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Abstract We revisit the phosphorus-retention and nutri-
ent-loading models in limnology using a Bayesian hier-
archical framework. This methodological tool relaxes a
basic assumption of regression models fitted to data sets
consisting of observations from multiple systems, i.e.,
the systems are assumed to be identical in behavior,
and therefore the models have a single common set of
parameters for all systems. Under the hierarchical
structure, the models are dissected into levels (hierar-
chies) that explicitly account for the role of significant
sources of variability (e.g., morphometry, mixing regime,
geographical location, land-use patterns, trophic status),
thereby allowing for intersystem parameter differences.
Thus, the proposed approach is a compromise between
site-specific (where limited local data is a problem) and
globally common (where heterogeneous systems in wide
geographical areas are assumed to be identical) param-
eter estimates. In this study, we used critical values of the
mean lake depth �z ¼ 10:3mð Þ and the hydraulic resi-
dence time (sw = 2.6 years) to specify the hierarchical
levels of the models. Our analysis demonstrates that the
hierarchical configuration led to an improvement of the
performance of six out of the seven hypothesized rela-
tionships used to predict lake-phosphorus concentra-
tions. We also highlight the differences in the posterior
moments of the group-specific parameter distributions,
although the inference regarding the importance of dif-
ferent predictors (e.g., inflow-weighted total phosphorus

input concentration, and hydraulic retention time) of
lake phosphorus or the relative predictability of the
models examined are not markedly different from an
earlier study by Brett and Benjamin. The best fit to the
observed data was obtained by the model that considers
the first-order rate coefficient for total phosphorus loss
from the lake as an inverse function of the lake hydraulic
retention time. Finally, our analysis also demonstrates
how the Bayesian hierarchical framework can be used for
assessing the exceedance frequency and confidence of
compliance of water-quality standards. We conclude that
the proposed methodological framework will be very
useful in the policy-making process and can optimize
environmental management actions in space and time.

Keywords Total phosphorus Æ Bayesian hierarchical
modeling Æ Hydraulic retention time Æ Sedimentation Æ
Water-quality standards Æ Confidence of compliance

…the efficacy of predictive limnology is not a matter of
opinion. It is a matter of record…For applied limnologists,
predictive limnology…has shown what sort of ecology is
effective, what sort of information will sway politicians and
governments to action, and how scientists can help to
improve our world…

R. H. Peters (1986)

Introduction

Vollenweider’s (1968, 1975, 1976) research on the regu-
lation of lake productivity by phosphorus inputs
has been one of the most influential contributions in
limnology and has guided much of the eutrophication
research and current lake-management practices.
Founded upon the ‘‘continuously stirred tank reactor
principle’’, his steady-state, mass-balance model has
provided the basis for a family of models that predict
lake total phosphorus concentrations (TPlake) as a
function of lake morphometric/hydraulic characteristics,
such as the areal phosphorus loading rate, mean lake
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depth, fractional phosphorus retention, and areal
hydraulic loading (Ahlgren et al. 1988; Brett and
Benjamin 2008). Most of these empirical eutrophication
models have been derived from cross-sectional datasets,
which consist of multiple point measurements or single
averages from a number of lakes. Because of the sig-
nificant intersystem variability, such datasets are usually
characterized by wider ranges for the variables consid-
ered in the empirical relationships and the subsequent
model fit (typically using ordinary least squares) gener-
ally provides well-determined parameters (Reckhow and
Chapra 1983). The resulting models are then used to
predict changes within a single system at different points
in time under the assumption that the large-scale (cross-
sectional) patterns described in the model are also rep-
resentative of the dynamics of individual systems
(Reckhow 1993). By doing so, we essentially assume that
all the systems in the dataset have identical behavior and
therefore the empirical relationships are the same among
and within lakes (Prairie and Marshall 1995). Despite
their conceptual and structural simplicity, these models
are viewed as important management tools for the res-
toration of impaired lakes and the protection of unaf-
fected waterbodies (Dillon and Molot 1996).

While the cross-system method is a pragmatic solu-
tion to overcome the problems of overfitting when sys-
tem-specific data are limited, the validity of the practice
of using global-scale models to support predictions
within individual lakes has been the subject of debate in
the water-quality modeling literature. Earlier attempts
to address this issue focused on the development of
statistical techniques to detect the presence of significant
effects of error variability and to unravel the ‘‘true’’
structural relationships (Prairie et al. 1995; Prairie and
Marshall 1995). The impetus of this approach was
articulated by Prairie et al. (1995) who contended that
the natural error variability in many variables tends to
obfuscate the delineation of existing ecological trends or
to misleadingly create significant relationships where
they do not actually exist. The latter problem is further
accentuated by the fact that the variability within a
single system is generally much smaller (and the rela-
tionships accordingly less defined) than across multiple
systems. Prairie and Marshall (1995) introduced a
method that addresses this problem and makes it pos-
sible to extract empirical relationships from the internal
structure of a time-series within a single lake which can
then be objectively compared to those obtained from
cross-sectional data. Other modeling efforts have
attempted to relax the assumption of globally common
parameter estimates using statistical methods that allow
parameter values to vary with location. A characteristic
example from this modeling strategy is the develop-
ment of random coefficient linear regression models to
describe the nutrient-chlorophyll relationships in lakes
(Reckhow 1993). In the random coefficient model, the
parameters for each system are viewed as random draws
from a common probability distribution (Swamy 1971;
Judge et al. 1985); an assumption that can effectively

accommodate the behavior of individual lakes and may
result in a substantial reduction of the prediction error
compared to classical (global) models (Reckhow 1993).

The random coefficient regression method is certainly
an improvement over the classical approach, but it still
results in point (single-valued) estimates for model
parameters and therefore does not effectively depict the
uncertainty associated with parameter estimates and
model predictions. To overcome this problem, Borsuk
et al. (2001) introduced a Bayesian hierarchical frame-
work to model the relationship between organic matter
loading and benthic oxygen demand using data from 34
estuarine and coastal systems. The basic premise of their
hierarchical structure was to balance site-specific and
globally common parameter estimates, i.e., each system
had its own parameter set but some commonality in
parameter values was assumed across systems on the
basis of an underlying population distribution. With the
hierarchical model configuration, the fit of the model to
the observed data was improved while the adoption of
the Bayesian approach allowed for a more realistic
assessment of the prediction uncertainty (Borsuk et al.
2001). In particular, the Borsuk et al. (2001) study
showed that the hierarchical approach usually results in
lower prediction precision compared to the global
model, which stems from the reduced amount of infor-
mation used to estimate the site-specific parameters. The
latter feature may have important implications for
environmental management, although the discrepancy
between the two models with regards to their predictive
uncertainty can be minimized as additional data are
collected for a particular system. More recently, Malve
and Qian (2006) developed a Bayesian hierarchical linear
model to assess compliance with chlorophyll a concen-
tration standards under different nitrogen and phos-
phorus loads using data from the national water-quality
monitoring program of Finnish lakes. The structure of
their hierarchical model (i.e., number of hierarchical
levels and type of groups) was based on a geomorpho-
logical classification scheme that was shown to closely
represent the phytoplankton response to various nutri-
ent levels within each lake. Aside from the higher model
performance, the Malve and Qian (2006) study also
underscored the ability of hierarchical modeling to
transfer information across systems and support pre-
dictions in lakes with few observations and limited
observational range.

In this study, we revisit the phosphorus-retention and
nutrient-loading models in limnology using a Bayesian
hierarchical framework. As previously discussed, this
methodological approach is a compromise between site-
specific (where limited local data is a problem) and
globally common parameter estimates (where heteroge-
neous systems in wide geographical areas are assumed to
be identical). Under the hierarchical structure, the
models are dissected into levels (hierarchies) that
explicitly account for the role of significant sources of
variability, e.g., morphometry, mixing regime, geo-
graphical location, land-use patterns, and trophic status.
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Our study builds upon the results of an earlier study
by Brett and Benjamin (2008) and examines seven
general relationships among key morphological and
hydraulic lake characteristics to predict TPlake. The
relative performance of the seven empirical models is
assessed under hierarchical and non-hierarchical for-
mulations. Our analysis also demonstrates how the
Bayesian hierarchical framework can be used to assess
the exceedance frequency and confidence of compli-
ance for different water-quality standards. Finally, we
discuss ways that the proposed methodological
framework can assist in the decision-making process
and facilitate environmental management actions in
space and time.

