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[1] Regression-type, hybrid empirical/process-based models (e.g., SPARROW, PolFlow)
have assumed a prominent role in efforts to estimate the sources and transport of nutrient
pollution at river basin scales. However, almost no attempts have been made to explicitly
accommodate interannual nutrient loading variability in their structure, despite empirical
and theoretical evidence indicating that the associated source/sink processes are quite
variable at annual timescales. In this study, we present two methodological approaches to
accommodate interannual variability with the Spatially Referenced Regressions on
Watershed attributes (SPARROW) nonlinear regression model. The first strategy uses
the SPARROW model to estimate a static baseline load and climatic variables (e.g.,
precipitation) to drive the interannual variability. The second approach allows the
source/sink processes within the SPARROW model to vary at annual timescales using
dynamic parameter estimation techniques akin to those used in dynamic linear models.
Model parameterization is founded upon Bayesian inference techniques that explicitly
consider calibration data and model uncertainty. Our case study is the Hamilton Harbor
watershed, a mixed agricultural and urban residential area located at the western end of
Lake Ontario, Canada. Our analysis suggests that dynamic parameter estimation is the more
parsimonious of the two strategies tested and can offer insights into the temporal structural
changes associated with watershed functioning. Consistent with empirical and theoretical
work, model estimated annual in-stream attenuation rates varied inversely with annual
discharge. Estimated phosphorus source areas were concentrated near the receiving water
body during years of high in-stream attenuation and dispersed along the main stems of the
streams during years of low attenuation, suggesting that nutrient source areas are subject to
interannual variability.
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1. Introduction
[2] There is a pressing demand for watershed models that

can support our efforts to effectively quantify nonpoint
source pollution [Rode et al., 2010]. While a suite of process-
based models does exist to address this need, they have data
requirements which cannot always be met (e.g., detailed sub-
surface properties) and are typically applied in well-studied
catchments [Borah and Bera, 2004]. Hybrid empirical/
process-based models, generally founded upon nonlinear

regression equations, have been developed at large scales
where a process-based model would become unwieldy and a
priori knowledge about dominant biogeochemical process
rates may not be available. They have been applied exten-
sively in the United States [Alexander et al., 2004], the
United Kingdom [Grizzetti et al., 2005], and continental
Europe [de Wit, 2001]. The Spatially Referenced Regressions
on Watershed attributes (SPARROW) model is a parsimoni-
ous hybrid empirical/process-based model developed by the
United States Geological Survey to estimate nutrient loads,
yields, and deliveries at landscape and regional scales. De-
spite its nonlinear regression structure, the inputs can be
chosen according to a mechanistic understanding of nutrient
source and sink dynamics. The SPARROW model has been
applied at a variety of sites and scales, including New Zea-
land’s Waikato River Basin [Alexander et al., 2002], the
Neuse River Estuary [McMahon et al., 2003] the continental
United States [Alexander et al., 2004], the Mississippi River
Basin [Alexander et al., 2008], the Southeastern United
States [Garc�ıa et al., 2011], the United States drainage to
the Laurentian Great Lakes [Robertson and Saad, 2011],
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the Pacific Northwest, the Missouri River Basin, the Lower
Mississippi River Basin, and the New England and Mid-
Atlantic drainage [Preston et al., 2011]. SPARROW applica-
tions primarily focus on either nitrogen or phosphorus
loadings, but models have also been developed for organic
carbon [Shih et al., 2010], suspended sediment [Brakebill
et al., 2010], and E. coli [Puri et al., 2009]. There are several
difficulties to effectively accommodate spatial and temporal
variability, when using models such as SPARROW in a nested
basin context. The spatial difficulties have been examined in
some depth and will be briefly discussed below, followed by
the lesser examined temporal difficulties, the subject of this
paper.

[3] A direct ramification of SPARROW’s distributed
structure is the propagation of the model (process) error in
space, which in turn poses a major statistical challenge. As
do all distributed regression models of mass loading, the
model considers upstream stations as point sources to
downstream stations. This introduces a potential serial cor-
relation of model residuals. Most SPARROW applications
overcome this problem by using the measured upstream
load as the input to downstream sites [e.g., McMahon et al.,
2003]. However, this practice is prone to essentially the
same problem, as it ignores the (possibly substantial) imper-
fections of measured annual loads of watersheds and propa-
gates the measurement error downstream. SPARROW
model applications may also exhibit a spatial structure of the
model residuals that does not stem from serial autocorrela-
tion alone [McMahon et al., 2003]. For the sake of parsi-
mony, SPARROW by default assumes uniform values of the
model parameters across the study watershed, an assumption
that may likely be another source of residual spatial autocor-
relation. That is, the use of a single export coefficient for all
the agricultural land uses clearly overestimates the intensity
of the agricultural practices in certain (neighboring) sites
and underestimates them in others. Though some applica-
tions of SPARROW do feature some type of spatial variabil-
ity of the model coefficients [Alexander et al., 2004; Garc�ıa
et al., 2011], the spatial delineation of these coefficient zones
is often done in an ad-hoc manner. Founded upon Bayesian
inference techniques, Qian et al. [2005] presented a formida-
ble framework for accommodating the serial and spatial
autocorrelation of residuals in SPARROW. In addition to the
classical independent model error, this study introduced an
error which applies only to stations receiving loading from
upstream stations (the so-called state space or STSP model)
and error terms that account for the spatial correlation of
neighboring sites regardless of the drainage network (the so-
called conditional autoregressive or CAR model). Qian et al.
[2005] showed that for the SPARROW application at the
Neuse River Estuary watershed [McMahon et al., 2003], the
serially autocorrelated error contributes little to the total
error, while most of the overall mismatch between model
predictions and measurements could be explained by the
spatially autocorrelated errors.

