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a  b  s  t  r  a  c  t

Skeptical  views  of  the scientific  value  of  modelling  argue  that there  is  no  true  model  of  an ecologi-
cal  system,  but rather  several  adequate  descriptions  of different  conceptual  basis  and  structure.  In this
regard,  rather  than  picking  the  single  “best-fit”  model  to predict  future  system  responses,  we  can  use
Bayesian  model  averaging  to synthesize  the  forecasts  from  different  models.  Does  the  combination  of
several models  of different  complexity  improve  our  capacity  to synthesize  different  perceptions  of the
ecosystem  functioning  and  therefore  the value  of the  modelling  enterprise  in  the  context  of ecosys-
tem  management?  Our  study  addresses  this  question  using  a complex  (14 state-variable)  eutrophication
model  along  with  a  simpler  modelling  construct  that  considers  the  interplay  among  phosphate,  detritus,
and  generic  phytoplankton  and  zooplankton  state  variables.  Using  Markov  Chain  Monte  Carlo  simula-
tions,  we  calculate  the relative  mean  standard  error  to  assess  the  posterior  support  of  the two  models
after  considering  the  available  data  from  the  system.  Predictions  from  the  two models  are  then  combined
using  the  respective  standard  error  estimates  as weights  in  a weighted  model  average.  The  model  aver-
aging  approach  is  used  to  examine  the  robustness  of  predictive  statements  made  from  our earlier  work
regarding the  response  of  Hamilton  Harbour  (Ontario,  Canada)  to  the  different  nutrient  loading  reduction

−1
strategies.  In  particular,  we  consolidate  the  finding  that  the  existing  total  phosphorus  goal  (<17  �g  L ) is
most  likely  unattainable,  and  therefore  we  identify  the most  achievable  ambient  target  under  the  most
stringent  (but  realistic)  nutrient  loading  reduction  scenario.  Finally,  the  discrepancy  between  the chloro-
phyll a  predictions  of the two  models  pinpoint  the need  to  delve  into  the dynamics  of  phosphorus  in  the
sediment–water  column  interface,  as the internal  nutrient  loading  can  conceivably  be  a  regulatory  factor
of the  duration  of the transient  phase  and the recovery  resilience  of the  system.

© 2012 Elsevier B.V. All rights reserved.
“. . .Because the goal of predictive limnology is predictive power,
its advance is measured by decreased uncertainty of predic-
tion and its controversies are resolved by comparing the ability
of alternative approaches and theories to make the required
prediction. . .”  R.H. Peters (1986)

. Introduction
Despite the considerable progress accomplished over the last
–4 decades, the credibility of aquatic biogeochemical models to
orm the basis of public policy decisions has been severely crit-
cized in the literature (Arhonditsis and Brett, 2004; Anderson,
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304-3800/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.ecolmodel.2012.05.023
2005; Flynn, 2005; Arhonditsis et al., 2006). With over 800 cita-
tions, the Oreskes et al. (1994) paper stands out as one of the
classic critiques of the veracity of scientific methodology of earth
sciences models, advocating the provocative standpoint that the
validation of any type of model aiming to reproduce an open sys-
tem is practically impossible. If we  go beyond the controversy
arising from the technical/philosophical meaning of validation
(Rykiel, 1996), this statement essentially suggests that the inherent
complexity of open environmental systems is subject to multiple
conceptualizations and ever-changing mathematical descriptions.
Being primarily a reflection of our current level of understand-
ing and existing measurement technologies, the fact that many
different model structures and many different parameter sets

within a chosen model structure can acceptably reproduce the
observed behaviour of a complex environmental system has long
been discussed in the literature (Gauch, 1993; Beven and Freer,
2001; Christakos, 2002, 2003). Yet, Neuman (2003) pinpointed the
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bsence of rigorous methodological frameworks to develop alter-
ative site-specific conceptual mathematical models, select the
ptimal subset of models, effectively combine them to optimize
redictions, and subsequently assess the underlying uncertainty.

Surprisingly, this very important notion is still somewhat
eglected in the modelling literature, although there are view-
oints suggesting that environmental management decisions
elying upon a single inadequate model can introduce bias and
ncertainty that is much larger than the error stemming from

nadequate choice of model parameter values (Neuman, 2003). In
articular, the practise of basing ecological forecasts on one single
athematical model implies that a valid alternative model may

e rejected (or omitted) from the decision making process (Type I
odel error), but also that our projections can be potentially the

esult of an erroneous mathematical construct that we failed to
eject in an earlier stage (Type II model error). Further, the outputs
f any model should be viewed through the prism of the underlying
ssumptions and therefore model acceptance in one or more set-
ings is not evidence for general model applicability, but rather the
tart of a perpetual race for confirmation. The greater the number of
ases in space or time in which the model is tested and confirmed,
he higher the likelihood that its structure and conceptualization
re still adequate to capture a substantial portion of the observed
ariability (Arhonditsis, 2009).

Recognizing that there is no true model of an ecological system,
ut rather several adequate descriptions of different conceptual
asis and structure (Reichert and Omlin, 1997), Bayesian Model
veraging (BMA) is a technique designed to explicitly account for

he uncertainty inherent in the model selection process. By averag-
ng over many different competing models, BMA  incorporates the
ncertainty about the optimal model for any given exercise into the

nference drawn about parameters and prediction (Raftery et al.,
005). Therefore, rather than picking the single “best-fit” model to
redict future system responses, we can use Bayesian model aver-
ging to provide a weighted average of the forecasts from different
odels (Hoeting et al., 1999). BMA  has been applied successfully to
any model classes including linear regression, generalized linear,

xponential decay, discrete graphical, and dynamic models (Lamon
nd Clyde, 2000; Stow et al., 2004; Sloughter et al., 2007; Azim
t al., 2011). In weather forecasting, BMA  has offered a means for
tatistical post-processing of ensemble outputs, thereby achieving
ower predictive error and sharper predictive probability density
unctions (Raftery et al., 2003; Bao et al., 2010; Sloughter et al.,
010). Further, the explicit consideration of both between- and
ithin-forecast variability offered a meaningful explanation of the

endency of ensembles to exhibit significant spread-skill relation-
hips, in which the spread in the ensemble forecasts is correlated
ith the magnitude of the forecast error, but yet to be underdis-
ersive and thus uncalibrated (Raftery et al., 2003).

In the context of eutrophication, Lamon and Clyde (2000) used
MA  to account for the uncertainty associated with the selection of
he subset of explanatory variables (total phosphorous, total nitro-
en, lake level, water temperature, wind speed and direction) and
heir optimal functional forms (i.e., linear predictors, regression
pline predictors, or product spline interactions) to predict chloro-
hyll a concentrations in Lake Okeechobee. In a similar manner,
MA  significantly improved the mean squared error for overall lake
redictions, while the corresponding uncertainty bounds provided
etter coverage for new observations relative to the confidence

ntervals obtained by ordinary least squares models. Since the
amon and Clyde (2000) pioneering work, notwithstanding the
andful of statistical and process-based eutrophication modelling

tudies that have adopted Bayesian inference techniques (Borsuk
t al., 2004; Arhonditsis et al., 2003, 2007; Qian and Reckhow, 2007;
cavia and Liu, 2009), there is an overwhelming gap in the litera-
ure of BMA  approaches to guide eutrophication risk assessment.
lling 242 (2012) 127– 145

Moreover, there has been little focus on the benefits of basing eco-
logical forecasts on combinations of process-based models, and
practically no discussion on the ways through which the outputs
of mathematical models with multiple endpoints (state variables,
process rates) can be objectively integrated into one single aver-
aged prediction.

To this end, the present study examines the potential benefits
for model-based environmental management when a combination
of models of different complexity is being used. Our study addresses
this question using a complex eutrophication model, developed
by Ramin et al. (2011) to guide the water quality criteria setting
process in Hamilton Harbour (Ontario, Canada), along with a sim-
pler plankton model that is founded upon the interplay among
phosphate, detritus, and generic phytoplankton and zooplankton
state variables. In this study, we first use a Bayesian framework
to independently update the two ecological models with a dataset
that represents the water quality conditions currently prevailing
in Hamilton Harbour. We  then weight the performance of the indi-
vidual models into an average water quality prediction, which is
used to examine the robustness of predictive statements made
from our earlier work regarding the response of Hamilton Har-
bour to the different nutrient loading reduction strategies. Given
the idiosyncrasies of ecological process-based modelling, our con-
tention is that the Bayesian model average approach should not be
viewed solely as a means to improve predictive capacity, but rather
as an opportunity to compare alternative ecological structures and
to integrate across different paradigms. We  therefore compare the
ecosystem dynamics postulated by the parameterization of the two
models and identify ecological mechanisms that could potentially
modulate the efficiency of the restoration efforts in the Hamilton
Harbour area. Finally, we emphasize that future research should
focus on the refinement of the weighting schemes and other per-
formance standards to impartially synthesize the predictions of
different models.

2. Methods

2.1. Study site

Hamilton Harbour is a large embayment at the western end of
Lake Ontario and has a history of eutrophication problems mani-
fested as algal blooms, low water transparency, prevalence of toxic
cyanobacteria, and low hypolimnetic oxygen concentrations dur-
ing the late summer (Hiriart-Baer et al., 2009; Ramin et al., 2011).
Hamilton Harbour’s drainage basin is about 500 km2 in aerial extent
and consists of watersheds dominated by agricultural land use
(Grindstone and Spencer Creeks) and urban land use (Redhill and
Indian Creeks; Fig. 1). The Harbour was  the focus of intensive mon-
itoring and modelling studies throughout the 70s and early 80s
(e.g., Kohli, 1979; Klapwijk and Snodgrass, 1985). Since the mid  80s,
when the Harbour was  identified as one of the 43 Areas of Concern
(AOC) by the Water Quality Board of the International Joint Com-
mission, the remedial measures proposed by the Hamilton Harbour
Remedial Action Plan (RAP) were based on the premise that the algal
biomass levels and water clarity could be controlled by reducing
ambient phosphorus concentrations. The substantial reduction of
total phosphorus (TP) from the sewage effluents of the four wastew-
ater treatment plants (WWTPs) and the steel mills that discharge
into Hamilton Harbour, led to a significant decrease of TP concen-
trations and to an improvement of the water clarity, which in turn
has triggered aquatic macrophyte resurgence in some nearshore

areas. Yet, the system still receives substantial loads of phosphorus,
ammonia, and suspended solids from the Burlington and Hamilton
WWTPs, and arguably remains quite far from attaining the delisting
RAP water quality goals (TP < 17 �g L−1, chl a 5–10 �g L−1, Secchi
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Fig. 1. Map  of land uses in Hamilton Harbour wa

isk Transparency > 3 m)  set by the Stage 2 Update 2002 Report
Hamilton Harbour RAP Stakeholders, 2003).