Methods

Dataset description

The dataset consists of 305 North American and Euro-
pean lakes, compiled from eight previously published,
large-scale phosphorus mass-balance budgets. For each
lake included in the dataset, we have the basic mor-
phometric and hydrologic characteristics (i.e., mean lake
depth, lake surface area, lake volume, inflow rate, and
hydraulic retention time) along with the exogenous
phosphorus loading and the in-lake TP concentration.
Twenty-three lakes from the originally published phos-
phorus budgets are excluded from our dataset because
their phosphorus loadings came from indirect estimation
from land-cover data, they had unrealistic input and
output phosphorus concentrations, or their TPlake con-
centrations were suspected to be far from steady state
(Brett and Benjamin 2008). Among the lakes of our
dataset, there were eight Swiss lakes investigated by
Vollenweider (1969); the small surface area, shallow
depth (median �z ¼ 2:0), low flushing rate, eutrophic
Iowa lakes (n = 16) from the Jones and Bachman
(1976) study; the large surface area, fast flushing Ten-
nessee Valley Authority reservoirs (n = 18) from Higgins
and Kim (1981). A large part (44%) of our database
consists of the north eastern and north central United
States lakes (n = 134) from the National Eutrophica-
tion Survey (USEPA 1975). Another large part of the
database comes from the Organization for Economic
Co-operation and Development (OECD) Eutrophica-
tion Programme on various settings: North American
lakes (n = 30) (Rast and Lee 1978), European Alpine
lakes (n = 20) (Fricker 1980), Scandinavian lakes
(n = 14) (Ryding 1980), and the (mainly) oligotrophic
Canadian Shield forest lakes (n = 65) from Janus and
Vollenweider (1981). Summary statistics of the general
limnological characteristics of the lakes included in this
analysis are provided in Table 1-ESM (Electronic Sup-
plementary Material). Lake morphometry extends over
several orders of magnitude, i.e., the lake volume spans a
wide range from 3.6 · 104 to 1.2 · 1012 m3, the surface

area ranges from 0.0067 to 82,367 km2, and the mean
depth varies from 0.6 to 313 m. [Note that we consider
several large lakes (e.g., Great Lakes, Lake Maggiore,
Lake Okanagan, Lake Seneca, Lake Tahoe, and Lake
Geneva) even though they are incompletely mixed, and
thus do not completely conform to the assumptions of
the ‘‘continuously stirred rank reactor model’’]. The
dataset also covers a wide variety of trophic states,
ranging from ultraoligotrophic (3 lg TP L�1) to hype-
reutrophic (1,525 lg TP L�1) systems. In particular, our
dataset has 74 hypereutrophic (‡100 lg TP L�1), 89
eutrophic (30–100 lg TP L�1), 88 mesotrophic (10–
30 lg TP L�1), and 54 oligotrophic (<10 lg TP L�1)
lakes (Nürnberg 1996). Aside from the Janus and
Vollenweider’s (1981) study, the median TPlake of all the
sources in the database was higher than 25 lg TP L�1,
while four studies had median in-lake TP concentrations
equal to or higher than 50 lg TP L�1.

In addition to the central tendency and dispersion
measures, we also assessed the skewness (g1) and kur-
tosis (g2) of all the limnological variables. As shown in
Table 1-ESM, all the limnological variables were right-
skewed, i.e., the mass of the distribution is concentrated
on the left and the right tail is longer. The volume and
hydraulic retention are heavily right-skewed with g1
equal to 13.4 and 15.3, respectively. The areal hydraulic
loading is also strongly right-skewed (g1 = 10.4) fol-
lowed by the surface area (g1 = 9.6) and mean depth
(g1 = 5.0). Interestingly, the inflow-weighted TP con-
centration (TPin) is more heavily right-skewed compared
to the in-lake total phosphorus concentration (TPlake),
while the ratio TPlake/TPin is nearly symmetrical with
g1 = 0.78. On the other hand, kurtosis measures the
extent to which a dataset is weighted in the tails versus
the center of distribution. The distributions of all the
limnological variables were leptokurtic (Table 1). In
particular, the hydraulic retention time (g2 = 250) and
the lake volume (g2 = 197) were the most strongly
leptokurtic variables followed by the areal hydraulic
loading (g2 = 138), the inflow-weighted TP concentra-
tion (g2 = 104), and the surface area (g2 = 97).

Empirical eutrophication models

The foundation for predicting the total phosphorus
concentrations in lakes was first proposed by
Vollenweider (1969) with his mass-balance model. Un-
der steady-state conditions, this model is expressed as:

TPlake ¼
L

�z qþ rð Þ ð1Þ

This relationship is mathematically equivalent to the
classic model from chemical engineering relating input
and output concentrations of a substance that undergoes
a first-order decay reaction in a continuous flow stirred
tank reactor (Higgins and Kim 1981; Welch 1992; Brett
and Benjamin 2008):
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TPlake ¼
TPin

1þ rsw
ð2Þ

In this paper, we will use the latter formulation to
represent the Vollenweider loading model. While many
authors have used this equation, a few other formula-
tions have been proposed in the limnological literature
(Table 1). In addition, there are different interpretations
of its phosphorus loss term, r, that have generated dif-
ferent TPlake models. Our analysis aims to examine some
of these formulations and assess their relative capacity to
predict TP concentrations in each lake of the database.

Hypothesis 1

TPlake ¼
TPin

1þ k1sw
ð3Þ

In this relationship, k1 is the adjustable parameter.
This model implies k1 = r, which means r is the same
across all lakes. Jones and Bachman (1976) found in
their analysis that the best fit between predicted and
observed TPlake was obtained when r = 0.65.

Hypothesis 2

TPlake ¼
TPin

1þ k2
ð4Þ

In this model, we adjust the parameter k2. This model
is derived from the Vollenweider equation by setting
r = k2/sw to predict TPlake solely based on TPin, the
inflow-weighted phosphorus concentration; that is, to
test how strongly inflow-weighted loading and in-
lake phosphorus concentrations are related. Several
authors (Schindler et al. 1978; Yeasted and Morel 1978;
Reckhow 1988) have found TPin to be the single best
predictor of TPlake. We will test to what extent this
concept applies to our dataset.

Hypothesis 3

TPlake ¼
TPin

1þ vsw=�z
ð5Þ

Many limnological studies (Chapra 1975; Dillon and
Kirchner 1975; Kirchner and Dillon 1975; Snodgrass
and O’Melia 1975; Vollenweider 1975, 1976; Larsen and
Mercier 1976; Ostrofsky 1978; Higgins and Kim 1981;
Nürnberg 1984, 1998; Dillon and Molot 1996) have
adopted this approach, expressing r as the ratio of the
settling velocity, v, of total phosphorus to the lake mean
depth, �z: Depending on the dataset used, the constant
parameter v has been assigned a wide range of values.
For example, Vollenweider (1975) found that r
approximately equals to 10=�z; whereas Chapra (1975)
fitting Kirchner and Dillon’s (1975) dataset calculated
v = 16 m year�1. Dillon and Kirchner (1975) found
that v = 13.2 m year�1, which is somewhat higher than
Larsen and Mercier’s (1976) value of 11.73 m year�1.

Table 1 Summary of the seven hypotheses examined in this analysis

Hypothesis Formula Description

H1 TPin

1þk1sw
This model assumes r is the same in all lakes, i.e., r = k1, where k1 is a constant

H2 TPin

1þk2
This model considers only one predictor, TPin, and implicitly assumes that r = k2/sw, where k2 is a
constant

H3 TPin

1þvsw=�z
This model relates r to the ratio of TP settling velocity (v) over the mean lake depth �zð Þ; i.e., r ¼ v=�z:

H4 TPin

1þk4s
x4
w

This model considers r as an inverse function of the lake’s hydraulic retention time, i.e., r = k4 sw
x
4
�1,

where k4 and x4 are constants
H5 a TPinð Þ

1þbsw
The model is given by the equation proposed by Jones and Bachman (1976) and Prairie (1988, 1989),
where a and b are constants

H6 k6Lx6 This model assumes that TPlake is proportional to L raised to some power, where k6 and x6 are constants

H7 k7 L
�z

� �x7 This model assumes that TPlake is proportional to L=�z raised to some power, where k7 and x7 are
constants

Definitions of the terminology and symbols of the seven hypotheses examined in this analysis:
TPlake = TP concentration in the lake and its outflow (lg L�1)
TPin = inflow weighted TP concentration (lg L�1)
L = areal TP loading rate (mg TP m�2 year�1), L = (Q · TPin)/AL

r = first-order rate coefficient for TP loss (or sedimentation) from the lake (year�1)
v = settling velocity of particulate phosphorus (m year�1)
�z = mean lake depth (m), �z ¼ V =AL
AL = lake surface area (m2), AL ¼ V =�z
V = lake volume (m3), V ¼ AL � �z
q = flushing rate (year�1), q = 1/sw = V/Q
sw = mean hydraulic retention time (years), sw = 1/q = Q/V
qs = areal hydraulic loading (m year�1), qs ¼ Q=AL ¼ q � �z ¼ �z=sw
Q = hydraulic inflow rate (m3 year�1), Q = qs · AL = V/sw = V · q
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This model treats the removal of phosphorus to lake
sediments using the assumption that a fraction of the
TPlake is in particulate form (Chapra 1975) or attached
to settling particles (Brett and Benjamin 2008). How-
ever, it has an implicit (and most likely unrealistic)
assumption that the phosphorus associated with parti-
cles is permanently lost once it reaches the sediment
(Brett and Benjamin 2008). The latter assertion was also
noted by Ahlgren et al. (1988) who concluded that v (just
as r) probably cannot be treated as a constant.