[4] Despite the significant progress in explicitly consider-
ing the various forms of spatial correlation, there are still no
attempts in the published literature to accommodate the
interannual variability of loading with either of the most
commonly used hybrid empirical/process-based models
(SPARROW and PolFlow [de Wit, 2001]). The typical
SPARROW approach thus far has been to de-trend time

series of annual loading estimates at each water quality
monitoring station to a common base year [Alexander et al.,
2002]. This base year represents the nutrient load that would
have been observed at each station if average hydrological
conditions had prevailed. This strategy is a pragmatic means
to focus exclusively on spatial variability, while ‘‘factoring
out’’ both the temporal variability of loading as well as the
effects of different observation periods across sampling sta-
tions. Yet, using estimated nutrient source areas generated
with this approach to inform policy or target management
interventions postulates that there is insignificant interan-
nual variability of source areas, an assumption which has
not been examined and most likely oversimplifies the dy-
namics typically experienced within the watershed context.
The PolFlow model simply averages nutrient flux over a
5 year time period [de Wit, 2001]. While conceptually and
mathematically simpler than de-trending, this approach
requires a very similar data record across sites and lumps
interannual variability due to both nutrient sources and cli-
mate forcing into nutrient flux estimate uncertainty.

[5] The aim of this paper is to present a methodological
framework for incorporating temporal nutrient loading var-
iability into the SPARROW model. We subsequently apply
this approach to the Hamilton Harbor drainage basin, a
mesoscale catchment of about 450 km2, much smaller than
those typically represented with the SPARROW model.
While we focus exclusively on phosphorus in this study,
our methods could be applied to the modeling of any mass
flux. We employ a repeated measures approach—that is,
the loading at a station for a year is treated as a datum in
the regression. This time for space substitution allows us to
estimate source areas and loads for each year. We adapt
Bayesian configurations to accommodate the temporal corre-
lation of model residuals and the uncertainty of the calibra-
tion data and conduct a number of numerical experiments to
test two methodological approaches of incorporating tempo-
ral variability. The first approach postulates that the water-
shed characteristics as modeled by SPARROW represent a
static, baseline level of nutrient loading associated with aver-
age conditions, while climatic predictors (e.g., precipitation)
are used to describe the temporal variability around that
mean. The second strategy assumes that in addition to the
temporal variability associated with climatic forcing factors,
there is also year-to-year variation in the source and sink
processes modeled by SPARROW. We adopt methods of
estimating time-varying parameters used with dynamic linear
models (DLMs) to the nonlinear context of SPARROW. Our
presentation will examine model realizations that incorporate
a number of temporal predictors and different assumptions
about the temporal distribution of model residuals.

2. Methodology
2.1. Description of the SPARROW Model

[6] The SPARROW model has been extensively described
elsewhere [Alexander et al., 2002; McMahon et al., 2003;
Qian et al., 2005; Garc�ıa et al., 2011], so only a basic intro-
duction is given here. SPARROW is a hybrid empirical/
process-based model designed to be applied to a network of
water quality monitoring stations. SPARROW consists of a
two-level hierarchical spatial structure. Watersheds are first
divided into subwatersheds, each of which drains to a water
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quality monitoring station. Each subwatershed is then disag-
gregated into reach catchments draining to a particular stream
segment. Mean annual watershed export of any constituent is
expressed as a function of watershed attributes.

[7] The model considers source and sink processes over
annual timescales. Source processes, described with export
coefficients, which predict constituent mobilization; delivery
factors predict how landscape attributes modulate the deliv-
ery of the mobilized constituent to streams; and attenuation
coefficients predict the amount of the delivered constituent
remaining in transit per length of stream or per reservoir.
The SPARROW model is typically calibrated to a particular
base year to describe the transport of nutrient inputs occur-
ring in that particular time frame, while incorporating the
interannual variability in hydrology that occurs over a series
of years. The SPARROW model is formulated as:

�i ¼ Ln
XN

n¼1

XJi

j¼1

�nSn; je
ð��ZjÞHS

i; jH
R
i; j

( ) !
(1)

where the subscripts i and j refer to subwatersheds and reach
catchments, respectively; �i refers to the natural logarithm
of the mean annual total phosphorus load measured at sta-
tion i in metric tons per year; n, N refers to the source index,
where N is the total number of sources (diffuse and point
sources) and n is an index for each source; Ji refers to the
number of reaches in subwatershed i ; �n refers to the esti-
mated source coefficient for source n (tons P km�2 yr�1 for
nonpoint sources); Sn,j refers to the quantity of source n
in reach j in units of km2 of agricultural or urban land use
for nonpoint sources, and metric tons yr�1 for point sour-
ces; � refers to a vector of land to water delivery coeffi-
cients; Zj is a vector of the land-surface characteristics
associated with drainage in reach j ;HS

i; j refers to the fraction
of nutrient mass originating in reach j remaining at station i
as a function of first-order loss processes in streams; and
HR

i; j refers to the fraction of nutrient mass originating in
reach j remaining at station i as a function of first-order loss
processes in lakes and reservoirs.

[8] First-order loss processes in streams are expressed as

HS
i; j ¼

Y
m

exp ð�ks;mLi; j;mÞ (2)

where ks,m refers to the first-order loss coefficient for
stream class m (km�1), and Li,j,m refers to the class m
stream length in kilometers between reach i and station j.
First-order loss processes in lakes and reservoirs are
expressed as:

HR
i; j ¼

Y
l

exp ð�krq
�1
l Þ (3)

where l refers to any lakes or reservoirs between reach i
and station j, kr refers to the first-order loss coefficient or
settling velocity (m yr�1), and ql refers to the aerial hydrau-
lic loading of the lake/reservoir (m yr�1). Table 1 contains
a list of all parameters included in the SPARROW model.

