in the system are 6,685 × 103 kg year–1. In our
analysis, the average input nutrient concentrations
for the oligo-, meso-, and eutrophic environments
correspond to 50 (2.9 mg TOC/L, 484 µg TN/L, and
32.5 µg TP/L), 100 (5.8 mg TOC/L, 967 µg TN/L,
and 65 µg TP/L), and 200% (11.6 mg TOC/L, 1,934
µg TN/L, and 130 µg TP/L) of the reference condi-
tions, respectively. Based on these nutrient loading
scenarios, the model was run using the calibration
vector presented in Arhonditsis and Brett (2005a;
see their Appendix B for parameter definitions and
calibration values). The simulated monthly aver-
ages provided the mean values of normal distribu-
tions with standard deviations assigned to be 15%
of the monthly values for each state variable; a frac-
tion that comprises both analytical error and inter-
annual variability at the deeper (middle) sections of
the lake. These distributions were then sampled to
generate the oligo-, meso- and eutrophic datasets
used for the Bayesian model calibration.

Plankton Community Structure

The ecological submodel consists of 24 state
variables and simulates five elemental cycles (or-
ganic C, N, P, Si, O) as well as three phytoplankton
(diatoms, green algae, and cyanobacteria) and two
zooplankton (copepods and cladocerans) groups
(Arhonditsis and Brett 2005a, b). The three phyto-
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plankton functional groups differ with regard to
their strategies for resource competition (nitrogen,
phosphorus, light, temperature) and metabolic rates
as well as their morphological features (settling ve-
locity, shading effects) (Fig. 1a). Phytoplankton
growth temperature dependence has an optimum
level and is modeled by a function similar to a
Gaussian probability curve (Cerco and Cole 1994).
Phosphorus and nitrogen dynamics within the phy-
toplankton cells account for luxury uptake, and
phytoplankton uptake rates depend on both intracel-
lular and extracellular nutrient concentrations
(Schladow and Hamilton 1997, Arhonditsis et al.
2002). We used Steele’s equation to describe the
relationship between photosynthesis and light inten-
sity along with Beer’s law to scale photosyntheti-
cally active radiation to depth (Jassby and Platt
1976). Diatoms are modeled as r-selected organ-
isms with high maximum growth rates and higher
metabolic losses, strong phosphorus and weak ni-
trogen competitors, lower tolerance to low light
availability, low temperature optima, silica require-
ments, and high sinking velocities. By contrast,
cyanobacteria are modeled as K-strategists with low
maximum growth and metabolic rates, weak P and
strong N competitors, higher tolerance to low light
availability, low settling velocities, and high tem-
perature optima. The parameterization of the third
functional group (labelled as “Green Algae”) aimed
to provide an intermediate competitor and more re-
alistically depict the continuum between diatom-
and cyanobacteria-dominated phytoplankton com-
munities. 

The two zooplankton functional groups (clado-
cerans and copepods) differ with regard to their
grazing rates, food preferences, selectivity strate-
gies, elemental somatic ratios, vulnerability to
predators, and temperature requirements (Arhondit-
sis and Brett 2005a, b). Cladocerans are modeled as
filter-feeders with an equal preference among the
four food-types (diatoms, green algae, cyanobacte-
ria, detritus), high maximum grazing rates and
metabolic losses, lower half saturation for growth
efficiency, high temperature optima and high sensi-
tivity to low temperatures, low nitrogen and high
phosphorus content. In contrast, copepods are char-
acterized by lower maximum grazing and metabolic
rates, capability of selecting on the basis of food
quality, higher feeding rates at low food abundance,
slightly higher nitrogen and much lower phospho-
rus content, lower temperature optima with a wider
temperature tolerance. Fish predation on cladocer-
ans is modeled by a sigmoid function, while a hy-

perbolic form is adopted for copepods (Edwards
and Yool 2000). Both forms exhibit a plateau at
high zooplankton concentrations representing satia-
tion of the fish predation, e.g., the fish can only
process a certain number of food items per unit
time or there is a maximum limit on predator den-
sity caused by direct interference among the preda-
tors themselves. The S-shaped curve, however, is
more appropriate for reproducing the tight connec-
tion between planktivorous fish and large Daphnia
adults at higher zooplankton densities, due to fish
specialization (learning ability of fish to capture
large animals) or lack of escape behavior of the
prey (Lampert and Sommer 1997). 

Carbon Cycle

The inorganic carbon required for algal photo-
synthesis is assumed to be in excess and thus is not
explicitly modeled. Dissolved organic carbon
(DOC) and particulate organic carbon (POC) are
the two carbon state variables considered by the
model (Fig. 1b). Phytoplankton basal metabolism,
zooplankton basal metabolism and egestion of ex-
cess carbon during zooplankton feeding release par-
ticulate and dissolved organic carbon in the water
column. A fraction of the particulate organic carbon
undergoes first-order dissolution to dissolved or-
ganic carbon, while another fraction settles to the
sediment. Particulate organic carbon is grazed by
zooplankton (detrivory), dissolved organic carbon
is lost through a first-order denitrification and res-
piration during heterotrophic activity.

Nitrogen Cycle

There are four nitrogen forms considered by the
model: nitrate (NO3), ammonium (NH4), dissolved
organic nitrogen (DON), particulate organic nitro-
gen (PON) (Fig. 1c). Both ammonium and nitrate
are utilized by phytoplankton during growth and
Wroblewski’s model (1977) was used to describe
ammonium inhibition of nitrate uptake. Phytoplank-
ton basal metabolism, zooplankton basal metabo-
lism, and egestion of excess nitrogen during
zooplankton feeding release ammonium and or-
ganic nitrogen in the water column. A fraction of
the particulate organic nitrogen hydrolyzes to dis-
solved organic nitrogen. Dissolved organic nitrogen
is mineralized to ammonium. In an oxygenated
water column, ammonium is oxidized to nitrate
through nitrification and its kinetics are modeled as
a function of available ammonium, dissolved oxy-



702 Zhang and Arhonditsis

FIG. 1. The structure of the complex aquatic biogeochemical model. Arrows indicate flows of matter
through the system: a. plankton submodel; b. carbon cycle; c. nitrogen cycle; d. phosphorus cycle.

a. b.

c.

d.
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gen, temperature and light (Cerco and Cole 1994,
Tian et al. 2001). During anoxic conditions, nitrate
is lost as nitrogen gas through denitrification.