Environmental modelling has been an indispensable tool of
he Hamilton Harbour restoration efforts, and recent modelling
ork suggests the attainment of the water quality goal related to

he summer chlorophyll a concentrations (5–10 �g L−1) is achiev-
ble (Gudimov et al., 2010; Ramin et al., 2011). Yet, it has also
een emphasized that the criteria setting process should explicitly
ccommodate the natural variability of the system by permitting a
ealistic frequency of goal violations. Namely, an exceedance fre-
uency of 10% or less of the samples collected on a weekly basis
uring the focal period (i.e., June–September) should still be con-
idered as compliance with the water quality goals of the system.

 follow-up study by Gudimov et al. (2011) showed that the cur-
ent epilimnetic total phosphorus target of 17 �g L−1 is probably
tringent and therefore a somewhat higher value (e.g., 20 �g L−1)
ay  provide a more realistic target. The same modelling analysis

ocused on the major ecological mechanisms that can potentially
odulate the response of the system, and therefore shape the

estoration rate as well as the stability of the new trophic state of the
arbour. It was suggested that the dynamics of phosphorus in the

ediment–water column interface need to be revisited, as the inter-
al nutrient loading can conceivably be a regulatory factor of the
uration of the transient phase and the recovery resilience of the
arbour. Gudimov et al. (2011) also pinpointed two critical aspects
f the system dynamics that invite further investigation and will
ikely determine our predictive capacity to assess compliance with
he chlorophyll a criterion of 10 �g L−1: (i) the importance of the

utrient recycling mediated by the microbial food web; and (ii) the
cological mechanisms that favour structural shifts towards a zoo-
lankton community dominated by large-sized and fast-growing
erbivores.
d, western end of Lake Ontario, Ontario, Canada.

2.2. Model description

The basic conceptual design along with the key features of
the two models used are provided in the Supporting Information
section, while their detailed description can be found elsewhere
(Arhonditsis and Brett, 2005; Arhonditsis et al., 2007; Law et al.,
2009; Ramin et al., 2011). The complex eutrophication model con-
siders the interactions among the following eight state variables
in the water column: nitrate (NO3), ammonium (NH4), phosphate
(PO4), generic phytoplankton (PHYT), cyanobacteria-like phyto-
plankton (CYA), zooplankton, organic nitrogen (ON) and organic
phosphorus (OP) (Figs. 2a and b). With this model, we consid-
ered a two-compartment vertical segmentation representing the
epilimnion and hypolimnion of the Harbour. The depths of the
two boxes varied with time and were explicitly defined based
on extensive field measurements for the study period 1987–2007
(Dermott et al., 2007; Hiriart-Baer et al., 2009). We  also developed
a simple model that considers the interplay among the limiting
nutrient (phosphate), phytoplankton, zooplankton, and detritus
(particulate phosphorus); also known as NPZD model in the lit-
erature (Fig. 2c). The spatial segmentation of the model consists of
three compartments, representing the epilimnion, mesolimnion,
and hypolimnion of the system.

Thus, the present study selected two models at both ends of
the complexity spectrum that have different strengths and weak-
nesses. One model is a simple mathematical description of the
system that accounts for the interplay between the limiting nutri-
ent and aggregated biotic compartments such as “phytoplankton”,

and “zooplankton” (Edwards, 2001; Arhonditsis et al., 2007). This
simple approach is more easily subjected to detailed uncertainty
analysis and also has the advantage of fewer unconstrained param-
eters. The second model simulates two elemental cycles, functional
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Fig. 2. (A) The nitrogen biogeochemical cycle of the model: (1) external forcing to phytoplankton growth (temperature, solar radiation); (2) zooplankton grazing; (3)
phytoplankton basal metabolism excreted as NH4 and ON; (4) zooplankton basal metabolism excreted as NH4 and ON; (5) settling of particles; (6) water sediment NO3, NH4,
and  ON exchanges; (7) exogenous inflows of NO3, NH4, and ON; (8) outflows of NO3, NH4 , and ON; (9) NO3 sinks due to denitrification; (10) ON mineralization; (11) nitrification;
and  (12) phytoplankton uptake. (B) The phosphorus biogeochemical cycle of the model: (1) external forcing to phytoplankton growth (temperature, solar radiation); (2)
zooplankton grazing; (3) phytoplankton basal metabolism excreted as PO4 and OP; (4) zooplankton basal metabolism excreted as PO4 and OP; (5) OP mineralization; (6)
water  sediment PO4 and OP exchanges; (7) settling of particles; (8) exogenous inflows of PO4 and OP; and (9) outflows of PO4 and OP. (C) The flow diagram of the phosphate
(PO4) – phytoplankton (PHYT) – zooplankton (ZOOP) – detritus or particulate phosphorus (DET), also referred to as NPZD model.
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hytoplankton groups, and dynamic nutrient release from the sed-
ments. The sophisticated parameterization of the complex model
rovides confidence for more realistic reproduction of natural
ystem dynamics, but the main criticism for this strategy is the
nevitably poor identifiability with respect to the available data
s well as the limited flexibility (high computational demands) to
horoughly examine model uncertainty to the input requirements.

hile all the predictive statements about the response of the sys-
em will be based on the synthesis of two models, our intent is also
o highlight missing ecological processes, verify/reduce present

odel structures, and subsequently guide future model reformu-
ation.

.3. Bayesian framework

.3.1. Statistical formulation:
We used a statistical formulation founded upon the assump-

ion that the two eutrophication models are imperfect simulators
f the environmental system and the corresponding process errors
re invariant with the input conditions, i.e., the difference between
ach model and system dynamics was assumed to be constant
ver the annual cycle for each state variable. We  also accounted
or the uncertainty associated with the dataset using a data qual-
ty submodel. This component of our framework postulates that
ach observation from the system is a random draw from a normal
istribution, in which the mean value represents the (latent) error-
ree observation (also referred to as “true value”) and the variance
s associated with the sampling error or other sources of uncer-
ainty (e.g., variability in time/space). An observation i for the state
ariable j, yij,  can be described as:

yij∼N(ŷij, �2
ijobs

)

ŷij∼N(f (�, xi, y0), �2
j

)

�∼MLN(��, ˙�)y0∼MN(y0�, ˙0)

�2
ijobs

= (0.25 · yij)
21/�2

j
∼gamma(0.001,  0.001)

i = 1, 2, 3, . . . , n and j = 1, . . . , m

(1)

here ŷij represents the latent “true value” used to parameterize
he process-based models; �ijobs corresponds to the observation
rror; f(�, xi, y0) denotes any of the two eutrophication models;
j is the time-independent, variable-specific process (structural)
rror term; xi is a vector of time-dependent control variables (e.g.,
oundary conditions, forcing functions) describing the contempo-
ary environmental conditions; the vector � is a time independent
et of the calibration model parameters; �� indicates the vector
f the mean values of � in logarithmic scale; ˙� = I���T�� and

� = [��1,. . .,���]T corresponds to the vector of the shape param-
ters of the � lognormal distributions (standard deviation of log �),
here � = 16 and 36 for the simple and complex models, respec-

ively; y0 corresponds to the vector of the values of the state
ariables at the initial time point t0 (initial conditions); the vector
0 � = [y1,1,. . .,  y1,�]T corresponds to the January values of all the
tate variables of the model; MLN  and MN  represent the multivari-
te lognormal and multivariate normal distributions, respectively;

 = 12 (simple model: 4 state variables × 3 spatial compartments)
r 28 (complex model: 14 state variables × 2 spatial compart-
ents). Depending on the available information from the system,

he characterization of the prior density of their initial values was
ased on the assumption of a Gaussian distribution with mean
alues derived from the January monthly averages and moder-

tely diffuse standard deviations, specified as 25% of the mean
alue for each state variable j; i.e., ˙0 = I�(0.25)2y0�

Ty0�. Notably,
hen flat priors were assigned to the initial conditions, the infer-

nce drawn remained practically unaltered, although the posterior
lling 242 (2012) 127– 145 131

uncertainty associated with the initial conditions was somewhat
greater. Similar to the practice followed by Ramin et al. (2011),  our
model calibration aimed to reproduce the average seasonal plank-
ton dynamics in the current state of the system. [Description of the
calibration dataset is also provided in Section 2 of the Supporting
Information.]

2.3.2. Prior parameter distributions–numerical approximations
for posterior distributions

The calibration vectors of the simple and complex eutrophica-
tion models consist of sixteen (16) and thirty six (36) parameters,
respectively. Both vectors comprised the most influential parame-
ters, as identified from earlier sensitivity analyses of the two models
(Arhonditsis et al., 2007; Ramin et al., 2011). The prior parameter
distributions reflected the existing knowledge (field observations,
laboratory studies, literature information and expert judgment) on
the relative plausibility of their values. The characterization of the
parameter distributions was similar to the protocol introduced by
Steinberg et al. (1997) and subsequently used in several recent
studies (Arhonditsis et al., 2007, 2008a,b; Zhang and Arhonditsis,
2008; Ramin et al., 2011). Namely, we identified the minimum and
maximum values for each parameter and then we assigned lognor-
mal  distributions parameterized such that 95% of their values (the
two tail areas had equal probability mass) lay within the identified
ranges. The prior distributions of all the calibration parameters of
the two models are presented in Tables 1 and 2. [The default val-
ues assigned to the parameters of the complex model that were
not considered during the updating exercise are provided in the
Supporting Information section.]

Sequence of realizations from the posterior distribution of the
model was obtained using Markov chain Monte Carlo (MCMC) sim-
ulations (Gilks et al., 1998). We  used the general normal-proposal
Metropolis algorithm coupled with an ordered over-relaxation to
control the serial correlation of the MCMC  samples (Neal, 1998).
As originally proposed by Arhonditsis et al. (2007),  the present
Bayesian parameter estimation is based on two parallel chains
with starting points: (i) a vector that consists of the mean values
of the prior parameter distributions, and (ii) a vector based on a
preliminary deterministic calibration of the two  models. The mod-
els were run for 30,000 iterations and convergence was  assessed
with the modified Gelman–Rubin convergence statistic (Brooks and
Gelman, 1998). The accuracy of the posterior parameter values
was inspected by assuring that the Monte Carlo error for all the
parameters was  less than 5% of the sample standard deviation. Our
framework is implemented in the WinBUGS Differential Interface
(WBDiff); an interface that allows numerical solution of systems of
ordinary differential equations within the WinBUGS software.

Aside from the differences in the central tendency and the
underlying uncertainty, we  also evaluated the degree of updating
between parameter priors and posteriors by assessing the changes
in the shape of the corresponding distributions using the delta
index (Endres and Schindelin, 2003; Hong et al., 2005). The delta
index measures the distance between two  probability distribu-
tions:

ı�i =
√∫ (

�(�i) log
2�(�i)

�(�i) + �(�i|D)
+ �(�i|D) log

2�(�i|D)
�(�i) + �(�i|D)

)
d� (2)

where �(�i) and �(�i|D) represent the marginal prior and posterior
distributions of parameter �i, respectively. This metric is equal to

zero if there is no difference between the two  distributions, and
equal to

√
2 log 2 if there is no overlap between the two distribu-

tions. All delta index values will be presented as percentages of this
maximum value.



132
M

.
 R

am
in

 et
 al.