Hypothesis 4

TPlake ¼
TPin

1þ k4s
x4
w

ð6Þ

This model postulates that r = k4sw
x
4
�1, where k4 and

x4 are adjustable parameters. Many authors have found
that x4 has an approximate value of 0.5. For example,
albeit the derivation was justified as being the result of
‘‘certain more or less defendable shortcuts’’, Vollenweider
(1976) found that r = 1/�sw yields the best results and
adopted this approach in his model. Similarly, Larsen
and Mercier (1976) derived the same expression using 20
selected lakes with TPin £ 25 lg TP L�1 to avoid
internal P loading that might obscure the relationship
between r and other lake properties. Reckhow (1977),
Walker (1977), Uttormark and Hutchins (1978) have
also derived similar relationships which were later veri-
fied by Chapra and Reckhow (1979) with a larger
database (n = 117).

Hypothesis 5

TPlake ¼
aðTPinÞ
1þ bsw

ð7Þ

In this model, a and b are the empirical constants.
Jones and Bachman (1976) obtained the best fit to their
data using an equation equivalent to the above. The
appropriateness of this equation was also advocated by
Prairie (1988, 1989), although in his model the coeffi-
cients a and b represent the fraction of the inflowing load
that remains in the water column and the fraction of the
in-lake phosphorus lost to the sediment annually,
respectively.

Hypothesis 6

TPlake ¼ k6Lx6 ð8Þ

This model assumes that TPlake is only related to L,
and k6, x6 are the adjustable parameters. This hypothesis

can be thought of as one form of the original Vollenweider
equation in that k is equal to 1= �z q þ rð Þð Þ. This can be
viewed as how r changes in response to �z and q.

Hypothesis 7

TPlake ¼ k7
L
�z

� �x7

ð9Þ

In this model, k7 and x7 are the adjustable parameters.
This model is similar to hypothesis 6 but instead of L,
TPlake is predicted as a function of L=�z; i.e., the vol-
umnar loading, which is identical to TPin/sw.

Statistical analysis

Classification and regression tree analysis

We used classification and regression tree analysis
(CART) to assess the role of lake morphometric and
hydrologic characteristics on the TPlake concentrations.
Tree-based models are used in classification and regres-
sion problems when we do not want to specify a priori the
form of important interactions between independent
variables (Breiman et al. 1984; De’ath and Fabricius
2000). The purpose of theCARTanalysis is to determine a
set of hierarchical decision rules (i.e., if-then split condi-
tions) that provide optimal separation among observa-
tions (Clark and Pregibon 1992). CART models have
been applied to predict abundance and composition infish
communities (Magnuson et al. 1998), to study PCB con-
tamination in the Great Lakes (Lamon and Stow 1999;
Amrhein et al. 1999), to predict dissolved oxygen levels
(Nerini et al. 2000), to analyze pesticide andherbicide data
(Qian and Anderson 1999), to construct regional-scale
eutrophication models (Lamon and Stow 2004), and to
identify the role of different functional properties and
abiotic conditions on plankton community structure
(Zhao et al. 2008a, 2008b). In the context of the present
analysis, CART analysis was used to identify the impor-
tant morphometric (volume, surface area, and mean
depth) and hydrologic (inflow rates and hydraulic reten-
tion time) characteristics along with the ideal cutoff levels
associated with the TPlake variability. This information
was then used to separate the lakes into (relatively)
homogeneous subgroups, thereby dictating the optimal
configuration of the Bayesian hierarchical framework.

Hierarchical Bayes

The ability of the hierarchical Bayes to decompose the
environmental problems into intuitively manageable levels
offers a powerful tool to disentangle complex ecological
patterns, to accommodate tightly intertwined environ-
mental processes operating at different spatiotemporal
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scales, to synthesize ecological information from disparate
sources, and to explicitly consider the variability pertain-
ing to latent variables or other inherently ‘‘unmeasurable’’
quantities (Wikle 2003a; Clark 2005). In environmental
science, the hierarchical Bayes has been used to predict
demographic processes and spatiotemporal population
spread (Wikle 2003b; Clark 2005), to resolve the mecha-
nisms of species coexistence and the biodiversity paradox
(Clark et al. 2007), and to estimate fish population
dynamics in different habitats (Wyatt 2002; Michielsens
and McAllister 2004; Rivot et al. 2008).

In this study, we used a hierarchical approach to relax
the assumption of globally commonmodel parameters and
therefore obtain parameter values that can (reasonably)
accommodate the intersystem variability. With this ap-
proach, the problem of parameter estimation using cross-
system data is viewed as a hierarchy. At the bottom of the
hierarchy are the parameters hij for individual waterbodies.
At the next level, spatial heterogeneity is considered by
introducing ‘‘regional’’ distributions; i.e., depending on
the significance of various factors (morphometry, mixing
regime, geographical location, land-use patterns, trophic
status) the model parameters are drawn from one of these
local populations hj. Similarly, in the upper stage, the
moments of the local population parameter distributions
are specified probabilistically in terms of global population
parameters or hyper-parameters h (Gelman andHill 2007).
The observed data are used to estimate the system-specific
model parameters hij, the ‘‘regional’’ population parame-
ters hj and the hyperparameters h. Thus, the hierarchical
model dissects the problem into levels and allows inter-
system parameter differences. Problems of limited local
data are avoided by ‘‘borrowing strength’’ from other
systems on the basis of the underlying population distri-
butions. In this analysis, however, because our dataset
consists of one average value for each lake, we have not
considered lake-specific parameters to avoid overfitting
problems. Rather, the first level of the model is based on a
few (fairly) homogeneous groups as derived from the
CART analysis. In this regard, the structure of our model
lies between the hierarchical linear model and the non-
hierarchical linear type-specific dummy variable model
presented in Malve and Qian (2006).

Bayesian hierarchical models Each of the seven hypo-
thesized relationships was evaluated using a Bayesian
hierarchical approach. The hierarchical formulation is
summarized as follows:

log yij
� �

� N f hj; xij
� �

; s2
� �

ð10Þ
hj � N h; r2

j

� �
ð11Þ

h � N l; r2
� �

ð12Þ
s � U 0; 100ð Þ r2

j ¼ 10; 000 ð13Þ
i ¼ 1; . . . ; 305 j ¼ 1; 2

where log (yij) is the observed log TPlake value from the
lake i in the group (lake type) j; f(hj, xij) is the empirical

model being tested; s2 is the model error variance; hj is
the group-specific parameter set; xij represents the lake-
specific input variables for each TPlake mathematical
expression; h corresponds to the global parameters; l
and r2 are the mean and variance of the global param-
eter distributions, respectively; rj

2 is the group-specific
variance. A non-informative uniform prior (0, 100) was
used for s and the group-specific variance, rj

2, was set to
an exceedingly large value, as shown in Eq. (13). [It
should also be noted that the posterior results remained
unaltered with the use of a diffuse gamma (conjugate)
prior for the model error precision (=1/s2).] The
robustness of the posterior patterns was also examined
using three different global prior distributions for the
parameter vector h. Specifically, we used (1) the poste-
riors from the non-hierarchical models as priors for the
corresponding hierarchical models (prior2); (2) the pre-
diction intervals presented in Brett and Benjamin (2008;
see their Table 5) to parameterize normal (prior3) and
lognormal distributions (prior4). Namely, we assumed
that 95% of the parameter values were lying within the
reported least square estimate ± standard error inter-
vals, following normal or lognormal distributions. The
effects of the prespecified 95% probability level were
further assessed by examining five additional values, i.e.,
80, 68.2, 50, 34.1, and 25%. Finally, a follow-up study
by Kumarappah and Arhonditsis (in preparation) pre-
sents alternative hierarchical formulations with different
priors for the parameters l, r2, and rj

2.

Bayesian non-hierarchical models To examine the
advantages of the hierarchical model configuration,
Bayesian non-hierarchical models were also fitted for all
the eutrophication models. The Bayesian non-hierar-
chical models have the same implicit assumption as the
classical regression models (i.e., systems have identical
behavior) and therefore consider a single common set of
parameters. The Bayesian non-hierarchical formulation
is summarized as follows:

log yið Þ � N f ðh; xiÞ; s2
� �

ð14Þ
h � N l; r2

� �
ð15Þ

s � U 0; 100ð Þ r2 ¼ 10; 000 ð16Þ
i ¼ 1; . . . ; 305

where log (yi) is the observed log TPlake concentration
from the lake i; f(h, xi) is the hypothesized relationship
being tested; s2 is the model error variance; h is the
parameter vector for each empirical model; l (=0) and r2

are the mean and variance of the parameter distributions,
respectively. As shown in Eq. (16), non-informative prior
distributions were used for both s and h (prior1).