Phosphorus Cycle

Three phosphorus state variables were considered
in the model: phosphate (PO4), dissolved organic
phosphorus (DOP), and particulate organic phos-
phorus (POP) (Fig. 1d). Phytoplankton uptakes
phosphate and redistributes the three forms of phos-
phorus through basal metabolism. Zooplankton
basal metabolism and egestion of excess phospho-
rus during feeding release phosphate and dis-
solved/particulate organic phosphorus. Particulate
organic phosphorus can be hydrolyzed to dissolved
organic phosphorus, and another fraction settles to
the sediment. Dissolved organic phosphorus is min-
eralized to phosphate through a first-order reaction. 

Bayesian Framework

Statistical Formulation

Our presentation examines a statistical formula-
tion founded on the assumption that the eutrophica-
tion model is an imperfect simulator of the
environmental system and the model discrepancy is
invariant with the input conditions, i.e., the differ-
ence between model and lake dynamics was as-
sumed to be constant over the annual cycle for each
state variable. This formulation aims to combine
field observations with simulation model outputs to
update the uncertainty of model parameters, and
then use the calibrated model to give predictions
(along with uncertainty bounds) of the natural sys-
tem dynamics. An observation i for the state vari-
able j, yij, can be described as: 

yij = f(θ, xi, y0) + δj + εij, i = 1, 2, 3, ... n and j = 1, ...,m
(1)

g(θ, xi, y0, δj) ~ N(f(θ, xi, y0),σj
2)

where f(θ, xi, y0) denotes the eutrophication model,
xi is a vector of time dependent control variables
(e.g., boundary conditions, forcing functions) de-
scribing the environmental conditions, the vector θ
is a time independent set of the calibration model
parameters, y0 corresponds to the vector of the con-
centrations of the twenty four state-variables at the
initial time point t0 (initial conditions), the stochas-
tic term δj accounts for the discrepancy between the
model and the natural system, εij denotes the obser-
vation (measurement) error that is usually assumed

to be independent and identically distributed fol-
lowing a Gaussian distribution, and g(θ, xi, y0, δj)
represents a normally distributed variable with first
and second order moments based on the model pre-
dictions and the time independent model structural
error σj

2. In this study, as a result of the scheme fol-
lowed to generate the three datasets, we assumed a
multiplicative measurement error with standard de-
viations proportional (15%) to the average monthly
values for each state variable (Van Oijen et al.
2005). With this assumption, the likelihood func-
tion (see Glossary of Terms) will be:

where m and n correspond to the number of state
variables (m = 24) and the number of observations
in time used to calibrate the model (n = 12 average
monthly values), respectively; yj = [y1j ,…,ynj]T and
fj(θ, x, y0) = [f1j(θ, x1, y0),…, fnj(θ, xn, y0)]T corre-
spond to the vectors of the field observations and
model predictions for the state variable j; Σδj =
In·σj2 corresponds to the stochastic term of the
model; and Σεj = In·(0.15)2·yj

T·yj. In the context of
the Bayesian statistical inference, the posterior den-
sity of the parameters θ and the initial conditions of
the twenty four state variables y0 given the ob-
served data y is defined as:

p(θ) is the prior density of the model parameters θ
and p(y0) is the prior density of the initial condi-
tions of the twenty four state variables y0. In a
similar way to the measurement errors, the charac-
terization of the prior density p(y0) was based on
the assumption of a Gaussian distribution with a
mean value derived from the January monthly aver-
ages during the study period and standard deviation
that was 15% of the mean value for each state vari-
able j; the prior densities p(σj

2) were based on the
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conjugate inverse-gamma distribution (Gelman et
al. 1995). Thus, the resulting posterior distribution
for θ, y0, and σ2 is:  

maximum values for each parameter from the perti-
nent literature; ii) we partitioned the original para-
meter space into three subregions reflecting the
functional properties of the phytoplankton groups;
and then iii) we assigned lognormal distributions
parameterized such that 98% of their values were
lying within the identified ranges (Steinberg et al.
1997). The group-specific parameter spaces were
also based on the calibration vector presented dur-
ing the model application in Lake Washington
(Arhonditsis and Brett 2005a). For example, the
identified range for the maximum phytoplankton
growth rate was 1.0–2.4 day–1, while the three sub-
spaces were 2.2 ± 0.2 day–1 for diatoms (calibration
value ± literature range), 1.8 ± 0.2 day–1 for greens
and 1.3 ± 0.3 day–1 for cyanobacteria. We then as-
signed lognormal distributions formulated such that
98% of their values were lying within the specified
ranges, i.e., growthmax(diat) ~ Λ(2.19, 1.040),
growthmax(greens) ~ Λ(1.79, 1.049), growthmax(cyan) ~
Λ(1.26, 1.106). The prior distributions of all the pa-
rameters of the model calibration vector are pre-
sented in Table 1.

Numerical Approximations for 
Posterior Distributions

Sequence of realizations from the posterior distri-
bution of the model were obtained using Markov
chain Monte Carlo (MCMC) simulations (Gilks et
al. 1998). We used the general normal-proposal
Metropolis algorithm coupled with an ordered over-
relaxation to control the serial correlation of the
MCMC samples (Neal 1998). In this study, we pre-
sent results using two parallel chains with starting
points: (i) a vector that consists of the mean values
of the prior parameter distributions, and (ii) the cal-
ibration vector of the application Lake Washington.
We used 30,000 iterations and convergence was as-
sessed with the modified Gelman–Rubin conver-
gence statistic (Brooks and Gelman 1998). The
accuracy of the posterior estimates was inspected
by assuring that the Monte Carlo error (an estimate
of the difference between the mean of the sampled
values and the true posterior mean; see Spiegelhal-
ter et al. 2003) for all the parameters was less than
5% of the sample standard deviation. Our frame-
work was implemented in the WinBUGS Differen-
tial Interface (WBDiff); an interface that allows
numerical solution of systems of ordinary differen-
tial equations within the WinBUGS software.
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where l is the number of the model parameters θ
used for the model calibration (l = 35); θ0 indicates
the vector of the mean values of θ in logarithmic
scale; Σθ = Il·σθ

T·σθ and σθ = [σθ l,…, σθ l]T corre-
sponds to the vector of the shape parameters of the l
lognormal distributions (standard deviation of log
θ); the vector y0m = [y1,1,…, y1,24]T corresponds to
the January values of the twenty four state vari-
ables; Σy0 = Im·(0.15) 2·y0m

T·y0m; αj (= 0.01) and βj
(= 0.01) correspond to the shape and scale parame-
ters of the m non-informative inverse-gamma distri-
butions used in this analysis. 