 /
 Ecological

 M
odelling

 242 (2012) 127– 145

Table 1
Parameter definitions and Markov Chain Monte Carlo posterior estimates of the mean values and standard deviations of the stochastic nodes of the simple eutrophication model.

Parameters Description Units Priors Posteriors References

Mean SD Mean SD

a Maximum phytoplankton
growth rate

day−1 1.772 0.382 2.134 0.251 Gudimov et al. (2010)

d  Zooplankton mortality rate day−1 0.114 0.015 0.110 0.009 Lampert and Sommer (1997),
Omlin et al. (2001),  Sommer
(1989), Jorgensen et al. (1991),
Chen et al. (2002, and references
therein)

Kp Half-saturation constant for
PO4 uptake

mg P m−3 13.011 4.666 10.63 2.057 Cerco and Cole (1993, and
references therein), Arhonditsis
and Brett (2005), Reynolds (2006)

r  Phytoplankton respiration rate day−1 0.035 0.016 0.090 0.011 Edwards (2001)
s  Phytoplankton sinking loss rate m day−1 0.068 0.050 0.046 0.018 Edwards (2001)
� Zooplankton grazing

half-saturation coefficient
mg  P m−3 5.296 3.359 16.09 2.189 Sommer (1989),  Jorgensen et al.

(1991)
ϕ  Detritus mineralization rate day−1 0.044 0.025 0.013 0.002 Gudimov et al. (2010)
  Detritus sinking rate m day−1 0.341 0.252 0.443 0.012 Edwards (2001)
� Maximum zooplankton grazing

rate
day−1 0.571 0.077 0.582 0.049 Sommer (1989),  Jorgensen et al.

(1991)
Kb Background light extinction

coefficient
m−1 0.214 0.029 0.204 0.018 Hamilton and Schladow (1997)

Kc Light extinction coefficient due
to chlorophyll a

L (�g chla m)−1 0.031 0.013 0.023 0.005 Arhonditsis and Brett (2005),
Hamilton and Schladow (1997)

a  Zooplankton assimilation
efficiency

–  0.491 0.039 0.471 0.022 Gudimov et al. (2010)

ˇ  Zooplankton excretion fraction
to phosphate

– 0.385 0.095 0.292 0.048 Edwards (2001)

	  Zooplankton predation
excretion fraction to phosphate

– 0.385 0.095 0.445 0.071 Edwards (2001)

ω  Relative zooplankton
preference for detritus
compared to phytoplankton

– 0.470 0.150 0.237 0.062 Gudimov et al. (2010)

Is Half saturation light intensity MJ  m−2 day−1 160.6 28.79 146.8 16.88 Gudimov et al. (2010)
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Table 2
Parameter definitions and Markov Chain Monte Carlo posterior estimates of the mean values and standard deviations of the stochastic nodes of the complex eutrophication model.

Parameters Description Units Priors Posteriors References
Mean SD Mean SD

AH(cy) Half saturation constant for
ammonium cyanobacteria uptake

�g N L−1 49.88 9.585 50.48 9.575 Cerco and Cole (1993, and
references therein)

AH(phyt) Half saturation constant for
ammonium phytoplankton uptake

�g N L−1 110.4 13.517 112.7 11.73 Cerco and Cole (1993, and
references therein)

aPO4(cy) Fraction of cyanobacteria basal
metabolism released as phosphate

0.385 0.095 0.390 0.098 Cerco and Cole (1993, and
references therein)

aPO4(phyt) Fraction of phytoplankton basal
metabolism released as phosphate

0.385 0.095 0.338 0.074 Cerco and Cole (1993, and
references therein)

aPO4(zoop) Fraction of zooplankton basal
metabolism released as phosphate

0.385 0.095 0.625 0.089 Cerco and Cole (1993, and
references therein)

Denitrifmax rate Maximum denitrification �g N L−1 day−1 3.494 1.643 4.038 2.036 Gudimov et al. (2010)
Filter(cy) Cyanobacteria filtering rate from

dreissenids
day−1 0.012 0.004 0.011 0.003 Gudimov et al. (2010)

Filter(phyt) Phytoplankton filtering rate from
dreissenids

day−1 0.023 0.008 0.015 0.003 Gudimov et al. (2010)

Growthmax(cy) Cyanobacteria maximum growth
rate

day−1 1.350 0.155 1.319 0.138 Gudimov et al. (2010)

Growthmax(phyt) Phytoplancton maximum growth
rate

day−1 2.574 0.155 2.649 0.153 Gudimov et al. (2010)

Ik(cy) Half saturation light intensity for
cyanobacteria

MJ  m−2 day−1 160.6 28.79 162.0 27.97 Gudimov et al. (2010)

Ik(phyt) Half saturation light intensity for
phytoplankton

MJ  m−2 day−1 160.6 28.79 120.9 13.89 Gudimov et al. (2010)

kbackground Background light extinction
coefficient

m−1 0.214 0.029 0.234 0.025 Hamilton and Schladow (1997, and
references therein)

kchla(cy) Self shading effect for
cyanobacteria

L (�g chla m)−1 0.031 0.013 0.032 0.011 Arhonditsis and Brett (2005),
Hamilton and Schladow (1997, and
references therein)

kchla(phyt) Self shading effect for
phytoplankton

L·(�g chla m)−1 0.026 0.009 0.070 0.007 Arhonditsis and Brett (2005),
Hamilton and Schladow (1997, and
references therein)

KCrefmineral Organic carbon mineralization rate day−1 0.044 0.025 0.021 0.009 Gudimov et al. (2010)
KNrefmineral rate Nitrogen mineralization day−1 0.044 0.025 0.028 0.010 Cerco and Cole (1993, and

references therein), Hamilton and
Schladow (1997, and references
therein)

KPrefmineral rate Phosphorus mineralization day−1 0.044 0.025 0.011 0.002 Omlin et al. (2001), Hamilton and
Schladow (1997, and references
therein),  Cerco and Cole (1993, and
references therein)

KZ Half saturation constant for
zooplankton grazing

�g C L−1 98.28 7.747 96.16 6.556 Sommer (1989),  Jorgensen et al.
(1991)

max  grazing Zooplankton maximum grazing
rate

day−1 0.491 0.039 0.471 0.014 Sommer (1989),  Jorgensen et al.
(1991)
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Table 2 (Continued)

Parameters Description Units Priors Posteriors References
Mean SD Mean SD

mp(cy) rate Cyanobacteria mortality day−1 0.023 0.008 0.023 0.006 Omlin et al. (2001),  Jorgensen et al.
(1991),  Cerco and Cole (1993, and
references therein), Reynolds
(1984)

mp(phyt) rate Phytoplankton mortality day−1 0.023 0.008 0.027 0.006 Omlin et al. (2001),  Jorgensen et al.
(1991),  Cerco and Cole (1993, and
references therein), Reynolds
(1984),  Hamilton and Schladow
(1997, and references therein)

mz  rate Zooplankton mortality day−1 0.156 0.015 0.148 0.005 Lampert and Sommer (1997),
Omlin et al. (2001),  Sommer
(1989), Jorgensen et al. (1991),
Chen et al. (2002, and references
therein)

NH(cy) Half saturation constant for nitrate
cyanobacteria uptake

�g N L−1 49.88 9.585 49.92 9.714 Arhonditsis and Brett (2005),
Hamilton and Schladow (1997, and
references therein)

NH(phyt) Half saturation constant for nitrate
phytoplankton uptake

�g N L−1 110.4 13.52 110.2 13.54 Arhonditsis and Brett (2005),
Hamilton and Schladow (1997, and
references therein)

Nitrifmax  rate Maximum nitrification �g N L−1 ·day−1 17.72 3.822 9.338 0.980 Reynolds (1984),  Hamilton and
Schladow (1997, and references
therein),  Berounsky and Nixon
(1990)

PH(cy) Half saturation constant for
phosphorus cyanobacteria uptake

�g P L−1 23.35 2.321 23.87 2.298 Cerco and Cole (1993, and
references therein), Arhonditsis
and Brett (2005), Reynolds (2006)

PH(phyt) Half saturation constant for
phosphorus phytoplankton uptake

�g P L−1 8.859 1.911 8.541 1.551 Cerco and Cole (1993, and
references therein), Arhonditsis
and Brett (2005), Reynolds (2006)

Pmaxuptake(cy) Maximum phosphorus uptake rate
for cyanobacteria

�g P L−1
. day−1 0.016 0.003 0.014 0.002 Jorgensen et al. (1991),  Arhonditsis

and Brett (2005), Hamilton and
Schladow (1997, and references
therein)

Pmaxuptake(phyt) Maximum phytoplankton uptake
rate for phytoplankton

�g P L−1
. day−1 0.023 0.008 0.019 0.003 Jorgensen et al. (1991),  Arhonditsis

and Brett (2005), Hamilton and
Schladow (1997, and references
therein)

Vsettling Allochthonous particle settling
velocity

m day−1 0.886 0.191 0.395 0.035 Chen et al., 2002 (and references
therein),  Cerco and Cole (1993, and
references therein), Arhonditsis
and Brett (2005), Reynolds (2006)

Vsettling(biogenic) Biogenic particle settling m day−1 0.117 0.038 0.102 0.029 Gudimov et al. (2010)
Vsettling(cy) Cyanobacteria settling m day−1 0.023 0.008 0.023 0.007 Wetzel (2001),Cerco and Cole

(1993, and references therein),
Sandgren (1991)

Vsettling(phyt) Phytoplankton settling m day−1 0.177 0.038 0.184 0.031 Wetzel (2001),Cerco and Cole
(1993, and references therein),
Sandgren (1991)

ˇN Fraction of inert nitrogen buried
into deeper sediment

0.428 0.058 0.539 0.097 Gudimov et al. (2010)

ˇP Fraction of inert phosphorus
buried into deeper sediment

0.845 0.039 0.918 0.031 Gudimov et al. (2010)
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ig. 3. Comparison between the prior (black line) and posterior parameter distrib
epresent the number of Markov chain Monte Carlo samples included within each b

.3.3. Model updating and loading scenarios
The MCMC  estimates of the mean and standard deviation

arameter values along with the covariance structure were used
o update the two models (Gelman et al., 1995). Under the assump-
ion of a multivariate normal distribution for the parameter values,
he conditional distributions are given by:

ˆ
i|j = �̂i + [�j − �̂j]˙−1

j
˙i,j (3)

i|j = ˙i − ˙j,i˙
−1
j
˙i,j j ∈

{
i + 1, ...n

}
(4)

here �̂i|j and ˙i|j correspond to the mean value and the dispersion
atrix of the parameter i conditional on the parameter vector j; the

alues of the elements ˙i, ˙i,j, and ˙j correspond to the variance

nd covariance of the two subset of parameters; and �̂i, �̂j , �j corre-
pond to the posterior mean and random values of the parameters

 and j, respectively. The updated models provided the basis for
 series of posterior simulations that aimed to examine the com-

liance of the system with the targeted water quality standards,

f the Hamilton Harbour RAP loading recommendations are actu-
lly implemented. Summary statistics of the exogenous flows and
utrient loadings used to force the models were similar to those
s of the calibration vector of the simple model for Hamilton Harbour. The Y axis
the corresponding parameter spaces.

presented by Ramin et al. (2011) (see Table 6 in their Electronic
Supplementary Material). We also combined the predictions from
the two  models using the respective mean standard error estimates
as weights in a weighted model average:

wij =

∑MC
k=1

�ijk

Yj

MC
(5)

wMi =
m∑m
j=1wij

(6)

TP =
l∑
i=1

wMiTPMi chla =
l∑
i=1

wMichlaMi (7)

where l represents the number of models considered in this anal-
ysis (l = 2); m corresponds to the number of state variables j of
the model Mi for which data are available (m = 6 or 11); MC is the

total number of MCMC  runs sampled to form the model posteriors;
�ijk denotes the model structural error for the state variable j of
the model Mi as sampled from the MCMC  run k; Ȳj represents the
annual observed average for the variable j, TPMi and chlaMi are the
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Fig. 4. Comparison between the prior (black line) and posterior parameter distributions of the calibration vector of the complex eutrophication model for Hamilton Harbour.
The  Y axes represent the number of Markov chain Monte Carlo samples included within each bin of the corresponding parameter spaces.
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Fig. 5. Changes in the shape of the parameter distributions after the updating of the
two eutrophication models. The assessment is based on the delta index (Eq. (2))  and√
M. Ramin et al. / Ecological

otal phosphorus and chlorophyll a predictions from the individual
odels weighted by the corresponding weights wMi to obtain the

veraged predictions TP and chla.