2.2. Introduction of Temporal Variability to the
SPARROW Model

[9] Our framework introduces temporal variability to the
SPARROW model by applying a repeated measures approach
to a network of water quality monitoring stations. Rather than
selecting a single year to phase out the variability in time and
subsequently focusing on the spatial variability, we calibrate
the model to annual loads measured repeatedly at a subset of
intensively monitored sites in the studied watershed. Hence-
forth, we will be referring to this temporal augmentation as
the SPARROW with annual loads of watersheds (SWAL-
LOW) model. With this statistical configuration, the SPAR-
ROW model is used to estimate a static baseline level of
nutrient loading (�i) over the study period and forcing factors
are being employed to explain the temporal variability around
that baseline:

Yi;t ¼ �i þWv;t�v þ "i;t

"i;t � Nð0; �2Þ
(4)

where Yi,t refers to the natural logarithm of the measured an-
nual load at subwatershed monitoring station i during year
t, �i refers to a prediction of the natural logarithm of a baseline
annual load at monitoring station i estimated by the SPAR-
ROW equation, Wv,t denotes a matrix of v, temporal forcing
factors across years t, �v denotes the corresponding vector of
coefficients, and "i,t represents an independent spatiotemporal
error. All errors are assumed independent, normally

Table 1. Stochastic Nodes of the Different Model Configurations Examined

Parameter Description Units

� Land to water delivery coefficient. –
�1 Export coefficient for agricultural land. tons P km�2 yr�1

�2 Export coefficient for urban land. tons P km�2 yr�1

kr Reservoir settling velocity. m yr�1

ks1 Stream attenuation coefficient for first and second-order streams. km�1

ks2 Stream attenuation coefficient for third and higher-order streams. km�1

�v Temporal coefficient for predictor v. –
� Standard model error. Ln[tons P yr�1]
 Standard model error specific to WALK. Ln[tons P yr�1]
�� Initial SD of the prior for the � parameter for the dynamic parameter estimation framework. –
�1� Initial SD of the prior for the �1 parameter for the dynamic parameter estimation framework. tons P km�2 yr�1

�2� Initial SD of the prior for the �2 parameter for the dynamic parameter estimation framework. tons P km�2 yr�1

ks1� Initial SD of the prior for the ks1 parameter for the dynamic parameter estimation framework. km�1

ks2� Initial SD of the prior for the ks2 parameter for the dynamic parameter estimation framework. km�1
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distributed, and with zero mean. We refer to equation (4) as
the SWALLOW I model throughout this paper.

[10] We specified a second version of the SWALLOW
model designed to accommodate the variability of watershed
functioning in time:

Yi;t ¼ �i;t þWv;t�v þ "i;t

"i;t � Nð0; �2Þ

�i;t ¼ Ln
XN

n¼1

XJi

j¼1

�n;tSn; j;te
ð��tZj;tÞHS

i; j;tH
R
i; j;t

( ) ! (5)

where �i,t refers to a prediction of the natural logarithm of
the annual load at monitoring station i for year t independ-
ent of the effects of the temporal covariates represented by
the Wv,t matrix. All of the other variables in equation (5)
are identical to their counterparts in equation (4). We refer
to equation (5) as the SWALLOW II model throughout this
paper. The SWALLOW model makes use of nonspatial tem-
poral forcing factors to accommodate interannual variability
of watershed loads. While any time series data could be
included as forcing factor, we focused on local climatic char-
acteristics due to their importance and availability. Table 1
presents all model parameters examined.

2.3. Bayesian Inference Framework

[11] Bayesian inference was used as a means of model
calibration due to its ability to include prior information in
the modeling exercise and to explicitly handle uncertainties
stemming from what we assumed were the main sources of
uncertainty in this modeling exercise: model parameters,
calibration data, and model structure. From the Bayesian
perspective, statistical inference is treated as a quantitative
update of prior beliefs after taking measurements into
account. Beliefs are expressed as probability distributions
(i.e., random variables), with the central tendency of these
distributions corresponding to the degree of certainty that
the expected value of the distribution is correct [Gelman
et al., 2004]. Mathematically, Bayesian inference is founded
upon Bayes’ Theorem, expressed as

�ð�jdataÞ ¼ �ð�ÞLðdataj�ÞZ
�

�ð�ÞLðdataj�Þd� (6)

where �(�) represents our prior statements regarding the
probability distribution that depicts the existing knowledge
of the model parameters (�), L(dataj�) corresponds to the
likelihood of observing the data given the different � values,
and �(�jdata) is the posterior probability that expresses our
updated beliefs on the � values after the existing data from
the system are considered. The denominator in equation (6)
is the expected value of the likelihood function, and acts as
a scaling constant that normalizes the integral of the area
under the posterior probability distribution. Sequences of
realizations from the model posterior distributions were
obtained using Markov chain Monte Carlo (MCMC) simu-
lations. We used the general normal-proposal Metropolis
algorithm as implemented in the WinBUGS software [Lunn
et al., 2000]. This algorithm is based on a symmetric normal
proposal distribution, whose standard deviation is adjusted

over the first 4000 iterations such as the acceptance rate
ranges between 20% and 40%. We collected 40,000 sam-
ples each from two chains for each model realization. The
first 10,000 samples were discarded and posterior statistics
were calculated using a thin of 10, yielding a sample size of
6000 for all the model realizations considered. We assessed
convergence qualitatively by visually inspecting plots of the
posterior Markov chains for mixing and stationarity and by
inspecting density plots of the pooled posterior Markov
chains for unimodality. We also assessed convergence
quantitatively using the modified Gelman–Rubin conver-
gence statistic [Brooks and Gelman, 1998]. The accuracy of
the posterior parameter values was inspected by assuring
that the Monte Carlo error for all parameters was less than
5% of the sample standard deviation.