Prior Parameter Distributions

The calibration vector consists of the 35 most in-
fluential parameters as identified from an earlier
sensitivity analysis of the model (Arhonditsis and
Brett 2005a). The prior parameter distributions re-
flect the existing knowledge (field observations,
laboratory studies, literature information, and ex-
pert judgment) on the relative plausibility of their
values. For example, based on the previous charac-
terization of the three functional groups, we as-
signed probability distributions that represent their
differences in growth and storage strategies, basal
metabolism, nitrogen and phosphorus kinetics, light
and temperature requirements, and settling velocity.
In this study, we used the following protocol to for-
mulate the parameter distributions: i) we identified
the global (not the group-specific) minimum and
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RESULTS

The MCMC sequences of the three applications
of the model converged rapidly (≈ 5,000 iterations)
and the statistics reported were based on the last
25,000 draws by keeping every 4th iteration (thin =
4). The uncertainty underlying the values of the 35
model parameters after the MCMC sampling is de-
picted on the respective marginal posterior distribu-
tions (Table 1 and Fig. 2). Generally, the moments
of the posterior parameter distributions indicate that
the knowledge gained for the 35 parameters after
the Bayesian updating of the complex eutrophica-
tion model was fairly limited. [It should be noted

that for the sake of consistency all the parameter
posteriors were presented as lognormal distribu-
tions, although in several cases the shape is better
approximated by a uniform distribution.] Namely,
most of the calibration parameters were character-
ized by minor or no shifts of their central tendency
relative to the prior assigned values, such as the
half saturation constants for nitrogen uptake (KN(i);

i= diatoms, greens, cyanobacteria), the half saturation con-
stants for grazing (KZ(j); j= cladocerans, copepods), and
the half saturation constants for growth efficiency
(ef2(j); j= cladocerans, copepods). Nonetheless, there were
parameters with moderate shifts of their posterior
mean values; characteristic examples were the ni-

TABLE 1. Prior and posterior parameter distributions in three trophic states: ΛΛ– lognormal distribution,
θθ ~ ΛΛ(µ*, σσ*) is a mathematical expression meaning that θθ is lognormally distributed, µ* and σσ* corre-
spond to the median and multiplicative standard deviation.