. Result

The two MCMC  sequences for each of the two models converged
apidly (≈5000 iterations) and the statistics reported were based
n the last 25,000 draws by keeping every 20th iteration (thin = 20).
ean values and standard deviations of the sixteen parameters of

he simple model are provided in Table 1 and Fig. 3. Similarly, the
entral tendencies of the thirty six marginal parameter posterior
istributions of the complex eutrophication model along with the
nderlying uncertainty are presented in Table 2 and Fig. 4. Rel-
tive to the prior parameter specification, the posterior statistics
enerally indicate that a substantial amount of knowledge was
ained after updating the simple model. Characteristic examples
ere the substantial shifts of the most likely values of the zoo-
lankton half saturation constant (�), respiration rate (r), detritus
ineralization rate (ϕ), and the zooplankton preference for detri-

us relative to phytoplankton (ω). We  also note the significantly
arrower posterior standard deviations of the mineralization rate
ϕ), detritus sinking rate ( ), phytoplankton settling rate (s), phos-
horus half saturation constant (Kp), and light extinction coefficient
ue to chlorophyll a (Kc) compared to those specified prior to the
alibration. Likewise, several of the marginal posteriors of the com-
lex model were characterized by significant shifts of their central
endency relative to the prior assigned values, e.g., self shading
ffect for phytoplankton (kchla(phyt)), carbon/phosphorus mineral-
zation rates (KCrefmineral, KPrefmineral), maximum nitrification rate
Nitrifmax), fraction of zooplankton basal metabolism released as
hosphate (aPO4(zoop)), and allochthonous particle settling velocity
Vsettling). The same parameters along with the half saturation light
ntensity for phytoplankton (Ik(phyt)), phytoplankton filtering rate
rom dreissenids (filter(phyt)), zooplankton grazing (max  grazing),
nd mortality rate (mz) demonstrated significant reductions of their
osterior standard deviations. Interestingly, there were also several
arameters of the complex model with posterior distributions that
emained unaltered, suggesting that the dataset used did not offer
ny insights into the characterization of the cyanobacteria-like
unctional group (Ik(cy), NH(cy), AH(cy), PH(cy), growthmax(cy)) as well
s the phytoplankton nitrogen uptake kinetics (AH(phyt), NH(phyt)).

Changes in the shape of the parameter distributions after the
pdating of the two eutrophication models are presented in Fig. 5.

n the simple model, zooplankton grazing half-saturation coeffi-
ient (�), mineralization rate (ϕ), detritus sinking rate ( ) and
hytoplankton respiration rate (r) showed the highest distance
etween priors and posteriors, whereas the zooplankton mor-
ality rate (d), background light extinction coefficient (kb), and

aximum zooplankton grazing rate (�) demonstrated the lowest
alues. On the other hand, the self shading effect for phytoplank-
on (kchla(phyt)), the fraction of inert nitrogen and phosphorus
uried into deeper sediment (ˇN, ˇP), fraction of zooplankton basal
etabolism released as phosphate (aPO4(zoop)), the zooplankton
ortality rate (mz), and the allochthonous particle settling veloc-

ty (Vsettling) were characterized by a substantial shape change of
heir distributions after the calibration of the complex eutrophica-
ion model. Notably, the delta index values reiterate the previously
eported finding that most of the parameters associated with
he nitrogen utilization by the two phytoplankton functional
roups (AH(cy)/(phyt), NH(cy)/(phyt)), and the cyanobacteria specifica-

ion remained practically the same, suggesting that whether the
nitial priors assigned were reasonable and/or that our knowledge
bout their values did not improve after the consideration of the
ataset (Hong et al., 2005).
all values are presented as percentages of the maximum value 2 log 2, in which
there is no overlap between the two distributions.

The seasonally invariant model structure (or process) error
terms (�j) delineate constants zones around the model endpoints
for which empirical information from the system exists (Table 3).
First, we  highlight the notably lower error values of the com-
plex model for nearly all the state variables, such as epilimnetic
phosphate, phytoplankton and zooplankton biomass, hypolimnetic
phosphate and organic phosphorus concentrations. Epilimnetic
organic phosphorus is the only case for which the process error was
somewhat higher with the complex model. Epilimnetic nitrate con-
centrations demonstrate the highest error value with the complex
model (�NO3epi =240.5), whereas phytoplankton (�PHYTepi = 205.5) is
characterized by significant error with the simple model. By con-
trast, the simple and complex eutrophication models reproduce
accurately the epilimnetic detritus (�DET/OPepi = 1.083) and epilim-
netic phosphate (�PO4epi = 0.287), respectively.

The posterior medians along with the 95% credible intervals
derived from the calibration of the simple model were close to
the observed values for epilimnetic phosphate, total phospho-
rus, chlorophyll a concentrations, total zooplankton biomass, and
hypolimnetic phosphate in Hamilton Harbour (Fig. 1 in Support-
ing Information or Fig. SI-1). The model accurately predicts the
epilimnetic phosphate levels including the winter maxima and
summer minima. The simple model captures -although some-
what underestimated- the two  major peaks of the zooplankton
biomass, and closely represents the summer phytoplankton abun-
dance (≈16 �g chla L−1). Yet, the chlorophyll a concentrations in
the fall are distinctly over-predicted (>10 �g chla L−1), while the
model fails to reproduce the phosphate hypolimnetic accumu-

lation in the summer. Epilimnetic phosphate, total phosphorus,
total ammonia-nitrogen, zooplankton biomass, hypolimnetic phos-
phate, and ammonia predictions from the complex model are
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Table  3
Monte Carlo posterior estimates of the mean values and standard deviations of the model structural (or process) error terms of the two eutrophication models.

Parameters NPZD Complex

Mean SD REa Mean SD RE

�PO4epi 1.732 0.457 19.8% 0.287 0.101 2.6%
�PHYTepi 205.5 52.51 29.3% – – –
�ZOOPepi 55.47 19.96 34.8% 13.86 3.466 7.7%
�DET/OPepi 1.083 0.421 2.7% 2.221 0.599 7.0%
�NH4epi – – – 48.56 11.71 7.8%
�NO3epi – – – 240.5 66.52 9.1%
�CYAepi – – – 111.7 29.76 47.7%
�NONCYAepi – – – 52.32 14.71 10.6%
�PO4hypo 2.261 0.533 22.2% 0.834 0.218 7.6%
�DET/OPhypo 3.794 0.898 13.9% 2.212 0.554 7.7%
�NH4hypo – – – 14.81 5.33 2.2%
�NO3hypo – – – 268.2 64.39 11.0%

a Relative Error (RE) = �|Observation − Prediction|/�Observation.
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ig. 6. Comparison between the observed data (black dots) and the averaged pred
nd  total zooplankton biomass in the Hamilton Harbour.

lose to the observed data available from Hamilton Harbour
Fig. SI-2). The complex model accurately predicts the spring
hytoplankton bloom (≈20 �g chla L−1), but distinctly underpre-
icts the end of summer-mid fall secondary chlorophyll a peak
<13 �g chla L−1); mainly due to underestimation of the abun-

ance of the cyanobacteria-like functional group. Notably, nitrate
oncentrations appear to be overestimated in the epilimnion and
nderestimated in the hypolimnion. In the next step, the overall
erformance of the two models provided the basis for calculating
 of the two eutrophication models for total phosphorus, phosphate, chlorophyll a,

weights (Eqs. (5)–(7)),  which were then used to average their
predictions. In particular, the posterior weights assigned to the
complex and simple model were 0.63 and 0.37, respectively. The
greater emphasis placed on the outputs from the complex model is
clearly manifested by the improved representation of the hypolim-

netic phosphate progressive increase during the stratified period,
and the faithful description of the phytoplankton and zooplankton
biomass seasonal cycles (Fig. 6). Yet, we note that the averaged
prediction from the two  models still underpredicts the summer
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pilimnetic chlorophyll a levels, although the discrepancy is lower
≈1–2 �g chla L−1) than the prediction supported by the complex
utrophication model alone.

Regarding the nutrient loading scenario examined, both the sim-
le model (18.7 ± 0.7 �g TP L−1) and the complex one (17.8 ± 0.9 �g
P L−1) predict that the implementation of the HH RAP loading rec-
mmendations will reduce the average TP concentrations during
he summer stratified period below the level of 20 �g TP L−1, but
he associated distributions will have a large portion of the proba-
ility mass above the Stage 2 water quality goal of a maximum of
7 �g TP L−1 (Fig. 7a and b). The complete agreement between the
wo forecasts for total phosphorus is also reflected in their averaged
rediction (Fig. 7c). Both models also predict that the epilimnetic
hlorophyll a concentrations will fall below the threshold level of
0 �g chla L−1 (Fig. 8a and b). Yet, the simple model appears to
upport more optimistic predictions with respect to phytoplank-
on response to the reduced ambient TP concentrations relative to
he complex one. Consequently, the averaged predictive distribu-
ion for chlorophyll a demonstrates a distinct bimodal pattern with

 primary mode at 7.5 �g chla L−1, reflecting the greater weight
laced on the complex model, and a secondary peak at 5.1 �g chla
−1, associated with the simple one (Fig. 8c).