[12] Wherever possible we opted for informative priors.
Priors for the export coefficients, settling velocity, and in-
stream attenuation were log-normally distributed, owing to
the SPARROW parameterization of Qian et al. [2005]
using total nitrogen loads from three large river basins in
eastern North Carolina, which presented evidence that
these parameters tend to be positively skewed (see their
Figure 7). The values of the � coefficients represented liter-
ature-based estimates of total phosphorus export [Beaulac
and Reckhow, 1982]. The upper limit found for total phos-
phorus in the database was specified as the 70th percentile
of our distributions; thus, the corresponding priors were
relatively wide, thereby allowing more of the information
contained in the posterior distributions to come directly
from the data. The distribution for kr was drawn from work
by Cheng et al. [2010]. We based the prior distributions for
ks1 and ks2, the stream attenuation coefficients, loosely on
values from previous models; that is, we assigned a higher
median to ks1 than to ks2 along with standard deviations
that are fairly large compared to the range of ks between 0
and 1 [Alexander et al., 2004]. The priors are presented in
Table S1 of the auxiliary material.1

[13] The typical SPARROW practice uses the measured
upstream load for input to downstream subwatersheds dur-
ing calibration, which conceptually undermines the useful-
ness of the model for predictive purposes [McMahon et al.,
2003; Qian et al., 2005]. Using the measured loads as
inputs into downstream watersheds has two major prob-
lems. First, it overestimates the confidence in the loading
data. Being mere estimates of the actual nutrient fluxes, the
so-called ‘‘measured’’ loads are associated with a substan-
tial error and failure to account for their uncertainty can
result in a misleading model calibration. Second, relying on
the measured loads as upstream input means that predic-
tions at stations with most of their watershed area moni-
tored by an upstream station may strongly depend on the
measured inputs, which in turn results in a very optimistic
assessment of the model error. All of the statistical formu-
lations explored in this paper use the modeled load as input
to downstream stations. As established by Qian et al.
[2005], some representation of the uncertainty of the cali-
bration data when using modeled loads as inputs to down-
stream subwatersheds is necessary to avoid a misleading

1Auxiliary materials are available in the HTML. doi:10.1029/
2012WR011821.
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model calibration. We describe our approach to do so in
section 2.3.1.

2.3.1. Calibration Data Uncertainty
[14] The importance of explicitly accommodating cali-

bration data uncertainty has been acknowledged in the liter-
ature [e.g., Renard et al., 2010], though it is typically
ignored in the context of SPARROW-type models. This is
a significant omission, considering that annual loads are
typically estimated using rating curve models or estimation
approaches applied to measurements collected bi-weekly or
less frequently, and are subject to substantial uncertainty
[Richards and Holloway, 1987; Cohn et al., 1992]. Two
approaches have been discussed for representing measure-
ment error in models. In the context of estimates of annual
loads, the classical approach assumes that the observed val-
ues of a variable Yi,t are drawn from a distribution which
has as its expected value Loadi,t, the ‘‘true’’ value of the
variable being sampled [Carroll et al., 2006]. The classical
approach is appropriate when the uncertainty is assumed to
come from deficiencies in sampling or measurement and
has been used to model the uncertainty of point rainfall
estimates [Balin et al., 2010]. The Berkson model takes
the opposite approach, assuming that the true value is
drawn from a distribution with expected value equal to the
observed value. The Berkson approach is appropriate when
the uncertainty is assumed to stem from a lack of commen-
surability between what has been measured and the vari-
able one is interested in, and has been applied to estimate
mean aerial rainfall from point measurements [Ajami et al.,
2007]. Mathematically, the key difference between the two
resides in whether the observed values vary about the true
values (classical) or the true values vary about the observed
(Berkson). We assumed that the uncertainty in load esti-
mates stems from a combination of sampling and analytic
errors rather than a lack of commensurability, so we opted
for the classical representation of measurement error for
annual loads.

[15] In our case, the classical measurement error model
consists of three components: (1) the (log-transformed) meas-
urements Yi,t, (2) the (log-transformed) true values Loadi,t,

and the measurement error 	2
i;t. These variables are arranged

in a hierarchical framework, which has as its first level the
relation of the observed to true loading values:

Yi;t � NðLoadi;t; 	
2
i;tÞ: (7)

Note that because we are working with log-transformed
data this postulates multiplicative measurement error. For
this paper, the values of 	2

i;t are prespecified and are not
part of the model calibration process. In section 2.5 we
detail how they are calculated. The second level of the hier-
archy introduces a model for the ‘‘true’’ log transformed
loads:

Loadi;t � Nð�i;t þWv;t�v; �
2Þ: (8)

Because the term �i;t þWv;t�v is equal to the SWALLOW
model prediction, this framework essentially postulates that
the model is an unbiased estimator of the ‘‘true’’ annual
loads with structural (or process) error drawn from a

normal distribution with variance �2. The likelihood of the
loading estimate i in year t, given the model, is then the
product of the likelihood of the two levels of our hierarchi-
cal configurations:

pðYi;tjLoadi;tÞ � pðLoadi;tj�i;t þWv;t�vÞ

¼ 1ffiffiffiffiffiffi
2�
p

	i;t

exp �ðYi;t � Loadi;tÞ2

2	2
i;t

 !

� 1ffiffiffiffiffiffi
2�
p

�
exp �

�
Loadi;t � ð�i;t þWv;t�vÞ

�2

2�2

0
B@

1
CA
: (9)

To summarize, our calibration error framework seeks to
minimize both the differences between the measured and
‘‘true’’ loading data as well as between the ‘‘true’’ and mod-
eled loading. To do so, we must estimate the ‘‘true’’ loading
as part of the model calibration. This adds an additional i� t
stochastic nodes, considerably increasing the complexity of
the calibration exercise but realistically accommodating the
measurement errors as well as the model process error.