Parameters Prior Oligotrophic Mesotrophic Eutrophic

bmref(clad) Λ(0.0495, 1.161) Λ(0.0491, 1.236) Λ(0.0490, 1.239) Λ(0.0491, 1.241)
bm ref(cop) Λ(0.0442, 1.181) Λ(0.0441, 1.271) Λ(0.0438, 1.271) Λ(0.0444, 1.265)
bmref(cyan) Λ(0.0775, 1.116) Λ(0.0774, 1.168) Λ(0.0789, 1.163) Λ(0.0808, 1.162)
bmref(diat) Λ(0.0980, 1.091) Λ(0.0978, 1.144) Λ(0.0951, 1.125) Λ(0.0946, 1.120)
bmref(green) Λ(0.0775, 1.116) Λ(0.0760, 1.170) Λ(0.0753, 1.164) Λ(0.0753, 1.163)
ef2(clad) Λ(18.3, 1.123) Λ(18.3, 1.183) Λ(18.3, 1.181) Λ(18.1, 1.183)
ef2(cop) Λ(19.4, 1.116) Λ(19.3, 1.174) Λ(19.3, 1.172) Λ(19.4, 1.166)
growthmax(cyan) Λ(1.26, 1.106) Λ(1.29, 1.155) Λ(1.28, 1.158) Λ(1.22, 1.145)
growthmax(diat) Λ(2.19, 1.040) Λ(2.23, 1.050) Λ(2.24, 1.049) Λ(2.22, 1.055)
growthmax(greens) Λ(1.79, 1.049) Λ(1.80, 1.070) Λ(1.80, 1.073) Λ(1.81, 1.070)
grazingmax(clad) Λ(0.837, 1.080) Λ(0.837, 1.118) Λ(0.839, 1.115) Λ(0.844, 1.121)
grazingmax(cop) Λ(0.490, 1.091) Λ(0.489, 1.134) Λ(0.477, 1.125) Λ(0.490, 1.139)
KCrefdissolution Λ(0.00200, 2.691) Λ(0.00194, 2.573) Λ(0.00198, 2.588) Λ(0.00206, 2.643)
Keddyref Λ(0.0316, 1.218) Λ(0.0351, 1.277) Λ(0.0325, 1.340) Λ(0.0322, 1.277)
KEXTback Λ(0.265, 1.084) Λ(0.256, 1.106) Λ(0.244, 1.075) Λ(0.252, 1.097)
KEXTchla Λ(0.0200, 1.347) Λ(0.0187, 1.489) Λ(0.0169, 1.424) Λ(0.0173, 1.452)
KN(cyan) Λ(22.9, 1.200) Λ(22.8, 1.308) Λ(22.9, 1.298) Λ(23.0, 1.306)
KN(diat) Λ(64.2, 1.069) Λ(64.1, 1.101) Λ(64.1, 1.101) Λ(64.2, 1.101)
KN(greens) Λ(43.9, 1.102) Λ(43.9, 1.151) Λ(43.9, 1.150) Λ(43.7, 1.149)
KNrefdissolution Λ(0.00200, 2.691) Λ(0.00201, 2.663) Λ(0.00199, 2.613) Λ(0.00195, 2.594)
KNrefmineral Λ(0.00775, 1.503) Λ(0.00884, 1.622) Λ(0.00594, 1.559) Λ(0.00691, 1.716)
KP(cyan) Λ(19.4, 1.116) Λ(19.2, 1.174) Λ(19.7, 1.168) Λ(19.5, 1.174)
KP(diat) Λ(5.66, 1.161) Λ(5.28, 1.216) Λ(5.36, 1.226) Λ(5.46, 1.235)
KP(greens) Λ(10.6, 1.128) Λ(10.4, 1.187) Λ(10.3, 1.187) Λ(10.4, 1.188)
KPrefdissolution Λ(0.00200, 2.691) Λ(0.00202, 2.604) Λ(0.00198, 2.603) Λ(0.00202, 2.668)
KPrefmineral Λ(0.0245, 1.470) Λ(0.0220, 1.644) Λ(0.0235, 1.691) Λ(0.0235, 1.716)
KSi(diat) Λ(40.0, 1.347) Λ(39.7, 1.542) Λ(39.8, 1.536) Λ(39.8, 1.527)
KSirefdissolution Λ(0.00200, 2.691) Λ(0.00198, 2.631) Λ(0.00197, 2.613) Λ(0.00194, 2.533)
KZ(clad) Λ(114, 1.058) Λ(114, 1.087) Λ(114, 1.087) Λ(113, 1.085)
KZ(cop) Λ(93.8, 1.071) Λ(93.6, 1.104) Λ(94.5, 1.104) Λ(93.3, 1.100)
pred1 Λ(0.141, 1.161) Λ(0.139, 1.238) Λ(0.138, 1.233) Λ(0.136, 1.224)
pred2 Λ(34.6, 1.266) Λ(36.1, 1.400) Λ(35.5, 1.412) Λ(39.4, 1.330)
Vsettling(cyan) Λ(0.0224, 1.413) Λ(0.0205, 1.590) Λ(0.0224, 1.605) Λ(0.0232, 1.610)
Vsettling(diat) Λ(0.316, 1.106) Λ(0.289, 1.112) Λ(0.275, 1.072) Λ(0.293, 1.118)
Vsettling(greens) Λ(0.245, 1.091) Λ(0.237, 1.128) Λ(0.231, 1.108) Λ(0.235, 1.120)
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FIG. 2. Prior (thin black dashed lines) and posterior (eutrophic environment: thick grey lines,
mesotrophic environment: thick black lines, and oligotrophic environment: thick grey dashed lines,)
cumulative distributions of the aquatic biogeochemical model. 
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FIG. 2. (Continued).
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trogen mineralization rate (KNrefmineral) with rela-
tive percentage changes of 14, 23, and 11% in the
oligo-, meso-, and eutrophic environments, respec-
tively; the light attenuation coefficient for chloro-
phyll (KEXTchla) with 6, 15, and 14% relative
changes in the three nutrient enrichment conditions;
settling velocity for diatoms (Vsettling(diat)) with 9,
13, and 7% relative shifts. Furthermore, the vast
majority of the posterior standard deviations in-
creased or remained unaltered relative to the prior
assigned values, and several parameter posteriors
were almost uniformly distributed within the speci-
fied ranges prior to the model calibration. Notable
exceptions were the dissolution/hydrolysis rates for
particulate carbon (KCrefdissolution), nitrogen (KN-
refdissolution), phosphorus (KPrefdissolution), and silica
(KSirefdissolution) with approximately 2–6% relative
decrease of the respective standard deviations. The
standard deviation of the diatom settling velocity
(Vsettling(diat)) was also reduced by 3% in the
mesotrophic state. 

The comparison between the observed and poste-
rior predictive monthly distributions for the three
trophic states indicates that the eutrophication model
combined with the Bayesian calibration scheme pro-
vides an accurate representation of the system dy-
namics. In the oligotrophic environment, the
observed monthly values were included within the
95% credible intervals of the model predictions
throughout the simulation period, while the median
values of model predictions closely matched the ob-
served patterns (Fig. 3). In a similar manner, all the
observed values of the dataset representing the
mesotrophic conditions were included within the
95% credible intervals, although the median model
predictions slightly underestimated the spring bio-
mass peaks of three phytoplankton groups (Fig. 4).
In the eutrophic scenario, the model closely repro-
duced the summer prey-predator oscillations be-
tween cladocerans and the three phytoplankton
groups and also accurately simulated the nutrient dy-
namics, i.e., total nitrogen, nitrate, ammonium, total
phosphorus, and phosphate (Fig. 5). However, the
central tendency and uncertainty bounds of the cope-
pod biomass predictive distribution failed to capture
the late-spring peak, while the upper (97.5%) and
lower (2.5%) uncertainty boundaries showed con-
vexo-convex shape during the same period. 

The model performance for each trophic state
was evaluated by three measures of fit: root mean
squared error (RMSE), relative error (RE) and aver-
age error (AE) (Table 2). These comparisons aimed
to assess the goodness-of-fit between the medians

of the predictive distributions and the observed val-
ues. The application of the model to the olig-
otrophic environment was characterized by the
lowest RE values (1.19–10.6%), while the
mesotrophic and eutrophic scenarios resulted in
moderate (3.37–13.6%), and relatively larger RE
values (6.03–21.2%), respectively. We also high-
light the fairly high RE values for cyanobacteria
and copepod biomass in the eutrophic environment,
whereas total nitrogen and dissolved oxygen had
consistently low REs in the three nutrient loading
scenarios. The average error is a measure of aggre-
gate model bias, though values near zero can be
misleading because negative and positive discrep-
ancies can cancel each other. In most cases, we
found that the medians of the state variable predic-
tive distributions underestimated the observed lev-
els, whereas dissolved oxygen was overestimated
with an AE value of 0.482, 0.356, and 0.628 mg L–1

in the oligo-, meso-, and eutrophic environment, re-
spectively. The root mean square error is another
measure of the model prediction accuracy that over-
comes the shortcoming of the average error by con-
sidering the magnitude rather than the direction of
each difference. The RMSE for the copepod bio-
mass increased across the trophic gradient exam-
ined from 5.19 µg C L–1 in the oligotrophic to 13.2
and 48.3 µg C L–1 in the meso- and eutrophic
datasets, respectively. We also note the approxi-
mately 0.5 µg chla L–1 mean discrepancy between
the predictive medians and the observed cyanobac-
teria biomass values. 