Model computations

The seven empirical models were updated with the data
to obtain the posterior values for the stochastic nodes of
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the hierarchical (h, hi and s) and the non-hierarchical (h
and s) formulations. Sequence of realizations from the
posterior distribution of the two models were obtained
using Markov chain Monte Carlo (MCMC) simula-
tions (Gilks et al. 1998). Specifically, we used the
general normal-proposal Metropolis algorithm as
implemented in the WinBUGS software (Lunn et al.
2000); this algorithm is based on a symmetric normal
proposal distribution, whose standard deviation is
adjusted over the first 4,000 iterations such that the
acceptance rate ranges between 20 and 40%. We used
three chain runs of 100,000 iterations and samples were
taken after the MCMC simulation converged to the
true posterior distribution. Convergence was assessed
using the modified Gelman–Rubin convergence statis-
tic (Brooks and Gelman 1998). Generally, we noticed
that the sequences converged very rapidly (�1,000
iterations), and the summary statistics reported in this
study were based on the last 95,000 draws by keeping
every tenth iteration (thin = 10) to avoid serial cor-
relation. The accuracy of the posterior parameter val-
ues was inspected by assuring that the Monte Carlo
error (an estimate of the difference between the mean
of the sampled values and the true posterior mean; see
Lunn et al. 2000) for all parameters was less than 5%
of the sample standard deviation.

Model comparisons

Hierarchical and non-hierarchical models are com-
pared using the deviance information criterion (DIC);
a Bayesian measure of model fit and complexity
(Spiegelhalter et al. 2002). DIC is given by

DIC ¼ DðhÞ þ pD ð17Þ

where DðhÞ is the posterior mean of the deviance, a
measure of residual variance in data conditional on the
parameter vector h. The deviance is defined as
�2log (likelihood) or �2log [p(y|h)]; pD is a measure of
the ‘‘effective number of parameters’’ and corresponds
to the trace of the product of Fisher’s information and
the posterior covariance. It is specified as the posterior

mean deviance of the model DðhÞ minus the point
estimate of the model deviance when using the means of

the posterior parameter distributions, i.e., pD ¼ DðhÞ �
DðhÞ: Thus, this Bayesian model comparison first as-
sesses model fit or model ‘‘adequacy’’ (sensu Spiegelhalter

et al. 2002), DðhÞ; and then penalizes complexity, pD.
A smaller DIC value indicates a ‘‘better’’ model. We also
used the coefficient of determination (r2) to evaluate the
‘‘mean fit’’ of each hypothesis (Brett and Benjamin
2008). Because the model predictions in Bayesian infer-
ence are expressed in the form of distributions, the cal-
culation of the r2 values was based on the posterior
medians of the predicted TPlake distributions.

Results

CART analysis

In the CART model, we used the log-transformed values
of surface area, mean depth, volume, hydraulic retention
time, areal hydraulic loading, and inflow rate to evaluate
their relative importance in predicting TPlake variability.
During the analysis, the algorithm began with the root
(or parent) node, which corresponded to the original
TPlake data. The data were split into increasingly
homogeneous subsets with binary recursive partitioning
and examination of all possible splits for each predictor
variable at each node, until the Gini measure of node
impurity was below a pre-specified baseline (Breiman
et al. 1984). The stopping rule for the analysis was that
the terminal nodes (also known as leaves in the tree
analogy) should not contain more cases than 30% of the
size of each class.

The final CART tree represented a hierarchical
structure (shown as a dendrogram) that consisted of eight
terminal nodes (Fig. 1). The first split was identified at a
critical mean lake depth of 10.3 m. In the left branch,
the lakes (n = 199) had a mean depth less than or equal
to 10.3 m, the mean lake depth is again the important
predictor and a value of 1.65 m divides the lakes into
two subgroups. The lakes (n = 30) with mean depth less
than or equal to 1.65 m make up the first terminal node,
I, characterized by the highest lake phosphorus con-
centration with a median of 160 lg TP L�1. On the
other hand, the splitting of the deeper lakes (>10.3 m;
n = 106) located in the right branch of the tree occurred
at a hydraulic retention level of 17.8 years. Lakes with
hydraulic retention times sw > 17.8 years form the last
terminal node, VIII, which has the lowest TPlake with a
median of 8.8 lg TP L�1. The group of lakes with
hydraulic retention £ 17.8 years was further partitioned
into the terminal nodes, VI and VII, based on another
critical hydraulic retention time of 9.8 years. Interest-
ingly, the surface area was an important predictor var-
iable for lakes (n = 169) within the 1.67–10.3 m depth
range. In this portion of the tree, two splits occurred at
surface-area values of 1.47 km2 and then again at
20.3 km2. Lakes with a surface area smaller than
1.47 km2 and larger than 20.3 km2 formed the terminal
nodes II and V, whereas lakes within this surface area
range were further split into the terminal nodes III and
IV based on a hydraulic retention time value of
0.17 years. Overall, the left branch of the regression tree
was dominated by morphometric predictors, whereas
the right branch was dominated by hydrologic predic-
tors. While insightful as an exploratory analysis, the
structure of the dendrogram in Fig. 1 was deemed quite
complex for the present illustration. Therefore, for the
sake of simplicity, the hierarchical model presented
herein was just founded upon the first splitting condition
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ð�z ¼ 10:3mÞ that delineated two subgroups, i.e., shallow
and deep lakes (‘‘mean depth’’ hierarchical model). To
examine the sensitivity of our results to this lake
grouping, we also considered an alternative hierarchical
model configuration based on a critical hydraulic
retention time value (sw) of 2.6 years (‘‘hydraulic reten-
tion time’’ hierarchical model). The latter condition was
derived from a CART model that only examined the
effects of the hydrologic characteristics (i.e., inflow rate,
hydraulic retention, and areal hydraulic loading rate) on
TPlake variability.

Model fit

Comparison between hierarchical and non-hierarchical
models

The model fit assessment (deviance and DIC) for the
Bayesian non-hierarchical and hierarchical models is
presented in Table 2. Our results show that the three

priors (prior1, prior2, prior3) resulted in nearly identical
model performance, indicating that the posterior pat-
terns were insensitive to the prior parameter distribu-
tions assigned. Generally, the hierarchical configuration
improved the performance relative to the non-hierar-
chical approach, although the degree of improvement
varied among the different hypotheses. In particular,
aside from hypotheses H4 and H7, the distinction
between shallow and deep lakes resulted in substantially
lower deviance and DIC values. In a similar manner, the
delineation of groups based on the hydraulic retention
time improved the performance of four models (H1, H2,
H5, and H7), whereas hypotheses H3, H4 and H6 were
nearly unaltered with regards to the model fit. The
comparison between the hierarchical and non-hierar-
chical models of the seven TPlake relationships can also
be illustrated by examining the posterior distributions
for the model standard error terms, where the model
improvement is manifested as a shift towards smaller
values, i.e., hypotheses 1, 2, 3, 5, and 6 (Fig. 1-ESM). On
the other hand, the error distributions associated with
the hypotheses 4 and 7, which did not improve under the
hierarchical model configuration, were almost identical.
Similar inferences can be drawn for the hypotheses 3, 4,
and 6 when using the ‘‘hydraulic retention time’’ model
(Fig. 2-ESM).

Marginal posterior parameter distributions

The moments of the marginal posterior parameter dis-
tributions for each hypothesis under the non-hierarchi-
cal and hierarchical (mean depth and hydraulic
retention) model configurations are presented in
Table 3. The posterior parameter values for the Bayes-
ian non-hierarchical models were equal to the classical
least-squares estimates of the Brett and Benjamin (2008)
study. This result is not surprising as the Bayesian
approach combined with non-informative priors usually
provides similar results to the ones obtained from the
classical frequentist statistical practice (Ellison 1996).
The posterior moments of the global parameter distri-
butions of the hierarchical models were also relatively
similar. The difference lies in the posterior group-specific
parameters (h1, h2), which the dataset is directly fitted to
and hence the differences in predictions. The comparison
of the posterior group-specific parameter distributions
obtained from the Bayesian hierarchical model based on
the mean depth partitioning and the normally distrib-
uted global priors (prior3) is shown in Fig. 2. Due to the
reduced information available for estimating the group-
specific parameters, the respective distributions are
flatter (less precise) than the values obtained from the
non-hierarchical model. Generally, the marginal group-
specific parameter distributions drifted away from the
global prior distribution in opposite directions, whereas
notable exceptions were the parameters x4 (H4) and x7
(H7) with relatively unaltered locations. Importantly,
the group-specific posterior patterns demonstrate