2.3.2. Introducing Interannual Variability With
Climatic Predictors—SWALLOW I

[16] The simplest approach we investigated used the
classical SPARROW model in conjunction with climatic
forcing factors to estimate annual loads (equation (4)). This
formulation, called Markov-Chain Monte Carlo (MCMC),
assumes that the annual log-transformed nutrient loading is
a draw from a normal distribution with a mean defined by
the model and a constant model (process) error variance.
Model residuals are assumed to be independent both in
space and time. When we also consider the calibration data
uncertainty, we can express this approach mathematically
as follows:

Yi;t � NðLoadi;t; 	
2
i;tÞ

Loadi;t � Nð�i þWv;t�v; �
2Þ

�i ¼ ln
�XN

n¼1

XJi

j¼1

�nSn; je
ð��ZjÞHS

i; jH
R
i; j

�

��2 � gammað0:001; 0:001Þ

(10)

where Yi,t refers to the log-transformed measured load of
subwatershed i at time t, Loadi,t is a latent variable that rep-
resents the ‘‘true’’ loading values when accounting for the
measurement error 	2

i;t, �i refers to the base loading calcu-
lated from the SPARROW equation, � represents the model
(process) error, and gamma(0.001, 0.001) is the gamma dis-
tribution with shape and scale parameters of 0.001, repre-
senting a ‘‘noninformative’’ or vague prior assigned to the
error precision (the inverse of variance).

[17] Even at annual timescales, watershed processes are
dynamic, yet the parameters used in equation (4) are static.
This may cause a temporal autocorrelation of model resid-
uals. Temporal autocorrelation could stem from systematic
trends in either the nutrient export dynamics or the spatial
patterns of the different land uses. We use a temporal first-
order random-walk function (WALK) to account for the
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temporal correlation of residuals [Arhonditsis et al., 2008a,
2008b; Sadraddini et al., 2011a]. We posit a random effect
vt for each year t represented by a first-order random walk
prior [Shaddick and Wakefield, 2002; Arhonditsis et al.,
2008a, 2008b]. When we also account for the calibration
data uncertainty, the WALK formulation is as follows:

Yi;t � NðLoadi;t; 	
2
i;tÞ

Loadi;t � Nð�i þWv;t�v þ vt; �
2Þ

�i ¼ ln
XN

n¼1

XJi

j¼1

�nSn; je
ð��ZjÞHS

i; jH
R
i; j

 !

vtjv�t �

Nðvtþ1;  
2Þ for t ¼ 1

N
vt�1 þ vtþ1

2
;
 2

2

� �
for t ¼ 2; . . . ; T � 1

Nðvt�1;  
2Þ for t ¼ T

8>>>>><
>>>>>:

��2;  �2 � gammað0:001; 0:001Þ

(11)

where �t denotes the previous and subsequent years of t, T
denotes the total number of years of the study period, and
 2 is the conditional variance of the vt terms and its prior
density was based on a conjugate inverse-gamma (0.001,
0.001) distribution. Our statistical approach reflects prior
beliefs that these systematic trends in the watershed func-
tioning are smooth and that sudden jumps between consec-
utive years are unlikely to occur.

2.3.3. Introducing Interannual Variability With Time
Varying Parameters—SWALLOW II

[18] The rest of the formulations, referred to as SWAL-
LOW II, considered time-variant watershed parameters and
differed in the nature of the parameters allowed to vary. It is
very unlikely that the landscape processes inherent in nonlin-
ear regression models of nutrient loading (e.g., export rates,
stream attenuation) operate identically from year to year, and
therefore allowing these parameters to vary can be an effec-
tive means to accommodate interannual variability. The use
of time variant parameters to overcome model structural defi-
ciencies has been investigated for some time [e.g., Beck and
Young, 1976]. Perhaps the most widely known approach is
the Kalman filter [Kalman, 1960], a sequential model estima-
tion approach that uses a gain function to combine model
predictions with system measurements at each time step,
inversely weighting each by their uncertainties. This method
also postulates an error covariance structure that is estimated
along with the rest of the model parameters. Kalman-type
approaches to fusing model predictions and measurements
online are ubiquitous in many disciplines, including water-
shed modeling, and have been used as a technique to estimate
the values of time-varying parameters [e.g., Moradkhani
et al., 2005; Lin and Beck, 2007].

[19] Other approaches in the watershed modeling literature
reproduce the temporal variability of parameter values with
some type of stochastic process. Reichert and Mieleitner
[2009], for instance, used the Ornstein-Uhlenbeck process to
accommodate parametric variability in time. Although the
underlying assumption of stationarity is a valuable way to
account for structural uncertainty while constraining the

added complexity of temporally varying parameters, we may
not expect a parameter to be stationary with respect to the
(always somewhat arbitrary) study time frame, e.g., the inten-
sity of in-stream attenuation would be expected to vary with
dry and wet years. Lin and Beck [2007] used a first-order ran-
dom walk, a nonstationary process, in a dissolved oxygen
model of a managed pond. Their analysis shows how time
varying parameters can be used to identify structural improve-
ments to models of environmental systems.

[20] For this paper we adapted approaches often used in
the context of dynamic linear models (DLMs), which rec-
ognize the temporal structure in the data time series with
the assumption that the level of the response variable at
each time step is influenced by past levels [West and Harri-
son, 1989; Prado and West, 2010]. Two key points distin-
guish the DLM approach we employ in this paper from
standard regression approaches. First, the DLM approach
posits that some or all model parameters vary with time, and
that their time series is autocorrelated – the closer in time,
the more similar are parameter values. Second, in contrast
with regression analysis, where parameters are conditioned
on the entire time series, the dynamic parameter estimation
is influenced only by prior and current information, not by
subsequent data [Stow et al., 2004; Sadraddini et al., 2011a,
2011b]. In principle, the DLM approach is equivalent to the
Kalman-type strategies, although the focus here is on a full
probabilistic treatment of the underlying uncertainty, instead
of a sequential updating of the mean prediction. Further,
the sampling of parameter values is not done sequentially
through the time series, but rather follows the standard
MCMC approach of sampling a proposal point in the param-
eter space for the entire time series, evaluating that point,
and applying the Metropolis Rule in deciding whether to add
that point to the Markov chain [Lunn et al., 2000].