The seasonally invariant error terms (σj) delin-
eate a constant zone around the model predictions
for the 24 state variables that accounts for the dis-
crepancy between the model simulation and the nat-
ural system dynamics (Table 3). The majority of the
discrepancy terms increased as we move from the
oligotrophic to the eutrophic state, providing evi-
dence that these terms play an important role in ac-
commodating the increased intra-annual variability
of the meso- and eutrophic datasets. On the other
hand, the error terms associated with the phyto-
plankton intracellular nutrient storage (e.g., σN, P(i);

i= diatoms, greens, cyanobacteria, and σSi(diatoms)) were
characterized by similar mean and standard devia-
tion values across the trophic gradient examined.
Finally, high coefficients of variation (standard de-
viation/mean) were found for the dissolved oxygen,
dissolved organic carbon, and dissolved silica error
terms. 
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FIG. 3. Comparison between the observed and posterior predictive monthly distributions for 10 water
quality variables based on Markov chain Monte Carlo posterior samples from the model application in the
oligotrophic environment. Solid line corresponds to the median value of model prediction and dashed lines
correspond to the 2.5 and 97.5% uncertainty bounds. The square dots represent the observed data, while
the error bars correspond to the measurement error.
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FIG. 4. Comparison between the observed and posterior predictive monthly distributions for 10 water
quality variables based on Markov chain Monte Carlo posterior samples from the model application in the
mesotrophic environment. Solid line corresponds to the median value of model prediction and dashed
lines correspond to the 2.5 and 97.5% uncertainty bounds. The square dots represent the observed data,
while the error bars correspond to the measurement error.
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FIG. 5. Comparison between the observed and posterior predictive monthly distributions for 10 water
quality variables based on Markov chain Monte Carlo posterior samples from the model application in the
eutrophic environment. Solid line corresponds to the median value of model prediction and dashed lines
correspond to the 2.5 and 97.5% uncertainty bounds. The square dots represent the observed data, while
the error bars correspond to the measurement errors.
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Exceedance Frequency and Confidence of
Compliance with Water Quality Standards

The MCMC posterior samples were also used to
examine the exceedance frequency and confidence
of compliance with different water quality stan-
dards under the three nutrient loading scenarios.
For illustration purposes, we selected three water
quality variables of management interest, i.e.,
chlorophyll a concentration, total phosphorus, and
percentage cyanobacteria contribution to the total
phytoplankton biomass, and then specified their
threshold values (numerical criteria) at 5 µg Chl a
L–1, 25 µg TP L–1, and 30%, respectively. For each
iteration, we calculated the monthly predicted val-
ues and the corresponding probabilities of exceed-
ing the three water quality criteria. The latter
probabilities were calculated as follows:

θ, x, and y0, σε is the measurement error/within-
month variability, and F(.) is the value of the cumu-
lative standard normal distribution. The monthly
predicted values along with the calculated ex-
ceedance frequencies were then averaged over the
summer stratified period (June-September). The
distribution of these statistics across the posterior
space (12,500 MCMC samples) can be used to as-
sess the expected exceedance frequency and the
confidence of compliance with the three water qual-
ity standards, while accounting for the uncertainty
that stems from the model parameter uncertainty. It
should be noted that the exceedance frequency is
not necessarily normally distributed, especially
since this value is calculated as the average over the
stratified period (Borsuk et al. 2002).

In our example, no violations of the 5 µg Chl a
L–1 numerical criterion are predicted in the oligo-
and mesotrophic scenarios (Fig. 6). On the other
hand, the chlorophyll a standard is likely to be vio-
lated in the eutrophic environment, and the corre-
sponding expected exceedance (the mean of the
distributions in Fig. 7) and confidence of compli-

TABLE 2. Goodness-of-fit statistics for the model state variables in three trophic states*.

Oligotrophic Mesotrophic Eutrophic

State Variables RMSE RE AE RMSE RE AE RMSE RE AE

Green Algae Biomass
(µg Chl a/L) 0.118 7.03% –0.050 0.223 8.49% –0.092 0.251 7.63% –0.117

Diatom Biomass
(µg Chl a/L) 0.307 10.4% –0.139 0.467 13.6% –0.215 0.275 7.17% –0.139

Cyanobacteria Biomass
(µg Chl a/L) 0.059 8.26% –0.028 0.235 10.7% –0.082 0.552 12.8% –0.188

Copepod Biomass
(µg C/L) 5.19 10.6% –2.00 13.2 12.6% –4.74 48.3 21.2% –15.6

Cladoceran Biomass
(µg C/L) 3.41 7.04% –1.62 4.40 5.92% –2.20 8.42 6.03% –4.23

Total Silica
(mg Si/L) 0.097 7.50% 0.019 0.136 8.25% –0.0085 0.222 8.61% –0.0030

Total Nitrogen
(µg N/L) 4.06 1.19% –2.77 14.4 3.37% –9.48 45.4 7.64% –12.5

Total Phosphorus
(µg P/L) 0.627 4.16% –0.350 1.17 4.62% –0.648 4.74 9.81% –1.16

Dissolved Oxygen
(mg DO/L) 0.655 4.92% 0.482 0.629 5.04% 0.356 0.763 6.37% 0.628

* RMSE – Root Mean Square Error 
RE – Relative Error
AE – Average Error

p P c c x y F
c g x y

= > ′ = −
′ −







( , , )
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θ δ
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0
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where p is the probability of the response variable
exceeding a numerical criterion c’, given values of
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ance (the proportion of the exceedance frequency
distribution that lies below the EPA’s 10% guide-
line; CC) were approximately 30 and 3.5%, respec-
tively. This probabilistic assessment of the water
quality conditions should make model results more
useful to decision makers and stakeholders, because
the deterministic statements are avoided and the op-
timal management schemes (e.g., reduction of nu-
trient loading) are determined by explicitly
acknowledging an inevitable risk of non-attainment.
Similar insights can be gained by the other two
water quality criteria (total phosphorus and
cyanobacteria percentage). In the eutrophic condi-
tions, the exceedance frequency distribution of the
25 µg TP L–1 criterion was lying within the
30–100% range, and therefore it is nearly impossi-
ble to comply with the 10% EPA guideline. The lat-
ter conclusion can also be drawn with regards to the

30% cyanobacteria biomass criterion, although in
this case a fairly low confidence of compliance also
characterizes the mesotrophic state. Analogous
statements can be made with other model endpoints
of management interest, such as the spatiotemporal
dissolved oxygen levels in systems experiencing
problems of prolonged hypoxia (e.g., Lake Erie). 