Fig. 1 Classification and regression tree diagram of observed
TPlake (lg L�1) partitioned with mean depth �z (m), surface area
AL (km2), and hydraulic retention sw (years) along with the box-
plots of TPlake on each terminal node. Terminal nodes (I to VIII)
are shown in thick black rectangles; lakes in the parent nodes are
sent to the left child nodes if the corresponding values are no
greater than the split conditions; otherwise they are sent to the right
child nodes
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Table 2 The deviance [�2log (likelihood)] and the deviance information criterion (DIC) for the non-hierarchical and hierarchical models

Non-hierarchical Hierarchical

Prior1 Mean depth �z ¼ 10:3m Hydraulic retention sw = 2.6 years

Prior2 Prior3 Prior4 Prior2 Prior3 Prior4

Deviance DIC Deviance DIC Deviance DIC Deviance DIC Deviance DIC Deviance DIC Deviance DIC

H1 584.3 586.3 561.1 564.0 561.1 564.1 561.1 564.0 545.7 548.6 545.7 548.7 545.7 548.6
H2 654.9 656.9 616.7 619.7 616.7 619.7 616.7 619.7 544.6 547.6 544.6 547.6 544.6 547.6
H3 586.1 588.1 539.9 542.9 539.9 542.9 539.9 542.9 588.2 591.2 588.2 591.2 588.2 591.2
H4 466.7 469.7 471.2 476.1 471.2 476.2 471.2 476.2 468.8 473.7 468.7 473.7 468.7 473.7
H5 511.5 514.5 481.3 486.2 481.3 486.2 481.3 486.2 480.7 485.5 480.7 485.5 480.7 485.5
H6 867.9 870.7 828.7 832.8 828.7 832.8 828.9 832.9 870.3 873.4 870.4 873.3 870.4 873.4
H7 821.6 824.5 824.3 829.1 824.2 829.1 823.6 828.4 803.7 808.5 803.7 808.5 803.7 808.6

Prior1 denotes non-informative prior parameter distributions, prior2 denotes priors based on the posterior parameter distributions of the
non-hierarchical models, prior3 and prior4 denote priors normally and log-normally distributed within the predictive intervals reported in
the Brett and Benjamin (2008) study, respectively. Performance criteria values in bold font denote the best performing model for each
hypothesis

Table 3 Summary of the posterior parameter distributions for each hypothesis under the non-hierarchical and hierarchical (mean depth
and hydraulic retention) model configuration

Non-hierarchical models Hierarchical models

Mean
depth
�z ¼ 10:3m

Hydraulic
retention
sw = 2.6 years

Hypothesis Median SD Mean SD Mean SD

1 k1 (year
�1) 0.45 0.04 k1 0.45 0.02 0.45 0.02

k11 0.78 0.10 1.01 0.12
k12 0.32 0.04 0.33 0.03

2 k2 1.06 0.08 k2 1.06 0.04 1.06 0.04
k21 0.72 0.08 0.64 0.06
k22 1.90 0.18 3.07 0.28

3 v (m year�1) 5.10 0.44 v 5.10 0.30 5.10 0.31
v1 3.20 0.38 5.32 0.74
v2 10.09 1.04 5.00 0.55

4 k4 (year
�0.47) 1.12 0.08 k4 1.12 0.04 1.12 0.04

k41 1.12 0.10 1.03 0.10
k42 1.14 0.13 1.15 0.20

x4 0.47 0.04 x4 0.47 0.02 0.47 0.04
x41 0.51 0.07 0.37 0.07
x42 0.46 0.05 0.48 0.07

5 a 0.66 0.03 a 0.65 0.02 0.65 0.02
a1 0.77 0.04 0.75 0.04
a2 0.50 0.04 0.35 0.04

b (year�1) 0.17 0.03 b 0.17 0.02 0.17 0.02
b1 0.44 0.08 0.47 0.11
b2 0.07 0.02 0.04 0.01

6 k6 (mg0.61 year0.39 m�2.22) 2.30 0.48 k6 2.20 0.26 2.20 0.26
k61 4.83 1.16 2.21 0.64
k62 1.51 0.59 1.65 1.06

x6 0.39 0.03 x6 0.40 0.02 0.40 0.02
x61 0.33 0.03 0.39 0.03
x62 0.39 0.06 0.48 0.10

7 k7 (mg0.66 year0.34 m�1.98) 6.61 0.76 k7 6.50 0.36 6.50 0.35
k71 8.47 1.51 5.21 0.85
k72 5.93 1.07 4.66 0.99

x7 0.34 0.02 x7 0.34 0.01 0.34 0.01
x71 0.31 0.03 0.36 0.02
x72 0.35 0.05 0.60 0.08

For the hierarchical approach, global posteriors are followed by group-specific parameter values
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remarkable stability relative to the precision assigned to
the global priors (Fig. 3-ESM).

Hypotheses comparison

Hypothesis 1 The hypothesis that the rate coefficient for
TP loss (r) is constant led to a reasonably good model fit
relative to other hypotheses with a DIC value of 586.3
and k1 = 0.45 ± 0.04 year�1. Under the ‘‘mean depth’’
hierarchical model, the DIC was decreased to 564.1 with
values of k11 = 0.78 ± 0.10 year�1 and k12 = 0.32 ±
0.04 year�1 for the shallow ð�z � 10:3m) and the deep
lakes ð�z[10:3m), respectively (Tables 2, 3; Fig. 2). The
comparison between the predicted and observed TP
values yielded a nonlinear r2 of 0.857 (Fig. 4-ESM).
Under the ‘‘hydraulic retention time’’ hierarchical
model, the DIC also improved to 548.6 with k11 =
1.01 ± 0.12 year�1 for the sw £ 2.6 years group and
k12 = 0.33 ± 0.03 year�1 for the sw > 2.6 years group
(Tables 2, 3; Fig. 5-ESM).

Hypothesis 2 The hypothesis that TPlake is directly
proportional to TPin (in that the product rsw is a con-
stant) led to a DIC of 659.6 with k2 = 1.06 ± 0.08. The
‘‘mean depth’’ hierarchical model resulted in a reduced
DIC value (=619.7) with k21 = 0.72 ± 0.08 and
k22 = 1.90 ± 0.18 for the two lake groups. The com-
parison between the predicted and observed TP values
yielded a nonlinear r2 of 0.828. Under the ‘‘hydraulic
retention time’’ hierarchical model, the DIC improved to
547.6 with k21 = 0.64 ± 0.06 for the sw £ 2.6 years
group and k22 = 3.07 ± 0.28 for the one consisting of
lakes with sw > 2.6 years.

Hypothesis 3 The hypothesis that the rate coefficient
for TP loss can be approximated as the ratio of the
apparent TP settling velocity to the mean lake depth
resulted in a fit slightly worse than the one obtained
from the first hypothesis (H1), i.e., DIC = 588.1 with
v = 5.1 ± 0.30 m year�1. With the ‘‘mean depth’’
hierarchical model, the DIC decreased to 542.9 with
v1 = 3.20 ± 0.44 m year�1 and v2 = 10.09 ± 1.04 m
year�1 for the shallow ð�z � 10:3m) and deep lakes
ð�z[10:3m), respectively. The comparison between the
predicted and observed TP values gave a nonlinear r2 of
0.866. With the ‘‘hydraulic retention time’’ hierarchical
model, the DIC increased to 591.2 with v1 =
5.32 ± 0.74 m year�1 for the sw £ 2.6 years group and
v2 = 5.00 ± 0.55 m year�1 for the sw > 2.6 years group.

Hypothesis 4 The hypothesis that the rate coefficient
for TP loss can be represented by an expression of the
form r = k4sw

x
4
�1 led to the best fit among all the

hypotheses examined with the lowest DIC (=469.7)
value and k4 = 1.12 ± 0.08 year�0.47, x4 = 0.47 ±
0.04. The hierarchical configuration of the model based
on the mean depth partitioning did not improve
the performance, as DIC increased slightly to 476.2.
The group-specific posterior parameter values were rel-
atively similar to the corresponding global priors, i.e.,
k41 = 1.12 ± 0.10 year�0.51, x41 = 0.51 ± 0.07 for the

shallow lakes, and k42 = 1.14 ± 0.13 year�0.46, x42 =
0.46 ± 0.05 for deep lakes. The comparison between the
predicted and observed TP values provided a nonlinear
r2 of 0.895. With the ‘‘hydraulic retention time’’ hierar-
chical model, the DIC increased slightly to 473.7 with
k41 = 1.03 ± 0.10 year�0.37, x41 = 0.37 ± 0.07 for the
sw £ 2.6 years lake group and k42 = 1.15 ± 0.20
year�0.48, x42 = 0.48 ± 0.07 for the one consisting of
lakes with sw > 2.6 years.