[21] In this study, we introduce nonconstant and data-
driven variances (with respect to time) using a discount fac-
tor on the prior of the first year [Congdon, 2001]. Based on
experience from recent work [Azim et al., 2011; Sadraddini
et al., 2011a, 2011b] and preliminary trials, we used values
ranging from 0.95 to 0.98 and thus our dynamic parameter
estimation framework is

�t ¼ �t�1 þ ’t

’t � Nð0;�2
t Þ

��2
t ¼ 
t�1 � ��2

1

�1 � Nð�mean;�
2
1ÞIð�min; �maxÞ

��2
1 � gammað�; �Þ

(12)

where �t represents any of the SPARROW parameters at
time t, ’t is the corresponding error term for year t sampled
from normal distributions with zero mean and variance �2

t ,
and 
 represents the discount factor. �mean, �min, and �max

correspondingly represent the mean value, minimum and
maximum of the literature priors used with the SWAL-
LOW I formulations. The values of �1 as well as subse-
quent values �t were constrained within the range �min to
�max. The gamma distribution assigned to the parameter
��2

1 was constructed such that its mean was equal to the
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variance of the SWALLOW I informative priors, while
the uncertainty of the same distribution reflects our confi-
dence of that mean estimate. To achieve commensurability
between the SWALLOW I and SWALLOW II formula-
tions, we assumed a very high level of confidence (i.e.,
coefficient of variation <5%). Our statistical configuration
essentially postulates that between 95% and 98% of the in-
formation is carried forward from time t to t þ 1; thus, the
influence of the original priors decreases as time progresses
and is gradually superseded by the influence of the data
[Azim et al., 2011, Sadraddini et al., 2011a]. In this study,
we examined different combinations of time variant parame-
ters to identify the most parsimonious structure. In particular,
we selected the following four parameter combinations: (1)
delivery coefficient (�) alone; (2) the two export coefficients
(�1, �2); (3) the two stream attenuation coefficients (ks1,
ks2); and (4) the two export coefficients (�1, �2) along with
the two stream attenuation coefficients (ks1, ks2). Table 2
presents all statistical formulations examined.

2.4. Case Study

[22] Hamilton Harbor is a large embayment at the west-
ern end of Lake Ontario. The Harbor is designated as one
of 17 Canadian Areas of Concern in the Great Lakes Basin
under the International Joint Commission due to a history
of eutrophication problems manifested as nuisance algal
blooms, turbid water, prevalence of toxic cyanobacteria,
and low hypolimnetic oxygen concentrations toward the
end of the summer stratified period [Hiriart-Baer et al.,
2009; Ramin et al., 2011]. The Hamilton Harbor Remedial
Action Plan (RAP), a consortium of government, private sec-
tor, and community actors, is mandated with restoring and
protecting environmental quality and beneficial uses. RAP
consultations with local stakeholders have identified a warm
water fishery as a priority use for the Harbor [Charlton,
2001]. While earlier work highlighted the critical role of the
sewage treatment plants in governing total phosphorus and
chlorophyll � concentrations in the Harbor, substantial
uncertainty regarding the water quality conditions exists due

to the poorly defined nutrient loadings from the drainage ba-
sin [Gudimov et al., 2010, 2011].

[23] Hamilton Harbor’s drainage basin is about 450 km2

in aerial extent and consists of watersheds dominated by ag-
ricultural (Grindstone and Spencer Creeks) or urban land use
(Redhill and Indian Creeks; see Figure 1). Urban and agri-
cultural land together account for 80% of the watershed’s
surface area. Population in Hamilton has been increasing
and urban areas have been expanding, largely at the expense
of agricultural land uses (Southern Ontario Land Resource
Information System (SOLRIS), Ontario Ministry of Natural
Resources, 2008, available from http://lioapp.lrc.gov.on.ca).
The soils of the Harbor basin are mainly loams (73%), while
organic soils, silty clay loams, and clay loams together make
up about 10% of the basin soils. Most of the remainder is
composed of rocky outcroppings and ravines. Soils are
spread relatively evenly between the four soil hydrologic
runoff groups – groups A and B, those least runoff prone,
each have 23% coverage, group C has 29% coverage, and
group D, the most runoff prone, has 24% coverage. The
slopes of the Harbor basin are mild, with the exception of
the Niagara Escarpment. The average slope of the entire ba-
sin is 4.4%, and ignoring all slopes greater than 30% the av-
erage is 3.8%.

2.5. Data Sets

2.5.1. Spatial Data Sets
[24] We provide an extensive description of the spatial

datasets used as inputs to the SPARROW model in the
auxiliary material and a brief overview here. We used a
10-m digital elevation model to delineate the subwater-
sheds. Our calibration data set had 6 subwatersheds. Their
areas ranged from 25.5 – 75.8 km2, with a mean of
49.3 km2 and a standard deviation of 24.1 km2. There are a
total of 118 reach catchments, and each reach catchment
discharges into a confluence, reservoir, or water quality
monitoring station. Reach catchment areas ranged from
0.02 – 12.3 km2, with a mean of 2.5 km2 and an interquar-
tile range of 3.5–1.3 ¼ 2.2 km2. Each reach is drained by a
single stream. The mean stream length is 2.4 km with an
interquartile range of 3.2–1.2 ¼ 2.0 km. Two stream classes
are included in the model, one for streams of Strahler order
1 or 2, and one class for streams of Strahler order 3 or
higher [Strahler, 1952]. Four reservoirs were used
during the parameter estimation of the SWALLOW models
(Figure 1). Nonpoint nutrient sources included in the model
were agricultural land and urban land, together representing
80% of the basin area. A single wastewater treatment plant,
the Waterdown plant, drained into one of the streams. The
mean loading for this plant between 1996 and 2007 was
0.3 tons of phosphorus per year, with an interquartile range
of 0.4–0.2 ¼ 0.2 tons per year (Hamilton Harbor Remedial
Action Plan Technical Team, Contaminant Loadings and
Concentrations to Hamilton Harbor: 2003–2007 Update,
Hamilton Harbor Remedial Action Plan Office, Burlington,
Ontario, Canada). Nutrient delivery was parameterized as a
function of the proportion of each reach covered by wet-
lands due to their role in moderating nutrient fluxes to
receiving waterbodies [Krieger, 2003]. Proportions of wet-
land ranged from 0 to 1 with a mean of 0.06 and an inter-
quartile range of 0.06 – 0 ¼ 0.06.