DISCUSSION

The water quality management usually relies on
mathematical models with strong mechanistic basis,
as this improves the confidence in predictions made
for a variety of conditions. From an operational
standpoint, the interpretation of model results
should explicitly consider two sources of model
error, i.e., the observed variability that is not ex-
plained by the model and the uncertainty arising

TABLE 3. Markov Chain Monte Carlo posterior estimates of the mean values and standard devia-
tions of the model discrepancies in three trophic states.

Discrepancy Oligotrophic Mesotrophic Eutrophic

terms Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

σgreen algae 25.8 7.32 33.9 10.3 46.0 14.9

σdiatoms 38.4 15.8 35.6 21.4 58.4 19.3

σcyanobacteria 10.5 2.93 23.3 7.62 39.2 17.6

σN(greens) 0.0494 0.0111 0.0496 0.0113 0.0495 0.0114

σP(greens) 0.0434 0.0098 0.0435 0.0098 0.0436 0.0098

σN(diatoms) 0.0492 0.0113 0.0496 0.0117 0.0493 0.0116

σP(diatoms) 0.0436 0.0099 0.0438 0.0102 0.0438 0.0097

σSi(diatoms) 0.0618 0.0163 0.0612 0.0159 0.0608 0.0156

σN(cyanobacteria) 0.0498 0.0117 0.0497 0.0117 0.0496 0.0116

σP(cyanobacteria) 0.0436 0.0099 0.0436 0.0098 0.0438 0.0098

σcopepods 19.3 5.25 29.7 9.53 33.2 17.0

σcladocerans 20.5 5.43 34.8 8.84 73.8 17.9

σNO3 53.4 15.9 92.7 23.5 157 35.7

σNH4 1.77 0.784 7.76 2.09 18.6 4.71

σDON 1.56 1.93 2.32 3.23 3.56 5.24

σPON 10.8 2.55 16.6 3.89 19.0 4.62

σPO4 3.00 0.726 5.09 1.25 10.2 2.58

σDOP 0.608 0.219 1.09 0.401 1.30 0.925

σPOP 0.820 0.192 1.54 0.374 1.90 0.462

σDOC 10.3 19.0 26.4 44.5 48.2 112

σPOC 54.3 13.1 90.7 20.8 109 25.8

σDSi 12.3 23.5 18.1 33.0 29.7 54.7

σPSi 119 30.1 232 56.4 461 116

σDO 67.0 158 87.4 177 93.8 190
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from the model parameters and/or the misspecifica-
tion of the model structure (Arhonditsis et al. 2007,
Stow et al. 2007). In this study, we illustrated a
methodological framework that can accommodate
rigorous and complete error analysis, thereby al-
lowing for the direct assessment of the frequency of
water quality standard violations along with the de-
termination of an appropriate margin of safety
(Borsuk et al. 2002). The latter term refers to the
probability distribution of the predicted exceedance
probabilities and represents the degree of confi-
dence that the true value of the violation frequency
is below a specified value (Wild et al. 1996,
McBride and Ellis 2001). The presentation of the
model outputs as probabilistic assessment of water
quality conveys significantly more information than
the point predictions and is conceptually similar to
the percentile-based standards proposed by the
EPA-guidelines (Office of Water 1997). In this re-
gard, our analysis also builds upon the recommen-
dations of an earlier modeling work by Lam et al.
(1987b), which advocated the use of probability in-
dicators in water quality assessment in the Great
Lakes area, recognizing the importance of the vari-
ability pertaining to nutrient loading and weather
conditions. This type of probabilistic information is
certainly more appealing to decision makers and
stakeholders, as it acknowledges the knowledge
gaps, the inherent uncertainty, and the interannual
variability typically characterizing freshwater
ecosystems (Ludwig 1996). The latter feature is
particularly important in the most degraded and
highly variable nearshore zones or enclosed
bays/harbors in the Great Lakes. These areas are
transitional zones in that they receive highly pol-
luted inland waters from watersheds with signifi-
cant agricultural, urban and/or industrial activities
while mixing with offshore waters having different
biological and chemical characteristics. Generally,
we believe that the Bayesian calibration presented
herein can be particularly useful in the context of
the Great Lakes modeling, although our analysis
highlighted several technical features that need to
be acknowledged so as to put this framework into
perspective.

As demonstrated in several recent studies
(Arhonditsis et al. 2007, 2008a, 2008b), the inclu-
sion of the monthly invariant stochastic terms that
account for model structure imperfection resulted in
a close reproduction of the epilimnetic patterns.
Even though the median model predictions tend to
slightly underestimate the spring plankton bloom,
all the observed monthly values of the datasets rep-