Hypothesis 5 The posterior distribution of
a = 0.66 ± 0.03 and b = 0.17 ± 0.03 year�1 was
associated with a DIC equal to 514.5, which is the sec-
ond best value among all the hypotheses. Under the
‘‘mean depth’’ hierarchical model, the DIC value
decreased to 486.2 with a = 0.77 ± 0.04, b = 0.44 ±
0.08 year�1 for the �z � 10:3m group and a = 0.50 ±
0.04, b = 0.07 ± 0.02 year�1 for the �z[10:3m group.
The comparison between the predicted and observed TP
values yielded a nonlinear r2 of 0.891. Using the
‘‘hydraulic retention time’’ hierarchical model, the DIC
decreased to 485.5 with a1 = 0.75 ± 0.04, b1 =
0.47 ± 0.11 year�1 for lakes with sw £ 2.6 years, and
a2 = 0.35 ± 0.04, b2 = 0.04 ± 0.01 year�1 for the
ones with sw > 2.6 years.

Hypothesis 6 The hypothesis that TPlake is propor-
tional to the areal TP loading performed the poorest
among all the empirical models. The posterior parame-
ter distributions of k6 = 2.30 ± 0.48 mg0.61 year0.39

m�2.22 and x6 = 0.39 ± 0.03 yielded a DIC of 870.7.
With the ‘‘mean depth’’ hierarchical model, the DIC
decreased to 832.8 and the non-linear r2 was equal to
0.660. The posterior parameter distributions for the
shallow and deep lakes were k61 = 4.83 ± 1.16 mg0.67

year0.33 m�2.34, x61 = 0.33 ± 0.03 and k62 = 1.51 ±
0.59 mg0.61 year0.39 m�2.22, x62 = 0.39 ± 0.06, respec-
tively. Under the ‘‘hydraulic retention time’’ hierarchical
model, the DIC increased slightly to 873.4 with
k61 = 2.21 ± 0.64 mg0.61 year0.39 m�2.22, x61 = 0.39 ±
0.03 for the sw £ 2.6 years group and k62 =
1.65 ± 1.06 mg0.52 year0.48 m�2.04, x62 = 0.48 ± 0.10
for the sw > 2.6 years one. [The non-intuitive units for
the value of k6 arise because, when one raises L to an
empirical exponent, the units of L are raised to that
exponent along with its numerical value; the units of k6,
combined with those of Lx6, generate the desired units
for TPlake.]

Hypothesis 7 The hypothesis that TPlake is propor-
tional to the ratio of areal TP loading with the mean lake
depth fits the data slightly better than the sixth
hypothesis with a DIC value of 824.5 for k7 =
6.61 ± 0.76 mg0.66 year0.34 m�1.98 and x7 = 0.34 ±
0.02. Under the ‘‘mean depth’’ hierarchical model, the fit
did not improve, resulting in a DIC value equal to 829.1
and a non-linear r2 of 0.665. The posterior parame-
ter distributions for the shallow and deep lakes
were k71 = 8.47 ± 1.51 mg0.69 year0.31 m�2.07, x71 =
0.31 ± 0.03 and k72 = 5.93 ± 1.07 mg0.65 year0.35

m�1.95, x72 = 0.35 ± 0.05, respectively. Under the
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‘‘hydraulic retention time’’ hierarchical model, the DIC
decreased to 808.5 with k71 = 5.21 ± 0.85 mg0.64

year0.36 m�1.92, x71 = 0.36 ± 0.02 for the sw £ 2.6
years group and k72 = 4.66 ± 0.99 mg0.40 year0.60

m�1.2, x72 = 0.60 ± 0.08 for lakes with sw > 2.6 years.

Exceedance frequency and confidence of compliance
with total phosphorus standards

The MCMC posterior samples were also used to
examine the exceedance frequency and confidence of
compliance with a total phosphorus standard in Lake
Dudley (Ontario) and the Hiwassee Reservoir (Tennessee
Valley). We used the highest performing hypothesis, H4,
under the ‘‘mean depth’’ hierarchical model and speci-
fied the TPlake threshold value (numerical criterion) at
25 lg TP L�1. For each iteration, we calculated a pre-
dicted value and a corresponding probability of
exceeding the criterion. The latter probability was cal-
culated as follows:

pij ¼ P TPij[TP�jhj;h;xij;s
� �

¼ 1� F
TP� � f hj;xij

� �

s

� �

ð18Þ

where pij is the system-specific probability of total
phosphorus exceeding the numerical criterion TP* given
values of h, hj, and xij, s is the model standard error, and
F(.) is the value of the cumulative standard normal dis-
tribution. The distribution of the exceedance probability
pij across the posterior space (12,500 MCMC samples)
can then be used to assess the expected exceedance �pij
and the confidence of compliance (CC), while account-
ing for the uncertainty in model predictions that stems
from the model parameters. Confidence of compliance
(CC) is the proportion of the exceedance probability p
distribution that lies below the EPA’s 10% guideline
(Borsuk et al. 2002). In our example, the distributions of
the predicted TPlake concentration in the two freshwater
systems under their current, 10, 25, and 50% reduction
of the TPin concentrations along with the 25 lg TP L�1

numerical criterion are shown in Fig. 3. The corre-
sponding expected exceedance and confidence of com-
pliance (the proportion of the exceedance frequency
distribution that lies below the EPA’s 10% guideline;
CC) for Lake Dudley are approximately 17.1 and
0.11%, respectively. The corresponding values in the
Hiwassee Reservoir are 12.8 and 9.5% (Figs. 4, 5). This
probabilistic assessment of the total phosphorus con-
centrations should make model results very useful to
decision-makers and stakeholders, because the deter-
ministic statements are avoided and the optimal man-
agement schemes (e.g., reduction of nutrient loading) are
determined by explicitly acknowledging an inevitable
risk of non-attainment. In Lake Dudley, the exceedance
frequency of the 25 lg TP L�1 criterion for 10% nutri-
ent reduction was within the 5–20% range, with only a
13% probability of complying with the EPA guideline.
Reduction by 25 and 50% of the original TP input
concentrations would result in 97 and 100% probability
to comply with the 10% guideline (Fig. 5). In Hiwassee
Reservoir, the exceedance frequency for the 25 lg TP
L�1 criterion from a 10% nutrient reduction was within
the 5–15% range, and thus it already has a high (71%)
probability of complying with the 10% EPA guideline.

Fig. 2 Bayesian hierarchical model based on the mean depth
partitioning. Prior (thick black lines) and posterior group-specific
(thin black £ 10.3 m, and thick gray > 10.3 m) parameter distri-
butions. Global priors are normally distributed within the
confidence intervals reported in the Brett and Benjamin (2008)
study (prior3). The sensitivity of the posterior patterns on the
specification of the global prior distributions is presented in Fig. 3-
ESM
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Reduction by 25 and 50% of the original input con-
centrations would both result in a 100% probability
complying with the EPA guideline (Fig. 5).

Discussion

Empirical models have played an important role in the
development of our understanding of the general princi-
ples that deal with lake ecosystems (Peters 1986). While
their simple conceptual underpinning does not necessarily
allow for insights into the complex interplay among the
physical, chemical, and biological processes that underlie
cultural eutrophication, empirical cross-system relation-
ships in limnology have elucidated large-scale patterns
that guide management decisions (Ahlgren et al. 1988).
The typical approach in the majority of these cross-sec-
tional studies is to incorporate collateral information or
to pool information from different systems and generalize
relative to a global trend. These empirical models are then
used to make predictions for a single lake at different
points in time under the ‘‘debatable’’ assumption that the

large-scale behavior described in the model is also rep-
resentative of within lake dynamics. On top of that, most
of these models are missing key regulatory factors (e.g.,
internal phosphorus loading, top–down control, seasonal
patterns in TP losses to the sediments) of the in-lake total
phosphorus variability which cast doubt on their ability
to effectively support predictions on individual sys-
tems (Sarnelle 1999; Søndergaard et al. 2001; Brett and
Benjamin 2008). Our objective herein was to revisit the
foundation of the existing phosphorus-retention and
nutrient-loading models in order to demonstrate how the
hierarchical Bayes can be used to balance between site-
specific and globally-common model structures. Our
hypothesis was that both the plausibility of information
pooling and the (possible) evidence of superior perfor-
mance will affirm the use of hierarchical modeling in the
context of water quality management.