Table 2. Bayesian Statistical Formulations of the SWALLOW
Models Examined

Model Notation Description

MCMC Model residuals are assumed independent.
All parameters are static through time.

WALK Random walk of model residuals through time.
All prior parameters are independent and model
residuals in space are assumed independent. All
parameters are static through time.

MCMC - �DYN Model residuals are assumed independent. The �
parameter (delivery to streams) varies each year,
while all other parameters are static through time.

MCMC - �DYN Model residuals are assumed independent. The �
parameters (export coefficients) vary each year,
while all other parameters are static through time.

MCMC - ksDYN Model residuals are assumed independent. The ks

parameters (stream attenuation) vary each year,
while all other parameters are static through time.

MCMC - �,ksDYN Model residuals are assumed independent. The �
(export coefficients) and ks parameters (stream
attenuation) vary each year, while all other param-
eters are static through time.
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2.5.2. Nutrient Loads
[25] We estimated phosphorus loads for each year between

1988–2009 at each station using station-specific rating curves,
each of which expressed log-transformed daily nutrient load-
ing as a function of log-transformed daily flow:

LnðLoadÞ ¼ a0 þ a1LnðQÞ (13)

where a0 and a1 are regression coefficients, and Ln(Q) refers
to log transformed daily streamflow. All concentration meas-
urements available for each station between 1988 and 2009
were employed in fitting the rating curve. We should stress
that this approach to estimating loads accommodates the an-
nual variability in loading associated with variations in the
hydrograph, while variations of annual loading due to other
factors such as changes in fertilizer application intensity are
not captured. By assuming a single response of loading to
flow throughout the study time period we may be underesti-
mating the true temporal variability of annual loading,
though the estimated log-transformed loads did show signifi-
cant interannual variability, with coefficients of variability
ranging from 0.27 to 0.34. The number of concentration
measurements employed at each station ranged from 23 to
161 with a mean of 58. The r2 values for the rating curves

ranged from 0.71 to 0.92 with a mean of 0.82. Each rating
curve was used in conjunction with daily flow records for
each year to estimate average daily loading, which was mul-
tiplied by 365 to yield total annual loads for each year from
1988 to 2009. We included between 13 and 22 load estimates
for each station for a total of 102 load estimates. One annual
loading estimate was based on 346 days of estimated loads,
while the rest were based on 365 (or 366 for leap years).
Annual loads ranged from 0.2 to 6.3 tons yr�1 with a mean
of 2.4 tons yr�1. Log transformed total phosphorus values
ranged from �1.6 to 1.8 Ln(t yr�1) with a mean of 0.6 Ln(t
yr�1). All rating curve calculations were carried out with the
U.S. Geological Survey’s LOADEST program [Runkel
et al., 2004]. The concentration measurements were supplied
by the Ontario Ministry of the Environment’s Provincial
Water Quality Monitoring Network, while the daily flows
were supplied by the Water Survey of Canada (Ontario Pro-
vincial Water Quality Monitoring Network, 2011, unpublished
data available from: http://www.ene.gov.on.ca/environment/;
Water Survey of Canada, 2011, unpublished data available
from: http://www.wsc.ec.gc.ca/applications/H2O/).

[26] Our data quality submodel postulates that the log
transformed loadings are random variables drawn from nor-
mal distributions with mean values equal to the unknown
true load and variances (	2

i;t) representing the associated

Figure 1. Map of the Hamilton Harbor watershed, western end of Lake Ontario, Ontario, Canada.
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uncertainty at each site for each year. We derive the 	2
i;t

terms from the 95% confidence intervals of the calculated
mean daily loads at each station for each year as provided
by the LOADEST program [Runkel et al., 2004], which
estimates the variance of the mean predicted load as the
sum of the covariance of all daily load estimates [Gilroy
et al., 1990, equation (16)]:

MSEðX Þ ¼
X

i; j

CovðLðiÞ; LðjÞÞ (14)

where MSE (X) is the variance about the mean load predic-
tion for a particular station at a particular year, i and j
denote arbitrary days, and L(i) and L(j) denote the loads on
days i and j predicted by the rating curve model. The covar-
iance terms are estimated using equations given by Gilroy
et al. [1990, equations (17)–(25)], and do account for the
residual variance of the rating curve model in addition to
its parametric uncertainty. The 95% confidence intervals of
the mean daily load are calculated using MSE(X), which we
then multiplied by 365 and log-transformed to obtain the
width of the 95% confidence interval on the log scale. In
keeping with our assumption of log-normality, the values
of 	i,t were estimated as one quarter of this width. Values
of 	i,t ranged from 0.09 to 0.55 Ln(tons yr�1) with a mean
of 0.19 Ln(tons yr�1).

2.5.3. Temporal Forcing Factors
[27] We use two climatic forcing factors in this paper:

annual precipitation and annual potential evapotranspira-
tion. All forcing factors were calculated from data collected
at Environment Canada’s Hamilton Airport station (WMO
ID 71,263) between the years 1988 and 2009. Total annual
precipitation ranged from 677 mm to 1115 mm, with a
mean of 901 mm and an interquartile range of 1023–786 ¼
237 mm.