FIG. 6. Predictive distributions for water quality
variables of management interest (chlorophyll a,
total phosphorus, and cyanobacteria percentage)
during the summer stratified period (June to Sep-
tember). The dashed lines correspond to the
numerical criteria used to determine the frequency
of violations under different trophic conditions.
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resenting the three trophic states were included
within the 95% credible intervals. It is important to
note, however, that the updating of the model
mainly changed the discrepancy error terms instead
of the model input parameters; namely, the terms
that reflect the model inadequacy and not the math-
ematical model itself were used to accommodate
the temporal variability across the trophic gradient
examined. The latter result does not fully satisfy the
basic premise of our framework to attain realistic
forecasts while gaining insight into the ecological
structure (e.g., cause-effect relationships, feedback
loops) underlying system dynamics. Similar results
were also reported in an earlier exercise of sequen-
tial model updating (Arhonditsis et al. 2008a), but
here the increased complexity of the model has fur-
ther reduced the updating of the posterior parameter
distributions. A more parsimonious statistical con-
figuration of the model will assume a “perfect”
model structure, i.e., the difference between model
and lake dynamics is only caused by the observa-
tion/measurement error (Higdon et al. 2004, Arhon-
ditsis et al. 2007). Applications of this statistical
formulation resulted in narrow-shaped posterior pa-
rameter distributions but also in substantial misrep-
resentation of the calibration dataset (Arhonditsis et
al. 2008a, b). Both features were attributed to the
overconditioning of the parameter estimates be-
cause the lack of potential for model error tends to
overestimate the information content of the obser-
vations (Beven 2006). These contradictory results
highlight the pivotal role of the assumptions per-
taining to model error structure and invite further
examination of statistical formulations that objec-
tively weigh the relative importance of the discrep-
ancy terms vis-à-vis the model parameters on the
calibration results. For example, future research
should evaluate formulations that explicitly con-
sider the dependence patterns of the error terms in
time/space along with the covariance between mea-
surement error and model structural error (Beven
2006, Arhonditsis et al. 2008b).

The determination of the model structure (and as-
sociated parameter values) that realistically repre-
sents the natural system dynamics is the basic
foundation for developing robust prognostic tools
(Reichert and Omlin 1997). However, most of the
calibration schemes in the modeling literature have
not adequately addressed the problem of uncer-
tainty, and sometimes generate more questions than
answers. Model calibration is mainly presented as
an inverse solution exercise (i.e., the data for the
model endpoints are used to learn something about

FIG. 7. The exceedance frequency of the differ-
ent water quality standards (chlorophyll a: 5 µg/L,
total phosphorus: 25 µg/L, and cyanobacteria per-
centage: 30%) during the summer stratified period
(June to September) under the different trophic
conditions. In these distributions, the area below
the 10% cutoff point is termed the confidence of
compliance (CC), and represents the probability
that the true exceedance frequency is below the
10% EPA guideline.
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the parameters) or as an exercise for delineating un-
certainty zones around the mean predictions (Beven
1993, Beven 2001). In ecological modeling, the
model parameters correspond to ecological
processes for which we usually have substantial
amount of information on the relative plausibility of
their values (e.g., Jorgensen et al. 1991). Thus, it is
a significant omission to ignore this knowledge and
solely let the data to offer insights into the parame-
ter marginal distributions. In this study, prior infor-
mation of the magnitudes of ecological processes
(based on field observations from the lake, labora-
tory studies, literature information, and expert judg-
ment) was used to formulate probability
distributions that reflect the relative likelihood of
different values of the respective model parameters.
Earlier studies have indicated that the inclusion of
these informative distributions into the “prior-likeli-
hood-posterior” update cycles of intermediate com-
plexity models favours solutions that more
realistically depict the internal structure of the sys-
tem and avoid getting “good results for the wrong
reasons”; the latter finding has been reported even
when the mathematical models were coupled with
statistical formulations that explicitly consider dis-
crepancy error terms (Arhonditsis et al. 2007,
2008a, 2008b). In this analysis, however, the rela-
tively uninformative patterns of the posterior para-
meter space suggest that the efficiency of this
scheme can be compromised with complex model
structures (≥ 15–20 state variables). Interestingly,
our analysis showed a relatively higher change
(central tendency shifts and standard deviation re-
ductions) of the posterior moments of some para-
meters associated with the nutrient recycling in the
system, i.e., dissolution and mineralization rates.
Despite the aforementioned role of the model struc-
ture error terms and the high dimensional input
space (35 model parameters) of the complex simu-
lation model examined, some of the parameters rep-
resenting feedback loops of the system played a
somewhat more active role during the Bayesian up-
dating process. Finally, the high coefficients of
variation for the DO, DOC, and DSi error terms are
indicative of the relatively low intra-annual vari-
ability characterizing these state variables (Arhon-
ditsis et al. 2008a). 

Aside from the probabilistic assessment of the
water quality conditions, another benefit of the
Bayesian parameter estimation is the alignment
with the policy practice of adaptive management,
i.e., an iterative implementation strategy that is rec-
ommended to address the often-substantial uncer-

tainty associated with water quality model fore-
casts, and to avoid the implementation of inefficient
and flawed management plans (Walters 1986).
Adaptive implementation or “learning while doing”
supports initial model forecasts of management
schemes with post-implementation monitoring, i.e.,
the initial model forecast serves as the Bayesian
prior, the post-implementation monitoring data
serve as the sample information (the likelihood),
and the resulting posterior probability (the integra-
tion of monitoring and modeling) provides the basis
for revised management actions (Qian and Reck-
how 2007). The probabilistic predictions for water
quality variables of management interest (e.g.,
chlorophyll a, dissolved oxygen) can also be used
to optimize water quality monitoring programs (Van
Oijen et al. 2005). For example in Figure 8, the sec-
tions of the system where water quality conditions
are more uncertain (“flat” distributions; C and D in
the first map) should be more intensively moni-
tored. These model predictions form the Bayesian
prior which then is integrated (updated) with addi-
tional monitoring data to provide the posterior dis-
tribution. Based on the patterns of the posterior
predictive distributions (where the predictive distri-
bution for one site indicates a “high” probability of
non-attaining water quality goals or, alternatively,
an “unacceptably high” variance), we can deter-
mine again the optimal sampling design for water
quality monitoring and assess the value of informa-
tion (value of additional monitoring; “Where
should additional water quality data collection ef-

FIG. 8. Bayesian parameter estimation and opti-
mization of the water quality monitoring using
value of information concepts from decision the-
ory. 
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forts be focused?”). The Bayesian inference and de-
cision theory can also provide a coherent frame-
work for decision making in problems of natural
resources management (Dorazio and Johnson
2003). Management objectives can be evaluated by
integrating the probability of use attainment for a
given water quality goal with utility functions that
reflect different socioeconomic costs and benefits.
The water quality goals (resulting from specific
management schemes) associated with the highest
expected utility might then be chosen (Dorazio and
Johnson 2003). 