Performance of the eutrophication models

Although evidence from the limnological literature
suggests that the flow-weighted input phosphorus

Fig. 3 Distributions of predicted TPlake concentrations for Lake
Dudley and Hiwassee Reservoir, respectively. The predicted TPlake

concentration distributions from right to left correspond to the
original (solid line), and 10, 25, 50% (long dashed lines) reduction of
the TPin concentrations. Vertical dashed line corresponds to the
25 lg TP L�1 numerical criterion

Fig. 4 Probability density for the exceedance frequency of the
25 lg TP L�1 numerical criterion for Lake Dudley and Hiwassee
Reservoir, respectively. The dashed line delineates the area where the
exceedance frequencyof the numerical criterion is below the 10%EPA
guideline and is termed the confidence of compliance (CC)
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concentration is the single best predictor of in-lake TP
concentrations (Schindler et al. 1978; Yeasted and Morel
1978; Reckhow 1988), Brett and Benjamin (2008)
showed that the TPlake = f(TPin, k2) model only
explains 71% of the overall variability in the log-trans-
formed lake TP concentrations. These results are echoed
in our non-hierarchical DIC comparisons, where the
corresponding hypothesis (H2) was ranked as the third
worst-performing model. On the other hand, the hier-
archical configuration of the same model based on the
distinction between shallow and deep lakes ð�z ¼ 10:3m)
significantly improved its performance (r2 = 0.83) and
ended up being the third best model with a hydraulic
retention time partitioning at sw = 2.6 years. While this
result renders support to the implicit assumption of this
model that the TP loss rate is approximately propor-
tional to the inverse of the lake hydraulic retention time,
it also shows that the slope (k2) of this relationship is not
constant throughout the range examined in this dataset.
Namely, the steepness of the r � 1/sw relationship sig-
nificantly increases in lakes with longer retention times
(i.e., flushing rates lower than 38.5% year�1) compared
to shorter hydraulic retention time lakes. It is also

interesting to note, however, that the empirical rela-
tionship H1 that postulates two constant TP sedimen-
tation rates below and above the hydraulic retention
time breakpoint (rather than the piecewise linear rela-
tionship of the second model) resulted in almost similar
performance. The higher sedimentation rates
(1.01 ± 0.12 year�1) in lakes with short hydraulic
retention times over the rates calculated for longer
retention time lakes (0.33 ± 0.3 year�1), along with the
k2 values derived from the H2 model, reiterate the well-
documented positive relationship between TP loss and
lake flushing rates (Ahlgren et al. 1988). This counter-
intuitive relationship was attributed to the fact that the
former lakes usually receive relatively greater inputs of
allochthonous, mineral-bound (and thus more suscepti-
ble to settling) particulate phosphorus than do the latter
ones (Schindler et al. 1978; Canfield and Bachmann
1981; Brett and Benjamin 2008).

The hypothesis H4 that the rate coefficient for TP loss
from a lake can be expressed as k4sw

x
4
�1 outperformed the

other models in terms of fitting the measured in-lake
total phosphorus concentrations (DIC = 469.7 and
r2 = 0.89). More importantly, none of the hierarchical
models examined led to an improved performance,
whereas the group-specific parameters did not differ
from the global posteriors or the values obtained from
the non-hierarchical approach. Hence, our results verify
the conclusions of other studies in that the TP sedi-
mentation rate is best approximated as being propor-
tional to the inverse square root of sw, i.e., r � sw

�0.53(see
also Fig. 2b in Ahlgren et al. 1988). Similarly to Brett
and Benjamin’s (2008) assertions, we also found that the
same relationship in lakes with shorter hydraulic reten-
tion times is better represented by an exponent of 0.37,
while the coefficient k4 that relates the two variables is
almost constant throughout the range of hydraulic
retention times examined, i.e., k41 � k42. On the other
hand, viewing phosphorus sedimentation as a function
of the external load as well as the lake phosphorus
content (Prairie 1988), hypothesis H5 was the second
best performing model with regards to the DIC and r2

values; especially under the two hierarchical approaches
framed upon the mean depth and the hydraulic reten-
tion-time classifications. Similar to the other models, the
H5 model predicts that shallow and/or shorter hydraulic
retention time lakes have higher net sedimentation rates
for in-lake phosphorus (b1 > 0.45) compared to deeper
lakes or lakes characterized by lower flushing rates
(b2 < 0.07). Yet, the group-specific values for the a
coefficient also suggest that the fraction of the sedi-
menting inflowing load is lower in the former lakes
(a1 > 0.75) relative to the latter ones (a2 < 0.50). These
results offer another perspective in that they emphasize
the regulatory role of the in-lake processes rather than
the amount of the inflowing allochthonous material to
explain the higher net phosphorus sedimentation rates in
shallow and/or high-flushing-rate lakes.

Despite the overwhelming support for the particle
settling velocity hypothesis (H3) in the limnological

Fig. 5 Probability density for the exceedance frequency of the
25 lg TP L�1 numerical criterion with 10, 25, and 50% TPin

reduction for Lake Dudley and Hiwassee Reservoir, respectively
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literature (Chapra 1975; Dillon and Kirchner 1975;
Vollenweider 1976; Ostrofsky 1978; Higgins and Kim
1981; Nürnberg 1984, 1998; Dillon and Molot 1996), our
analysis shows that this empirical model is not sup-
ported by the present dataset; in fact, the underlying
conceptualization did not provide better fit than the
much simpler H1 model and only outperforms the two
models (H6, H7) that relate TPlake to the TP areal
loading. However, we also found that the hierarchical
model configuration based on the partitioning between
shallow and deep lakes significantly improved the H3
model fit, i.e., r2 = 0.87 relative to the r2 = 0.77
reported in the Brett and Benjamin (2008) study (see
their Fig. 4). The same hierarchical approach results in
very distinct group-specific posteriors for the apparent
settling velocity, i.e., v1 = 3.20 ± 0.38 m year�1 for the
shallow and v2 = 10.09 ± 1.04 m year�1 for the deep
lakes, respectively. These parameter values are plausible
because deep waters are generally less turbulent than
surface waters which increases particle aggregation and
consequently the effective settling velocity of particulate
matter (Malmaeus and Håkanson 2004). The posterior
median of m for the deep lakes is very close to the settling
velocity value presented by Vollenweider (1975) and
falls within the 8–15 m year�1 range typically used in
other empirical models (e.g., Chapra 1975; Larsen and
Mercier 1976; Dillon and Molot 1996). Nonetheless, the
particle settling velocity ranges derived herein are still
significantly lower (one or two orders of magnitude)
than the values reported for phytoplankton cells and
detritus (Burns and Rosa 1980; Sommer 1991; Chapra
1997). Brett and Benjamin (2008) presented similar
results that were interpreted as additional evidence that
the available data do not support the widespread
acceptance of the constant particle-settling velocity
model. Finally, the two hypotheses that lake TP con-
centrations are proportional to the areal TP loading or
to the ratio between areal nutrient loading and mean
lake depth performed quite poorly, although the hier-
archical structures based on the lake mean depth (H6) or
the hydraulic retention time (H7) classification have
notably improved the model fit.

Model-prediction error and suggestions for progress

Striving to improve the existing eutrophication models,
Ahlgren et al. (1988) stated that ‘‘it is unlikely that these
types of models can be further improved only by inclu-
sion of more data in the databases. Instead, it is more
likely that careful analyses of homogeneous subsets of
data may give models with better predictive value.’’
Indeed, our analysis demonstrated that the hierarchical
framework led to an improvement in the performance of
six out of the seven hypothesized relationships tested to
predict in-lake TP concentrations. While further
improvement of the predictive ability of the phosphorus-
retention/nutrient-loading models will likely arise from
the consideration of lake-specific parameters along with

the delineation of more homogeneous groups, founded
upon more realistic hierarchical structures (such as the
one presented in Fig. 1), the predicted-to-observed TP
ratio distributions show that the hierarchical approach
still results in considerable predictive uncertainty in
individual waterbodies (Fig. 6). Likewise, Malve and
Qian’s (2006) hierarchical model did not mitigate this
problem and, in fact, there were cases in which the poor
model fit resulted in negative lake-specific r2 values (see
their Fig. 2). Brett and Benjamin (2008) also showed
that these empirical relationships originally fit to TP lake
data cannot reproduce observed TP retention values and
pinpointed the conditions (e.g., lakes with low areal
hydraulic loading rate or long hydraulic retention time)
under which they are particularly prone to large pre-
diction errors. Evidently, issues related to the assump-
tions made for the derivation of these models, and not
only the structure used to accommodate the intra- and
intersystem variability, are equally important for
obtaining robust predictions in individual lakes.

Several studies suggest some of the key underlying
model assumptions (e.g., complete mixing, steady state,
first-order losses) should be revisited and other unac-
counted factors affecting the efficiency of P trapping
need to be explicitly considered in these models. These
might include the amount of aluminum, iron, and cal-
cium in lake sediments; dominance of the zooplankton
community by efficient grazers like Daphnia, which can
increase the downward flux of phosphorus-containing
particulate matter incorporated in fecal pellets; the form
in which phosphorus is supplied (i.e., inorganic or or-
ganic, dissolved or particulate), which determines if it
will be readily incorporated into the biologic cycle of
lakes or settle to the sediments; sediment resuspension in
shallow, wind-exposed lakes; and bioturbation of
material likely to have passed through benthic animals
or fish, which creates a ‘‘gluing’’ of the particles into
larger flocs (Reynolds and Davies 2001; Brett et al.
2005a, 2005b; Carpenter 2005; Jensen et al. 2006; Brett
and Benjamin 2008). Moreover, Nürnberg and LaZerte
(2004) indicated that the ratio of watershed-to-lake area
can be an important predictor in lakes with complex
morphology, while further improvements may be
obtained by explicitly considering surrogate variables of
soil geochemistry (humic and fulvic acids) such as DOC
or lake water color (Nürnberg and Shaw 1998). There is
also overwhelming evidence that lake geochemistry
influences the retention and settling, e.g., authigenic co-
precipitation of P with calcium in calcium-rich systems
(Nürnberg 1998).