. Discussion

An increasingly popular notion in the modelling literature is
hat the current generation of ecological models is far from hav-
ng the capacity to address the complicated issues pertaining to
he contemporary management of natural resources (Clark et al.,
001). Yet, the lack of a healthy dose of criticism and the ten-
ency of modellers “to carry their trade far beyond the limits
f reality” has undermined the trustworthiness of mathematical
odelling to ultimately address vexing aspects of environmental

tewardship (Anderson, 2005; Flynn, 2005; Pilkey and Pilkey-Jarvis,
007). Indeed, despite the compelling reasons for identifying the

diosyncrasies and knowledge gaps of the natural environment,
or differentiating between predictable and unpredictable patterns,
nd for critically evaluating model outputs, modellers tend to
verstate the power of models and frequently make unfounded
tatements based on misleadingly deterministic projections. In
any respects, the examination of uncertainty along with the

bjective recognition of what we can actually learn from the appli-
ation of a mathematical model can be more insightful than its
evelopment, calibration or validation. In this regard, the present
tudy focused on one profoundly underappreciated aspect of the
odel-based decision making process that involves the uncertainty

rising from the adoption of one single model for a given environ-
ental management problem. What is the additional knowledge

ained by considering two or more mechanistic models and to
hat extent does the value of the modelling enterprise in the con-

ext of ecosystem management benefit from such a synthesis of
redictions?

One of the critical decisions when considering models of differ-
nt complexity involves the selection of the averaging scheme to
ynthesize their predictions. In this study, we opted for a strategy
hat considers performance over all the model endpoints rather
han the subset of state variables included in both models or
he variables more closely related to the environmental manage-

ent problem at hand. While this approach may  entail the risk
f downplaying the impact of the best performing model for a
articular variable, we believe that a fair assessment of the value

f all the models integrated in an ensemble ecological forecast
hould strive for balanced performance over their entire struc-
ure. This approach aims to penalize the likelihood of calibration
ias, whereby the maximization of the fit for a specific state
lling 242 (2012) 127– 145 139

variable (e.g., phytoplankton biomass, dissolved oxygen) may  be
accompanied by high error for other state variables (herbivorous
zooplankton biomass, nutrient concentrations). In doing so, our
intent is to avoid forecasts founded upon models with misleadingly
high weights that conceal fundamentally flawed ecological struc-
tures (Franks, 1995; Arhonditsis and Brett, 2004). Future efforts to
develop weighting schemes suitable for the synthesis of ecosys-
tem model predictions will greatly benefit by several interesting
statistical post-processing methods presented in the field of ensem-
ble weather forecasting. For example, Wilks (2002) proposed the
smoothing of forecast ensembles through fitting of mixtures of
Gaussian distributions to ensemble data, and his results suggest
that such smoothed ensembles improve probabilistic forecast-
ing with small ensemble sizes and extreme events. Other simple
statistical approaches with promising results involve the direct
adjustment of the probabilities in rank histograms using large
training datasets (Eckel and Walters, 1998). On the other hand,
the “best member dressing” method represents a more compli-
cated approach, aiming to scrutinize the members of an ensemble
and select their best constituent, to identify the empirical dis-
tribution of the errors of that ensemble member, which is then
used to “dress” each forecast (Roulston and Smith, 2003). Yet, con-
trary to Bayesian averaging, the best member dressing method
is underlain by the premise that the best component can be
identified with high probability, and as such does not take into
account the uncertainty about the selection of the best mem-
ber. In this regard, Raftery et al. (2003) presented an interesting
approach to Bayesian model averaging using a finite mixture model
coupled with the expectation-maximization algorithm (Dempster
et al., 1977; McLachlan and Krishnan, 1997). The latter approach
allows one to recast the problem of the optimal ensemble mem-
ber selection in the form of latent or unobserved quantities and to
subsequently maximize the likelihood function across a range of
spatiotemporal domains (Raftery et al., 2003).

Given that the model calibration presented herein is effec-
tively an inverse solution exercise, the examination of the posterior
parameterization of the two  models is an essential way  to
understand their ecological foundation and to put the respective
predictions as well as their subsequent synthesis into perspec-
tive. First, we  highlight the consistency between the two models
with regards to the characterization of the generic phytoplankton
group. In particular, both models are founded upon relatively high
maximum phytoplankton growth rates (>2 day−1), similar phyto-
plankton response to light availability (120–140 MJ  m−2 day−1),
fast phosphorus kinetics (<10 �g P L−1) and uptake rates (0.02 �g
P L−1 day−1), but differ on the relative magnitudes assigned
to the phytoplankton biomass loss rates due to respiration and
sinking. Namely, the complex model suggests lower metabolic
rates (0.027 day−1) and higher settling velocity (0.185 m day−1),
whereas the simple model places more emphasis on the former
rate (0.09 day−1) and downplays the latter one (0.05 m day−1).
Comparing these posterior characterizations with the parameter-
ization of the three phytoplankton functional groups presented
by Gudimov et al. (2010),  we infer that our generic “phytoplank-
ton” seemingly lies between the spring phytoplankton assemblage,
primarily dominated (>80%) by diatoms (Fragilaria crotonensis,
Stephanodiscus niagarae) and cryptophytes (Rhodomonas minuta,
Cryptomonas reflexa), and the summer algal community, typically
composed of dinophytes (Gymnodinium helveticum,  Ceratium fur-
coides), chrysophytes (Ochromonas sp,  Dinobryon divergens), and
chlorophytes (Coenochloris pyrenoidosa, Scenedesmus braziliensis,
Coelastrum reticulatum) (Munawar and Fitzpatrick, 2007). The

updating of the two  models with the calibration dataset resulted
in similar zooplankton grazing (≈0.5 day−1) and mortality rates
(0.11–0.15 day−1), intended to represent a zooplankton community
typically dominated by cladocerans (Bosmina longirostris,  Daphnia
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ig. 7. Predictions of the epilimnetic summer total phosphorus concentrations, und
wo  eutrophication models (A–B) and their averaged predictions (C).

etrocurva,  Daphnia galeata mendotae,  Ceriodaphnia lagustris) and
yclopoid copepods (Diacyclops thomasi, Cyclops vernalis) relative
o calanoids (Leptodiaptomus siciloides) (Gerlofsma et al., 2007).
inally, the posterior parameterization of the two  models was also
imilar with respect to the sedimentation rate of particulate mat-
er (>0.4 m day−1), and the relative importance of the two factors
hat determine the illumination of the water column, i.e., the light
xtinction due to chlorophyll a (0.02–0.03 L (�g chla L)−1 m−1), and
he background light attenuation (≈0.2 m−1).

Regarding the additional state variables of the complex model,
e note that the prior cyanobacteria specification did not change

fter the calibration of the complex model, while the large process
rror value (�CYAepi) reflects the underestimation of its summer
iomass levels (Fig. SI-2). The latter result suggests that whether
he MCMC  sampling was delimited in a suboptimal region of the
osterior space or some of the assumptions (e.g., parameters not
onsidered by the calibration exercise; Table SI-3) related to the
resent model structure disallow a better representation of the
yanobacteria patterns. In a similar manner, the marginal poste-
iors of the parameters associated with the nitrogen utilization by
he two phytoplankton functional groups (AH(cy)/(phyt), NH(cy)/(phyt))
emained unaltered with regard to their central tendency, dis-
ersion, and shape. Although this result may  partly support the
oundness of the initial priors assigned, we believe that it primarily
tems from the fact that the summer planktonic patterns are pre-
ominantly shaped by phosphate availability in the Harbour. On the

ther hand, while nitrate remains well above the growth-limiting
evels, as reflected by the corresponding half saturation values,
he low summer ammonium concentrations can presumably be

 regulatory factor. Yet, the use of Liebig’s Law of the Minimum
 proposed nutrient loading reductions by the Hamilton Harbour RAP, based on the

in the algal growth term prohibits dissolved inorganic nitrogen
from playing any role in the summer epilimnetic phytoplankton
dynamics (see Ramin et al., 2011; Table 1 in their Electronic Sup-
plementary Material). Interestingly, among the different strategies
examined to improve the fit of the cyanobacteria-like group (i.e.,
different initialization of the two MCMC  chains, alternative spec-
ification of the cyanobacteria parameter priors), we found that
the most effective strategy is related to the values assigned to
the strength of the ammonium inhibition for nitrate uptake ( );
a parameter that was not part of our calibration exercise. The
results presented herein were based on a   value equal to 0.05
for both species, which prioritizes ammonium uptake but does
allow for nitrate utilization by our simulated phytoplankton com-
munity. When the nitrate uptake is practically switched off (  > 0.1)
though, the relative abundance of our cyanobacteria-like group
appears to be substantially promoted during the summer stratified
period. However, we  believe that the likelihood of this ecolog-
ical mechanism actually to occur in the system is low, as it is
extremely unlikely that the nitrate pool remains entirely unutilized.
Further, this assumption contradicts Blomqvist et al. (1994) asser-
tions, who argued that non-N-fixing cyanobacteria do have high
competitiveness for ammonium but mainly in nitrate depleted sys-
tems, while eukaryotic phytoplankton develop when nitrate is the
main N-component present. Thus, unless nitrogen is treated as an
interactively essential resource (i.e., algal growth expressed as the
product of two or more Monod terms), our current phytoplankton

conceptualization is apparently inadequate to elucidate the condi-
tions under which cyanobacteria outcompete other residents of the
summer phytoplankton community and ultimately dominate the
system.
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ig. 8. Predictions of the epilimnetic summer chlorophyll a concentrations, under t
utrophication models (A–B) and their averaged predictions (C).

Consistent with our earlier work (Gudimov et al., 2010; Ramin
t al., 2011), both models downplay the role of particulate phos-
horus mineralization (ϕ and KPrefmineral <0.015 day−1) as a source
hat can potentially replenish bioavailable phosphorus in the epil-
mnion. The allocation of a high proportion of plankton metabolism
o directly replete the epilimnetic phosphate is evidently the most
ffective strategy to simultaneously match the typically high sum-
er  chl a levels (>15 �g L−1) and low phosphate concentrations

<2–3 �g L−1) in the Harbour epilimnion. Yet, contrary to our previ-
us practice, it is interesting to note that here this pattern is derived
hrough the calibration process instead of being postulated prior to
he parameterization of the two models. According to the present
nalysis, a fraction between 30-60% of the plankton metabolism
ubsidizes the epilimnetic phosphate and may  be responsible for

 periodic disconnect between summer phytoplankton growth
nd exogenous nutrient loading variability. The question arising
hough is how realistic is it for such an active nutrient regener-
tion to occur in the present eutrophic state of the system and
o what extent can this feedback loop modulate the phytoplank-
on response to the anticipated nutrient loading reductions? In
rinciple, the rapid nutrient turnover rates can partly explain the
elatively small fraction of dissolved inorganic phosphorus relative
o the total phosphorus pool as well as the epilimnetic phyto-
lankton levels in the Harbour (Burley, 2007). The likelihood of

n intense microbially mediated recycling, whereby nutrients are
eturned into the system in short time scales (<1 day) with min-
mal losses, has been repeatedly discussed in the literature over
he last three decades (Goldman, 1984; Stone and Berman, 1993;
posed nutrient loading reductions by the Hamilton Harbour RAP, based on the two

Arhonditsis et al., 2004). Further, Gudimov et al. (2011) showed
that regardless of the exogenous nutrient loading reductions, the
fluxes from the sediments, and/or the control exerted from zoo-
plankton, the exceedance frequency of the chlorophyll a target of
10 �g L−1 is consistently high when high nutrient recycling rates
are assumed. Yet, before casting doubt on the anticipated efficacy
of the on-going restoration efforts, the same study stressed that
other potentially important nutrient sources, i.e., internal loading,
episodic meteorological events (e.g., spring thaw, intense summer
storms) and short-term variability at the local wastewater treat-
ment plants, may  also intermittently fuel epilimnetic algal growth.
Thus, the relative contribution of the microbial loop as a nutrient
supplier may  be overstated (Gudimov et al., 2011).