CONCLUSIONS

We illustrated a novel methodological framework
that effectively addresses several aspects of model
uncertainty (model structure, model parameters, ini-
tial conditions, and forcing functions) and explicitly
examines how they can undermine the credibility of
model predictions. We also demonstrated how the
Bayesian parameter estimation can be used for as-
sessing the exceedance frequency and confidence of
compliance of different water quality criteria. The
present analysis also highlighted the difficulty in
unequivocally disaggregating the role of the uncer-
tainty in model inputs and the error associated with
the model structure (parameters versus model im-
perfection error terms); especially when using com-
plex statistical formulations and models with
multivariate outputs. Generally, our study provides
overwhelming evidence that the coupling of the
Bayesian calibration framework with complex over-
parameterized simulation models can negate the
premise of attaining realistic forecasts while gain-
ing mechanistic insights into the ecosystem dynam-
ics. Thus, the use of complex models is advised
only if existing prior information from the system
can reasonably constrain the input parameter space,
thereby ensuring model fit that is not founded on
uninformative and/or fundamentally flawed ecolog-
ical structures (e.g., unrealistic magnitudes of the
various ecological processes). In cases where prior
knowledge does not exist, it is advised to start with
intermediate complexity models (4–10 state vari-
ables) and then gradually increase the complexity
as more information becomes available (Arhondit-
sis et al. 2008b). 

The latter assertions do not imply that this frame-
work cannot accommodate the enormous complex-
ity characterizing environmental systems, but rather
are an indication that the rigid structure of complex
mathematical models can be replaced by more flex-

ible modeling tools (e.g., Bayesian networks) with
the ability to integrate quantitative descriptions of
ecological processes at multiple scales and in a va-
riety of forms (intermediate complexity mathemati-
cal models, empirical equations, expert judgments),
depending on available information (Borsuk et al.
2004). Regarding the spatial model resolution, our
presentation was based on a single-compartment
model for the sake of simplicity, but it should be ac-
knowledged that the Bayesian framework can be
easily employed with the segmentations of existing
Great Lakes models, i.e., 5–10 completely-mixed
boxes (Lam et al. 1987a, DiToro et al. 1987, Bier-
man et al. 2005). It is expected though that the use
of finer grid resolutions will significantly increase
the computation demands along with the simulation
time required. To overcome this impediment, on-
going research should focus on the use of more
flexible schemes, such as nested grid configurations
that can reduce the computational time compared to
the standard approach (one fixed grid size) and bet-
ter capture the interplay between pollutant
mixing/dispersion and food web dynamics in the
nearshore areas, while the offshore water dynamics
can be sufficiently reproduced with coarser spatio-
temporal resolution. The patterns of the posterior
uncertainty can then be used to further optimize the
spatial model segmentation (e.g., splitting-up seg-
ments with flat posteriors or lumping segments with
similar, narrow-shaped predictions) and avoid
overly cumbersome modeling constructs that pro-
foundly violate the parsimony principle.   

Bearing in mind the pending reevaluation of the
Great Lakes Water Quality Agreement, the Great
Lakes community—as it did in the 1970s—has the
opportunity to set the standard for the innovative
use of mathematical models in support of decision-
making. Despite the unresolved technical issues, we
believe that the benefits from the Bayesian calibra-
tion scheme proposed, such as the assessment of
uncertainty in model predictions and expression of
model outputs as probability distributions, the
alignment with the policy practice of adaptive man-
agement, and the optimization of the sampling de-
sign of monitoring programs can be particularly
useful for stakeholders and policy makers when
making decisions for sustainable environmental
management in the Laurentian Great Lakes region.
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GLOSSARY OF TERMS
Bayes’ Theorem: is a theorem of probability theory

originally stated by the Reverend Thomas Bayes. The
theorem relates the conditional and marginal probabil-
ity distributions of random variables, and tells how to
update or revise beliefs in the light of new evidence
from the study system.

Bayesian Inference: is a statistical approach in which
all forms of uncertainty are expressed in terms of
probabilities to represent the modification of our pre-
vious beliefs as a result of receiving new data. In the
inference process, Bayes’ Theorem is applied to ob-
tain a posterior probability for a specific hypothesis,
which considers both the prior probability and the ob-
servations from the study system.

Convergence: is the point in which MCMC sampling
techniques eventually reach a stationary distribution.
From this point on, the MCMC scheme moves around
this distribution.

Credible Interval: is a posterior probability interval of a
parameter or a model output. Credible intervals are
the Bayesian counterparts of the confidence intervals
used in frequentist statistics. 

Likelihood Function: is a conditional function [p(y|θ)]
considered as a function of its second argument (θ,
model parameters) with its first argument (y, the data)
held fixed. The likelihood function indicates how
likely a particular population (model parameter set)
can produce an observed sample.

Model Calibration: Calibration is the procedure by
which the modeler attempts to find the best fit be-
tween computed and observed data by adjusting
model parameters.

Markov Chain Monte Carlo (MCMC) Methods: are a
class of algorithms for sampling from probability dis-
tributions based on the construction of a Markov
chain that has the desired distribution as its stationary
distribution. This procedure is used to generate a se-
quence of samples from a probability distribution that
is difficult to be directly sampled.

Metropolis-Hastings Algorithm: is a rejection sam-
pling algorithm, which generates a random walk using
a proposal density and contains a method for rejecting
proposed steps. It is one algorithm of Markov chain
Monte Carlo methods. 

Over Relaxation: At each MCMC iteration, a number of

candidate samples are generated and one that is nega-
tively correlated with the current value is selected.
The time per iteration will be increased, but the
within-chain correlations should be reduced and hence
lower number of iteration may be necessary.

Posterior Distribution: is the conditional probability of
a random event or an uncertain proposition that is de-
rived when the relevant evidence from the study sys-
tem is taken into account.

Prior Distribution: is a marginal probability that de-
scribes what is known about a variable in the absence
of evidence from the study system.

Runge-Kutta Method: is a family of implicit and ex-
plicit iterative methods for the numerical approxima-
tion of solutions of ordinary differential equations.

Sensitivity Analysis: is the process by which the mod-
eler attempts to evaluate the model sensitivity to the
parameters selected, the forcing functions, or the
state-variable submodels.
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