Eutrophication may also be accentuated due to
internal recycling from a large pool of sediment phos-
phorus, and P sediment release rates have been included
in a number of empirical models. For example, Reckhow
(1977) differentiated model performance by whether
stratified lakes had an oxic or an anoxic hypolimnion.
Nürnberg (1984, 1998) showed that Vollenweider-type
models only work when the internal load was explicitly
added. Nürnberg and LaZerte (2004) explicitly modeled

72



internal P load as the product of sediment release rates
and anoxic factors, which were then included in a stea-
dy-state phosphorus mass-balance model. The steady-
state assumption, however, is inadequate to describe the
transient phase following nutrient-loading reduction.
Furthermore, phosphorus release from the sediments
may prevail for decades; thus, the classical empirical
models tend to considerably underestimate in-lake TP
concentrations during the recovery phase of eutrophi-
cation (Nürnberg 1998; Søndergaard et al. 2003). To
address this problem, Jensen et al. (2006) introduced a

simple empirical model to describe the early recovery
phase by relating the seasonal variation of in-lake TP
concentrations to external loading, accumulated phos-
phorus in the sediment, water temperature, and the
hydraulic retention time. These improvements may en-
able the use of simple models for setting water-quality
objectives, while accounting for high internal loading
and thus unanticipated delays in system recovery.

The Bayesian nature of the proposed hierarchical
framework has several advantages for environmental
management. For the purposes of probabilistic risk

Fig. 6 The distributions of the
predicted-to-observed TP ratio
for each lake and the best-
performing model for each
hypothesis assessed (see
Table 3). The hatched vertical
line represents the ideal 1:1
relation
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assessment, the Bayesian approach generates a posterior
predicted distribution that represents the current esti-
mate of in-lake TP concentrations, taking into account
both the uncertainty for the parameters and the uncer-
tainty that remains when the parameters are known
(Gelman et al. 1995). Therefore, estimates of the
uncertainty of Bayesian-model predictions are more
realistic (usually larger) than those based on the classical
procedures and the target nutrient loads can be set by
explicitly acknowledging an inevitable risk of non-
attainment. For example, our analysis illustrated how
this methodological framework can be used for assessing
the exceedance frequency and confidence of compliance
of different water quality standards (Figs. 3–5). The
Bayesian approach also provides a convenient means to
make decisions about nutrient-load reductions that
reflect different socioeconomic values and environmental
concerns, i.e., management objectives can be evaluated
by integrating the probability of use attainment for a given
water quality goal with utility functions; the management
scheme associated with the highest expected utility might
then be chosen (Dorazio and Johnson 2003). Finally,
other benefits for environmental management include
alignment with the policy practice of adaptive manage-
ment implementation (Malve and Qian 2006), and the
optimization of monitoring programs using value of
information concepts from decision theory (Arhonditsis
et al. 2007; Zhang and Arhonditsis 2008).

In conclusion, we presented a Bayesian hierarchical
framework that relaxes the basic assumption of empiri-
cal models fitted to cross-sectional data sets, i.e., the
systems are assumed to be identical in behavior, and
therefore the models have a single globally common set
of parameters. The hierarchical structure enables the
estimation of group and/or system-specific parameters
that explicitly consider the role of significant sources of
variability (e.g., morphometry, mixing regime, geo-
graphical location, land-use patterns, and trophic sta-
tus). Our analysis showed that the hierarchical
framework improves the performance of the phos-
phorus-retention/nutrient-loading models, although
predictive statements for individual lakes still have large
error. A hypothesis based on the assumption that the
first-order TP loss rate can be expressed as r = k4sw

x
4
�1

predicted the observed in-lake total phosphorus con-
centrations better than any of the other relationships
examined. In particular, the TP sedimentation rate is
best approximated as being proportional to the inverse
square root of sw, i.e., r � 1.12sw

�0.53, although some
variability exists with regards to the values of the power
x4 depending on the lake hydraulic retention time. The
particle-settling velocity hypothesis that estimates r as
the ratio of a nominal particle settling velocity to the
lake mean depth was not strongly supported by the
present dataset. However, the performance of this
empirical model considerably improves when different
settling rates are assigned to shallow and deep lakes.
Future improvements should also focus on building
more realism into the models by explicitly quantifying

recycling fluxes and transient dynamics of lakes follow-
ing P-load reductions. The proposed methodological
framework has several advantages that are useful for
assessing water-quality conditions and will facilitate the
policy-making process.
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Table 1-ESM. General limnological characteristics of the lakes included in this analysis.

Volume Surface Mean Inflow
Areal

hydraulic
Hydraulic
retention TPin TPlake TPlake/TPin

area depth rate loading time
Source n Percentile (106 m3) (km2) (m) (m3s-1) (m yr-1) (yrs) (μg L-1) (μg L-1) (unitless)
Overall 305 90th 2487 127 33.6 150 207 6.25 398 213 1.04
Overall 305 75th 347.2 27.0 14.3 20.3 56.5 2.60 194 92.0 0.82
Overall 305 50th 48.5 7.2 6.4 3.6 13.8 0.58 72.7 33.0 0.55
Overall 305 25th 4.7 1.3 3.2 0.5 4.1 0.10 31.0 12.1 0.31
Overall 305 10th 1.1 0.4 1.7 0.1 1.4 0.02 15.6 7.8 0.18

Arithmetic Mean 305 76059 841 16.2 134 96.4 5.80 179 92.8 0.60
Geometric Mean 305 52.4 7.2 7.3 3.6 15.6 0.47 76.6 37.2 0.49
Skewness 305 13.4 9.6 5.0 7.6 10.4 15.3 9.4 4.7 0.78
Kurtosis 305 197 97 33.2 68.8 138 250 104 27.9 0.56

Vollenweider (1969) 8 50th 233 7.9 31.0 1.8 7.4 3.22 122 64.0 0.55
NES (1975) 134 50th 28.9 6.1 4.4 4.9 19.2 0.22 90.1 50.0 0.64
Jones and Bachman (1976) 16 50th 5.2 3.5 2.0 0.2 1.3 1.60 259 86.5 0.34
Rast and Lee (1978) 30 50th 15.2 2.7 6.2 0.6 4.0 2.05 109 50.0 0.41
Fricker (1980) 20 50th 163 7.9 34.2 2.3 17.9 1.54 72.5 23.9 0.35
Rydin (1980) 14 50th 282 24.1 14.7 15.2 17.2 1.08 63.7 25.7 0.50
Higgins and Kim (1981) 18 50th 813 70.7 10.1 350 133 0.08 38.9 28.0 0.79
Janis and Vollenweider (1981) 65 50th 62.2 5.2 10.5 2.0 10.9 0.94 27.7 10.5 0.54
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FIGURES LEGENDS

Figure 1-ESM: Marginal posterior distributions of the model error (τ) for the non-hierarchical (dash

line) and the corresponding hierarchical models partitioned with mean depth - Prior3 (solid line).

Figure 2-ESM: Marginal posterior distributions of the model error (τ) for the non-hierarchical (dash

line) and the corresponding hierarchical models partitioned with hydraulic retention - Prior3 (solid line).

Figure 3-ESM: Sensitivity of the posterior patterns on the specification of the global prior distributions

for the parameter k1 (H1 model). The priors are normally distributed with 95, 80, 68.2, 50, 34.1, 25% of

their values lying within the interval 0.45±0.04 yr-1 reported by Brett and Benjamin (2008).

Figure 4-ESM: Observed versus median predicted lake total phosphorus (TPlake) concentrations [μg L-

1]. Gray lines correspond to the 2.5 and 97.5% credible intervals. The diagonal line represents a perfect

fit between predicted medians and observed values.

Figure 5-ESM: Bayesian hierarchical model based on the hydraulic retention partitioning. Prior (thick

black lines) and posterior group-specific (thin black: ≤τw = 2.6 yrs, and thick gray: > τw = 2.6 yrs)

parameter distributions. Global priors are normally distributed within the confidence intervals reported

in the Brett and Benjamin (2008) study (Prior3).



4

Figure 1-ESM
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Figure 2-ESM
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Figure 3-ESM
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Figure 4-ESM
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Figure 5-ESM
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