The evaluation of performance of rival modelling strategies has
received considerable attention in the literature, and the most pop-
ular proposition favours the distinction between training and test
datasets (Hoeting et al., 1999). For probabilistic predictions, this
strategy can potentially control both predictive bias (a systematic
tendency to over- or underpredict the observed data), and lack of
calibration (a systematic tendency to over- or understate predic-
tive accuracy). By contrast, the practice followed herein involved
the training of the two eutrophication models with a dataset that
represents the water quality conditions typically prevailing in the
Harbour, while no calibration or predictive validation of a spe-

cific time period was  undertaken. As discussed in Gudimov et al.
(2010; p. 527), this approach was  selected as a pragmatic means to
overcome the substantial uncertainty characterizing the exogenous
nutrient loading estimates. Given the lack of reliable year-specific
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utrient loading inputs, a calibration or validation exercise framed
pon year-to-year variations would have entailed the delineation
f an ecological parameterization that links a highly uncertain forc-
ng function to the ambient water quality conditions for a particular
eriod. Rather, we adopted a more conservative strategy that uses
odels forced with the average (and thus more reliable) loading

onditions to reproduce the average planktonic patterns in the sys-
em, and therefore avoid getting good fit to the observed data by
ntroducing a series of errors that cancel each other out. It is also
nteresting to note that two  recent papers extensively discussed the
redictive capacity of the complex model (Gudimov et al., 2010;
amin et al., 2011). Because of the uncertainty pertaining to the
ear-specific loading values from the early 90s, when the system
as hyper-eutrophic, we  opted for a somewhat different type of

alidation. Namely, rather than adopting any of the conventional
ypes of predictive validation, we examined the ability of the model
o reproduce the historical empirical relationships between annual

 loading and summer TP and chla. The latter equations were orig-
nally used to guide the loading reductions in the system, and our
xercise was pretty revealing about the credibility of some assump-
ions made to guide the contemporary management actions in the
rea.

However, Gudimov et al. (2011) noted that this strategy entails
he risk of misrepresenting the actual range of system dynamics
xperienced when misleadingly phasing out short-term shifts of
he year-to-year variability. In particular, a basic assumption of the
udimov et al. (2010) and Ramin et al. (2011) calibration exercises
as that the average summer epilimnetic TP revolved around the

evel of 30 �g L−1, but recent monitoring evidence suggests that
oncentrations of 35–38 �g L−1 are fairly typical at the offshore
reas of the Harbour. Thus, one of the objectives of the present
nalysis was to examine the likelihood of the system to still meet
he originally proposed TP water quality goal of 17 �g L−1, if the
tarting point is higher by 5–8 �g TP L−1 relative to the reference
onditions used from the earlier modelling studies. Both models
redict that the current epilimnetic total phosphorus criterion of
7 �g L−1 is stringent if the current summer epilimnetic TP concen-
rations are set to an average level of 35–38 �g L−1. On a positive
ote though, and consistent with Gudimov et al.’s (2011) predic-
ions, our analysis also shows that a somewhat higher value (e.g.,
0 �g L−1) may  provide a more pragmatic goal, although the uncer-
ainty surrounding the exogenous nutrient loading still makes it
ompelling to adopt water quality criteria that permit a realistic
requency level of violations.

Our modelling analysis also suggests that a target of mean
hlorophyll a levels in the Harbour lower than 10 �g L−1 is
chievable, as both models predict that the average epilimnetic
oncentrations will fall below this threshold value. Yet, we  also
ound that the simple model provides an optimistic prediction that
he average summer chlorophyll a may  even reach the level of

 �g chla L−1. Despite the underestimation of the summer phy-
oplankton biomass, the complex model clearly supports more
onservative predictions (≈7.5 �g chla L−1), and thus the question
rising is which factor may  be driving the optimism of the simple
odel and to what extent this statement is realistic? One of the
ajor structural differences of the two models lies in the way they

andle the nutrient fluxes from the sediments, i.e., a static phos-
horus flux vis-à-vis a mechanistic characterization that relates
hosphorus release to particulate sedimentation and burial rates
Ramin et al., 2011). Being part of the model updating process,
he simple model predicts that the sediments contribute approxi-

ately 1.1 mg  P m2 day−1 into the overlying water column, whereas

he same fluxes are raised up to 2.0 mg  P m2 day−1 with the complex

odel. Notably, Azcue et al. (1998) reported upward diffusion PO4
uxes in the Harbour at the level of 1.7 mg  m2 day−1, which appear
o be somewhat closer to the latter estimate. Under the reduced
lling 242 (2012) 127– 145

nutrient loading scenario, the dynamic nature of the sediment
response with the complex model decreases the release of phos-
phorus at the level of 1.5 mg  m2 day−1, which however remains well
above the flux used to force the simple model. Because the simple
model also fails to capture the summer hypolimnetic phosphate
accumulation, we believe that this discrepancy most likely reflects
one of its structural weaknesses and also highlights the importance
of embracing more sophisticated approaches to sediment diagene-
sis in the Harbour (Dittrich et al., 2009; Trolle et al., 2010). Despite
all the arguments historically used to downplay the relative con-
tribution of the sediment fluxes in the system, recent evidence
suggests that the hypolimnetic phosphate can easily exceed the
level of 30 �g PO4 L−1 for extended period (3–4 weeks) during the
late summer/early fall (T. Labencki, unpublished data). This pattern
likely suggests that the summer epilimnetic environment may  also
be subjected to intermittent nutrient pulses from the hypolimnion,
which in turn can have profound ramifications on the dynamics
of the phytoplankton community (Jorgensen and Padisak, 1996;
Soranno, 1997).

The simplified spatial segmentation of both eutrophication
models and the inability to account for persistent spatial gradients
or other hot spots in the system is another source of uncertainty
that can potentially shape the probabilistic statements made by our
modelling analyses. Rao et al. (2009) showed that the mean summer
circulation pattern in the Harbour was characterized by two major
counter-rotating gyres that play significant role in transporting
contaminants within the system and thus explaining their distri-
bution patterns in its north–eastern sector. Likewise, Burley (2007)
reported distinct differences in the nutrient concentrations and
chlorophyll a levels between inshore and offshore sites in the Har-
bour. The high computational demands of a spatially explicit model,
however, may  present an obstacle to the efficient application of
Bayesian calibration. Recent attempts to improve the computa-
tional efficiency of MCMC  implementations of Bayesian inference
for water quality models have focused on the development of par-
allel algorithms (Whiley and Wilson, 2004; Altekar et al., 2004).
Parallel computation for MCMC  can reduce the time needed to gen-
erate a sufficient number of samples from target distributions of
larger dimensions, although Whiley and Wilson (2004) assert that a
good proposal distribution is of equal importance as the implemen-
tation of a parallelization scheme. Other propositions to efficiently
estimate the posterior probability density function of parameters
in complex high-dimensional problems involve the development
of adaptive MCMC  schemes that ensure ergodicity while adjust-
ing the scale and orientation of the proposal distributions, e.g.,
the differential evolution adaptive Metropolis (DREAM) introduced
by Vrugt et al. (2008).  Another promising prospect involves the
construction of one-dimensional frameworks in which various
complexity model structures and physical forcing regimes could
be implemented and calibrated using rigorous parameter estima-
tion techniques (Friedrichs et al., 2007). For example, Schartau and
Oschlies (2003) presented such an approach to calibrate a simple
biogeochemical model simultaneously at three sites using a genetic
algorithm and physical forcing from a 3-D hydrodynamic model.
By doing so, much of the hydrodynamic computations are per-
formed externally and along with the simplified spatial structure of
the ecosystem model, the computational demands are significantly
reduced. We  believe that such 1-D Bayesian parameterization in
three or more sites based on 3-D hydrodynamic forcing will be
sufficient to accommodate the spatial variability in the Hamilton
Harbour.

In conclusion, we  used two  models of different complexity to

examine the robustness of predictive statements made from our
earlier work regarding the likelihood of the Hamilton Harbour Area
of Concern to meet the delisting objectives for the beneficial use
impairment (BUI) Eutrophication or Undesirable Algae, if the nutrient
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oading reductions proposed by the Hamilton Harbour Remedial
ction Plan are actually implemented. The structural differences
etween the two models were primarily intended to: (i) evaluate
he implications of alternative quantification strategies of nutri-
nt release rates from the sediments, as we project future system
esponses, and (ii) examine our capacity to realistically depict the
ummer phytoplankton community composition under the present
oading conditions. The basic lessons learned from the present anal-
sis are as follows:

The current epilimnetic total phosphorus goal of 17 �g L−1 is
probably too stringent and therefore a somewhat higher mean
value (e.g., 20 �g L−1) may  provide a more realistic target, when
the starting point for our projections is higher by 5–8 �g TP L−1,
i.e., a summer average of 35–38 �g TP L−1 instead of 30 �g TP L−1.
In a strict numerical sense, the selection of the training dataset
to parameterize a mathematical model is particularly critical in
determining the impact of environmental management plans. If
we strictly adhere to a single numerical value, our assumptions on
what should be perceived as typical water quality conditions in
the Harbour can evidently make a difference on the conclusions
drawn about the most likely system trajectory. Acknowledging
also the uncertainty of the contemporary nutrient loading esti-
mates in the Harbour as well as the lurking known or unknown
“ecological unknowns” (sensu Gudimov et al., 2011), we caution
that the water quality setting process must be pragmatic and the
natural variability should be explicitly accommodated by permit-
ting a realistic frequency of violations, e.g., exceedences of the
goal for 10–15% or less of the weekly-collected samples during
the stratified period should still be considered as system compli-
ance. It is important to remember that the water quality criteria
are merely proxies of the desirable water quality conditions and
therefore other quantitative or even qualitative features/indices
of the ecosystem functioning may  be equally insightful to deter-
mine what is successful restoration.
The target of mean chlorophyll a concentrations in the Harbour
lower than 10 �g L−1 is achievable. Yet, we note that the com-
plex model appears to underestimate the summer epilimnetic
phytoplankton biomass, whereas the simple one supports an
over-optimistic prediction that the chlorophyll a levels can ulti-
mately reach the low level of 5 �g L−1.
The latter discrepancy most likely stems from the simplified
approach adopted to account for the role of the sediments with
the simple model. Based also on our earlier work (Ramin et al.,
2011; Gudimov et al., 2011), the present analysis reiterates the
importance of revisiting our current perception about the role of
internal loading in the Harbour.
Our limited ability to effectively reproduce the phytoplank-
ton seasonal succession patterns and the gradual cyanobacteria
biomass increase towards the end of the summer pinpoints one of
the knowledge gaps and outstanding challenges of the on-going
restoration efforts. Following Watson et al’s (2008) standpoint,
we advocate that future research should aim to integrate aspects
of all the single-factor hypotheses presented in the literature,
such as the buoyancy regulation, ability to fix molecular nitrogen,
N–P ratios, minimization of mortality through an immunity to
grazing by zooplankton, ability to out-compete most other phy-
toplankton for ammonium-nitrogen, and elevated iron levels in
the system. It becomes increasingly clear that there are more than
one or two causal factors underlying the patterns of cyanobacteria
dominance and their capacity to outcompete the usual eukary-
otic residents of the summer phytoplankton communities (e.g.,

chlorophytes).
Modellers must acknowledge the uncertainty pertaining to the
selection of the optimal model structure for a specific envi-
ronmental management problem, and Bayesian averaging of
lling 242 (2012) 127– 145 143

two or more models is a promising means for improving the
contemporary modelling practice. In the context of ecologi-
cal process-based modelling though, this approach should not
be viewed solely as a framework to improve our predictive
devices, but rather as an opportunity to compare alternative
ecological structures, to challenge existing ecosystem conceptu-
alizations, and to integrate across different (and often conflicting)
paradigms. Future research should also focus on the refinement
of the weighting schemes and other performance standards to
impartially synthesize the predictions of different models. Sev-
eral interesting statistical post-processing methods presented in
the field of ensemble weather forecasting will greatly benefit our
attempts to develop weighting schemes suitable for the synthesis
of multiple ecosystem models. Some of the outstanding chal-
lenges involve the development of ground rules for the features
of the calibration and validation domain (Reckhow and Chapra,
1999; Raftery et al., 2003; Anderson, 2005), the inclusion of penal-
ties for model complexity that will allow building forecasts upon
parsimonious models (McDonald and Urban, 2010), and per-
formance assessment that does not exclusively consider model
endpoints but also examines the plausibility of the underlying
ecosystem structures, i.e., biological rates, ecological processes
or derived quantities (Arhonditsis and Brett, 2004)
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1. Model description 

Detailed description of the two models used herein can be found elsewhere (Arhonditsis et al., 

2007; Law et al., 2009; Ramin et al., 2011), and thus this section solely provides their basic conceptual 

design with emphasis on the distinct features from our earlier work.  

1.1. Complex eutrophication model: The complex eutrophication model considers the 

interactions among the eight state variables: nitrate (NO3), ammonium (NH4), phosphate (PO4), generic 

phytoplankton, cyanobacteria-like phytoplankton, zooplankton, organic nitrogen (ON) and organic 

phosphorus (OP). We considered a two-compartment vertical segmentation representing the epilimnion 

and hypolimnion of the Harbour. The depths of the two boxes varied with time and were explicitly 

defined based on extensive field measurements for the study period 1987–2007 (Dermott et al., 2007; 

Hiriart-Baer et al., 2009). The two phytoplankton functional groups simulated differ with regards to 

their strategies for resource competition (nitrogen, phosphorus, light, and temperature) and metabolic 

rates as well as their morphological features (settling velocities, self-shading effects). The 

cyanobacteria-like group is modeled as K-strategist with low maximum growth and metabolic rates, 

slow P and fast N kinetics, higher tolerance to low light availability, low settling velocities, and high 

temperature optima. By contrast, the more generic “phytoplankton” group aims to represent the rest of 

the phytoplankton community, in that it has attributes of r-selected organisms with high maximum 

growth rates and higher metabolic losses, strong phosphorus and weak nitrogen competition ability, 

lower tolerance to low light availability, low temperature optima, and high sinking velocities.  

The governing equation for phytoplankton biomass accounts for phytoplankton production and 

losses due to mortality, settling, dreissenid filtration, and herbivorous zooplankton grazing. 

Phytoplankton growth is limited from the water temperature conditions, the nutrient and light 

availability. Phosphorus dynamics within the phytoplankton cells account for luxury uptake, i.e., 

phytoplankton nutrient uptake depends on both internal and external concentrations and is confined by 

upper and lower internal storage capacity (Arhonditsis et al., 2002, Zhao et al., 2008). Our model 



 

explicitly considers the role of new and regenerated production using separate formulations that relate 

phytoplankton uptake to ambient nitrate and ammonium concentrations (Eppley–Peterson f-ratio 

paradigm; Eppley and Peterson, 1979). Temperature-modulated zooplankton grazing was modeled 

using a Michaelis–Menten equation and the assimilated fraction of the grazed material fuels growth. 

Zooplankton has three alternative food sources (the two phytoplankton groups and biogenic particulate 

matter or detritus) grazed with preference that changes dynamically as a function of their relative 

abundance alongside with a selective zooplankton preference for phytoplankton and detritus over 

cyanobacteria (Fasham et al., 1990).  

There are three nitrogen forms considered in the model: nitrate (NO3), ammonium (NH4), and 

organic nitrogen (ON). The ammonium equation considers the phytoplankton uptake and the proportion 

of phytoplankton and zooplankton mortality that is returned back to the system as ammonium ions. 

Ammonium is also oxidized to nitrate through nitrification and the kinetics of this process is modeled 

as a function of the ammonium, and the externally-forced dissolved oxygen, temperature, and light 

availability (Tian et al., 2001). The nitrate equation also takes into account the amount of ammonium 

oxidized to nitrate through nitrification and the amount of nitrate lost as nitrogen gas through 

denitrification. The latter process is modeled as a function of dissolved oxygen, temperature and the 

contemporary nitrate concentrations (Arhonditsis and Brett, 2005). The organic nitrogen equation 

considers the contribution of phytoplankton and zooplankton mortality to the organic nitrogen pool and 

the temperature-dependent mineralization that transforms organic nitrogen to ammonium. Two state 

variables of the phosphorus cycle are considered in the model: phosphate (PO4) and organic phosphorus 

(OP). The phosphate equation considers the phytoplankton uptake, the proportion of phytoplankton and 

zooplankton mortality/higher predation that is directly supplied into the system in inorganic form, the 

bacteria-mediated mineralization of organic phosphorus, and the net diffusive fluxes between adjacent 

compartments. The organic phosphorus equation also considers the amount of organic phosphorus that 

is redistributed through plankton basal metabolism. A fraction of organic phosphorus settles to the 

sediment and another fraction is mineralized to phosphate through a first-order reaction. We also 



 

consider external nutrient loads to the system and losses via the exchanges with Lake Ontario 

(Gudimov et al., 2010, 2011; Ramin et al., 2011). A simple mechanistic approach was used to relate the 

fluxes of nitrogen and phosphorus from the sediments with the algal and particulate matter 

sedimentation and burial rates, while also accounting for the role of temperature and dissolved oxygen 

(Arhonditsis and Brett, 2005). The relative magnitudes of ammonium and nitrate fluxes were also 

determined by nitrification and denitrification occurring at the sediment surface.  

1.2. Simple eutrophication model: We developed a simple model that considers the interplay 

among the limiting nutrient (phosphate), phytoplankton, zooplankton, and detritus (particulate 

phosphorus); also known as NPZD model in the literature. The spatial segmentation of the model 

consists of three compartments representing the epilimnion, thermocline, and hypolimnion of the 

system. The equation for phytoplankton biomass accounts for phytoplankton production, losses due to 

basal metabolism, herbivorous zooplankton grazing, and settling. Phytoplankton growth is directly 

linked to the ambient phosphorus concentrations without explicit consideration of the control exerted by 

the intra-cellular storage strategies. Phytoplankton basal metabolic losses include all internal processes 

that decrease algal biomass as well as natural mortality. The zooplankton biomass equation considers 

zooplankton growth and losses due to natural mortality and predation. Zooplankton feeds upon 

phytoplankton and detritus with kinetics described by the Holling Type III function. Contrary to our 

earlier work (Law et al., 2009), the palatability of the two food sources (ω) is treated as a stochastic 

node assigned a prior distribution and subjected to updating by the calibration dataset. A fraction of the 

zooplankton grazing is assimilated and fuels growth, another fraction is excreted as phosphate, while 

the remaining fraction represents the faecal pellets contributing to the detritus pool. We assumed a 

unimodal response of the planktonic processes on temperature seasonal variability modeled by a 

Gaussian-like probability curve (Arhonditsis and Brett, 2005). The phosphate equation considers the 

phytoplankton uptake, the gains due to zooplankton excretion/predation, the bacteria-mediated 

mineralization of detritus, and the net diffusive fluxes between adjacent compartments. The detritus 

equation takes into account the contributions from phytoplankton respiration and zooplankton 



 

excretion, and the losses due to bacteria-mediated mineralization and settling. The effects of the 

seasonal temperature cycle on phosphate diffusion and sediment forcing are described by a 

trigonometric function (Arhonditsis et al., 2007). Phosphorus release from the sediments in the three 

spatial segments was represented by normal probability distributions, founded upon estimates from 

previous studies in the Harbour (Mayer and Manning, 1990; Azcue et al., 1998), which were then 

independently updated by the Bayesian calibration exercise.  
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2. Dataset description 

A comprehensive water quality monitoring program with regular sampling of the central area of 

the Hamilton Harbour has been in place since 1987. For the purposes of our calibration exercise, data 

from 1987 to 2007, inclusive, with the exception of 1993 during which time no samples were collected, 

were used to derive the average seasonal patterns in the Harbour. Samples from 1 m depth and the 

hypolimnion (19 to 22 m depth) were consistently collected during this time period. Nutrient analyses 

involved measurements of total phosphorus (TP), soluble reactive phosphorus (SRP), total ammonia 

(NH3), nitrate/nitrite (NO3/2) and chlorophyll (chl a). All these analyses were carried out by the National 

Laboratory for Environmental Testing in Burlington, Ontario (Environment Canada, 1994). Phosphorus 

concentrations were determined by colorimetry (chloride–molybdate complex) on unfiltered and 

filtered lake water samples following acidic persulfate digestion. Total ammonia concentrations were 

determined by colorimetry (indophenol blue) on filtered lake water samples and NO3/2 concentrations 

were determined by colorimetry (azo dye) following a copper–cadmium column reduction (American 

Public Health Association, 2005). Chlorophyll concentrations were determined by spectrophotometry 

following an acetone extraction (Unesco, 1969). Detailed information about the analytical procedures 

followed and the temporal/spatial trends in the Harbour can be found in the Hiriart-Baer et al. (2009) 

study. Here, we present a summary of the seasonal variability of the water quality variables considered 

by the two mathematical models (Table SI-1).  

Additional data for our analysis include the solar radiation, day length, precipitation, 

evaporation based on meteorological data from Environment Canada; namely, the Canadian Daily 

Climate Data (1996-2002) and the Canadian Climate Normals (1971-2000) (http://www.climate. 

weatheroffice.ec.gc.ca/ prods_servs/index_e.html). Loads of inorganic nutrients and organic matter 

enter the Hamilton Harbour from the following main sources: Red Hill and Grindstone creeks, 

combined sewer overflows (CSOs), Dofasco and Stelco steel mills, Woodward and Skyway wastewater 

treatment plants (WWTPs), and Cootes Paradise. Estimates of flow and nutrient loadings are based on 

available data from the Water Survey of Canada (http://www.wsc.ec.gc.ca/) and the RAP loading report 



 

(Hamilton Harbour Technical Team: 1996-2002 Contaminant Loadings and Concentrations to 

Hamilton Harbour or HHTT-CLR, 2004). The exchanges between the Hamilton Harbour and the 

relatively high quality waters of Lake Ontario through the Burlington Ship Canal are another major 

regulatory factor of the Harbour water quality associated with the dilution of the pollutant 

concentrations, the reduction of Harbour’s residence time, and the oxygenation of the hypolimnetic 

waters (Barica, 1989; Hablin and He, 2003). In particular, the winter exchanges are primarily driven by 

short-term oscillations due to water level differences at the two ends of the canal, while the exchanges 

during the summer stratified period are mediated by slowly fluctuating density gradients, i.e., warm 

Harbour water flowing to the lake in the top layer and colder lake water flowing to the Harbour in the 

bottom layer (see Figs 1-2 in Barica 1989). Moreover, existing evidence also suggests that the Hamilton 

Harbour-Lake Ontario interplay during the stratified conditions is much stronger and steadier than the 

winter period (Hablin and He, 2003). In this study, following the Klabwijk and Snodgrass (1985; see 

their Fig. 3) conceptual model, we assumed that 20% of the Lake Ontario inflows are directly 

discharged to the epi- and mesolimnion, whereas 80% of the fresher oxygenated lake water replaces the 

hypolimnetic masses in the Harbour.  
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Table SI-1: Long term temporal trends of selected water quality variables at the central area of the 

Hamilton Harbour during the 1987-2007 period. 

Depth Parameter Winter Spring Summer Fall 

1 m TP (µg L
-1

) 31.1 ± 21.6 31.6 ± 20.1 36.8 ± 12.6 30.8 ± 9.1 

 SRP (µg L
-1

) 11.3 ± 15.8 1.6 ± 8.2 1.5 ± 5.3 2.1 ± 4.9 

 NO3/2 (mg L
-1

) 2.0 ± 0.2 1.9 ± 0.4 2.0 ± 0.4 1.6 ± 0.3 

 NH3-Tot (mg L
-1

) 0.4 ± 1.3 0.9 ± 0.4 0.2 ± 0.4 0.2 ± 2.8 

 Chl a (µg L
-1

) 5.5 ± 3.7 7.6 ± 6.6 14.1 ± 8.6 8.9 ± 14.4 

 SD (m) 3.1 ± 0.9 2.3 ± 0.6 2.1 ± 0.7 2.5 ± 0.6 

> 18 m TP (µg L
-1

) 30.4 ± 27.1 27.8 ± 18.6 25.4 ± 11.0 31.5 ± 25.6 

 SRP (µg L
-1

) 11.4 ± 15.6 1.6 ± 9.3 4.2 ± 5.7 5.1 ± 15.0 

 NO3/2 (mg L
-1

) 2.0 ± 0.2 1.9 ± 0.4 1.5 ± 0.5 1.1 ± 0.5 

 NH3-Tot (mg L
-1

) 0.5 ± 1.3 0.9 ± 0.4 0.2 ± 0.4 0.3 ± 1.6 

TP: total phosphorus; SRP: soluble reactive phosphorus; NO3/2: nitrate/nitrite; NH3-Tot: total ammonia; 

chl a: chlorophyll a; SD: Secchi disc depth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table SI-2: State variables of the two eutrophication models.  

Model Symbol Definition Units 

Simple PO4 Phosphate concentration µg P L
-1

 

 PHYT Phytoplankton biomass µg C L
-1

 

 ZOOP Zooplankton biomass µg C L
-1

 

 DET Detritus concentration µg P L
-1

 

Complex PO4 Phosphate concentration µg P L
-1

 

 OP Organic phosphorus concentration µg P L
-1

 

 NO3 Nitrate concentration mg N L
-1

 

 NH4 Ammonium concentration mg N L
-1

 

 ON Organic nitrogen concentration mg N L
-1

 

 CYA Cyanobacteria biomass µg C L
-1

 

 PHYT Phytoplankton biomass µg C L
-1

 

 ZOOP Zooplankton biomass µg C L
-1

 

 DET Detritus concentration µg C L
-1

 

 PCYA Cyanobacteria intracellular phosphorus µg P µg C
 -1

 

 PPHYT Phytoplankton intracellular phosphorus µg P µg C
 -1

 

 PO4SED Phosphate concentration in the sediments  mg P m
-2 

 

 NH4SED Ammonium concentration in the sediments mg N m
-2 

 

 NO3SED Nitrate concentration in the sediments mg N m
-2 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table SI-3: Description and values of the parameters that were not considered during the Bayesian 

calibration of the complex eutrophication model.  

Symbol Description Values Units 

αDOC zoop 
Fraction of zooplankton mortality becoming 

dissolved organic carbon 
0.5 - 

αDOC PHYT 
Fraction of phytoplankton mortality becoming 

dissolved organic carbon 
0.5 - 

αDOC CY 
Fraction of cyanobacteria mortality becoming 

dissolved organic carbon 
0.5 - 

αNH4 zoop 
Fraction of zooplankton mortality becoming 

ammonium 
0.5 - 

αNH4 PHYT 
Fraction of phytoplankton mortality becoming 

ammonium 
0.5 - 

αNH4 CY 
Fraction of cyanobacteria mortality becoming 

ammonium 
0.5 - 

αsNO3 Sediment nitrate release rate 0.8 day
-1

 

αsPO4 Sediment phosphate release rate 0.8 day
-1

 

αsNH4 Sediment ammonium release rate 0.8 day
-1

 

asfood det Zooplankton assimilation efficiency for detritus 0.45 - 

asfood PHYT 
Zooplankton assimilation efficiency for 

phytoplankton 
0.5 - 

asfood CY 
Zooplankton assimilation efficiency for 

cyanobacteria 
0.15 - 

ChlαCPHYT   Chlorophyll to carbon ratio in phytoplankton 0.02 µg Chla µg C
-1

 

ChlαCCY Chlorophyll to carbon ratio in cyanobacteria 0.02 µg Chla µg C
-1

 

Denitrifmaxsed Maximum denitrification rate in the sediments 25 mg N m
-2

 day
-1

 

KHdodenit 
Half saturation concentration of DO deficit 

required for nitrification 
0.5 mg O2 m

-3
 

KHdodenitsed 
Half saturation concentration of DO deficit 

required for denitrification in the sediments 
1 mg O2 m

−3
 

KHdonit 
Half saturation concentration of DO required for 

nitrification 
1 mg O2 m

−3
 

KHdonitsed 
Half saturation concentration of DO required for 

nitrification  in the sediments 
2 mg O2 m

−3
 

KHnh4nit 
Half saturation concentration of ammonium 

required for nitrification 
1 mg N m

−3
 

KHnh4nitsed 
Half saturation concentration of ammonium 

required for nitrification in the sediments 
75 mg N m

−3
 

KHno3denit 
Half saturation concentration of nitrate required 

for denitrification 
15 mg N m

−3
 

KHno3denitsed 
Half saturation concentration of DO deficit 

required for denitrification in the sediments 
15 mg O2 m

-3
 

kt Effects of temperature on plankton mortality 0.069 
o
C

−1
 

ktfilt Effects of temperature on phytoplankton filtration 0.069 
o
C

−1
 



 

Symbol Description Values Units 

KTFmin Effects of temperature on mineralization 0.004 
o
C

−2
 

KTgrdenitr Effect of temperature on denitrification 0.004 
o
C

−2
 

KTgrdenitrsed Effect of temperature on sediment denitrification 0.004 
o
C

−2
 

KTgrzoop Effect of temperature on zooplankton 0.006 
o
C

−2
 

KTgrnitr Effect of temperature on nitrification 0.004 
 o
C

−2
 

KTgrnitrsed Effect of temperature on sediment nitrification 0.004 
 o
C

−2
 

KTgrPHYT Effect of temperature on phytoplankton 
0.005 

 o
C

−2
 

KTgrCY Effect of temperature on cyanobacteria 0.005 
 o
C

−2
 

ktsed Effects of temperature on sedimentation 
0.004 

o
C

−1
 

N/Czoop Nitrogen to carbon ratio for zooplankton 0.2 mg N mg C
-1

 

Nitrifmaxsed Maximum nitrification rate in the sediments 50  mg N m
-2

 day
-1

 

P/Czoop Phosphorus to carbon ratio for zooplankton 0.025 mg P mg C
-1

 

PmaxPHYT Maximum phytoplankton internal phosphorus 0.025 mg P mg C
-1

 

PmaxCY Maximum cyanobacteria internal phosphorus 0.025 mg P mg C
-1

 

PminPHYT Minimum phytoplankton internal phosphorus 0.008 mg P mg C
-1

 

PminCY Minimum cyanobacteria internal phosphorus 0.008 mg P mg C
-1

 

Pref det Preference of zooplankton for detritus 0.4 - 

Pref PHYT Preference of zooplankton for phytoplankton 0.4 - 

Pref CY Preference of zooplankton for cyanobacteria 0.2 - 

Tempref Reference temperature in the water column  20 
o
C 

Temprefsed Reference temperature in the sediments 20 
o
C 

Toptdenitr Optimal temperature for denitrification 20 
o
C 

Toptdenitrsed 
Optimal temperature for denitrification in the 

sediments 
20 

o
C 

Topt Reference temperature for zooplankton 20 
o
C 

Toptmin Optimal temperature for mineralization 20 
o
C 

Toptnitr Optimal temperature for nitrification 20 
o
C 

Toptnitrsed 
Optimal temperature for denitrification in the 

sediments 
20 

o
C 

ToptPHYT 
Reference temperature for phytoplankton 

metabolism 
20 

o
C 

ToptCY 
Reference temperature for cyanobacteria 

metabolism 
24 

o
C 

ψ 
Strength of the ammonium inhibition for nitrate 

uptake 
0.05 (µg N/L)

−1
 

 

 



 

FIGURES LEGENDS 

 

Figure SI-1: Comparison between the observed data (black dots) and the median predictions of the 

NPZD model for total phosphorus, phosphate, chlorophyll a concentrations, and total zooplankton 

biomass in the Hamilton Harbour. The 95% credible intervals (dashed lines) stem from the 

uncertainty pertaining to the model parameters. 

 

Figure SI-2: Comparison between the observed data (black dots) and the median predictions of the 

complex eutrophication model for total phosphorus, phosphate, ammonium, nitrate, chlorophyll a 

concentrations, total zooplankton biomass, and the abundance of the two phytoplankton functional 

groups in the Hamilton Harbour. The 95% credible intervals represent the uncertainty pertaining to 

the model parameters. The grey colour lines and dots in the bottom panel represent the model 

predictions and the observed biomass of the cyanobacteria-like group. 

 

 

 

 



 

 

 

Figure SI-1 

 

 

 



 

 

 

 



 

 

Figure SI-2 
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