[28] Potential evapotranspiration serves as an estimate
of the annual variability of atmospheric flux of water out of
the basin. Evaporation is a pathway for precipitation to exit
the basin without contributing to nutrient loading. We esti-
mated daily potential evapotranspiration with the FAO’s
Penman-Monteith method and then summed to yearly inter-
vals [Allen et al., 1998]. While using potential evapotrans-
piration measured as a surrogate implicitly assumes that the
main limitations to atmospheric-water fluxes are related to
atmospheric conditions and energy supply and not related
to water supply at the surface or stomatal/soil resistance to
evapotranspiration, the inclusion of potential evapotranspi-
ration as a temporal forcing factor may nonetheless offer
some insights into the annual functioning of the Hamilton
Harbor basin. All the details of the calculation are pre-
sented in the auxiliary material. Both temporal forcing fac-
tors were subjected to a nonparametric standardization
((value-median)/interquartile range) before their inclusion
into the model.

2.6. Overview of Numerical Experiments and Model
Evaluation

[29] The flexible framework provided by an empirical
model allows many possible realizations, or combinations
of inputs and statistical formulations. We here conceptual-
ize the model realization space of SWALLOW as two

dimensional, where the dimensions correspond to the statis-
tical formulation, and temporal (climate) forcing complex-
ity. We employed two W matrices: one that included only
annual precipitation and one that included annual precipita-
tion and total potential evapotranspiration. We also examined
model realizations that omitted a W matrix altogether, which
was only possible with the SWALLOW II formulation.

[30] We used two measures to evaluate the different
model realizations examined. First, we used the deviance in-
formation criterion (DIC), a Bayesian measure of parsimony
that rewards for model fit but penalizes model complexity
[Spiegelhalter et al., 2002]. The DIC is the Bayesian analog
of Akaike’s Information Criterion [Akaike, 1974]. The DIC
is defined as follows:

DIC ¼ Dð�Þ þ pD (15)

where Dð�Þ refers to the posterior mean of the deviance
and pD is a measure of the effective number of model pa-
rameters. The deviance is defined as the residual informa-
tion in data Y conditional on a parameter vector � and is
calculated as �2 log{p(Yj�)} or �2 log{likelihood}. The
effective number of parameters is calculated as the poste-
rior mean deviance of the model (Dð�Þ) minus the estimate
of the model deviance calculated when using the posterior
means of the parameters (Dð�Þ), which corresponds to the
trace of the product of Fisher’s information and the poste-
rior covariance. A smaller DIC value indicates a more par-
simonious, and hence ‘‘better,’’ model. Model realizations
were also evaluated for fit alone using two metrics : (1)
the Root Mean Squared Error (RMSE), calculated using the
medians of the posterior predictive distributions of the
yearly log-transformed loads:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ðYi;t � ½�i;t þWv;t�v�Þ

2

n

s
(16)

and (2) a Weighted Root Mean Squared Error (WRMSE)
calculated using as weights the precision (inverse of var-
iance) of the loading estimates:

WRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

wi;t � ðYi;t � ½�i;t þWv;t�v�Þ
2

q
wi;t ¼

�i;tX
�i;t

�i;t ¼
1

	2
i;t

(17)

where Yi,t refers to the measured log-transformed load for
subwatershed i at year t, �i,t þ W�,t�� refers to the median of
the posterior predictive distribution of the log-transformed
loads from subwatershed i at year t, and n represents the
number of total nutrient loading measurements.

3. Results
3.1. Evaluation of Model Performance

[31] The DIC values of the different models parameter-
ized with the total phosphorus data are presented in Table 3.
The corresponding RMSE and WRMSE values are also
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presented in the auxiliary material. The highly favorable
DIC values of the WALK formulations suggest systematic
changes in the phosphorus exports from the watershed unac-
counted for by the SPARROW model and the climatic
covariates considered herein. For any number of climatic
predictors though, the RMSE value of WALK is usually
higher than the corresponding RMSE of the SWALLOW II
formulations, indicating that the favorable parsimony score
of WALK is likely driven by its lower number of stochastic
nodes more than its goodness of fit.

[32] Despite the complexity entailed by the use of time-
variant export and/or attenuation coefficients, the SWAL-
LOW II formulations were generally found to be more par-
simonious than the MCMC SWALLOW I configuration
and were comparable to the WALK SWALLOW I configu-
ration. For total phosphorus, when the export (�1, �2) or
stream attenuation coefficients (ks1, ks2) were allowed to
vary with time (SWALLOW II), they provided compara-
tively better results over the static MCMC SWALLOW I
configuration. The statistical formulation that allowed both
the export and stream attenuation coefficients to vary was
not supported by the DIC. While our data set consists of
102 measurements, the SWALLOW II statistical formula-
tion sequentially fits each year with six or fewer points.
Yet, although the parameterization of a particular year is
conditional upon the information contained in the preced-
ing ones (see equation (12)), it is still likely that allowing
four parameters to vary in time is simply too complex for
our data set, despite the likelihood that the processes repre-
sented by both export coefficients and stream attenuation
coefficients vary annually. SWALLOW II model realiza-
tions that included the precipitation variability or potential
evapotranspiration as temporal predictors were typically
characterized by minor improvement of their DIC values
relative to those derived from the consideration of total pre-
cipitation alone, suggesting that temporal variability of the
SPARROW model parameters may be sufficient to describe
the interannual nutrient loading variability.

[33] We include quantile-quantile and autocorrelation
plots of posterior mean residuals in Figures 2 and 3 in order
to assess the likelihood assumptions of normality and tem-
poral independence of residuals made by all formulations
except WALK. We present residuals from the formulations
MCMC - Pred1 and MCMC - Pred1- ksDYN, the most parsi-
monious SWALLOW I and SWALLOW II formulations.

In accordance with our likelihood assumptions, the two com-
ponents of the likelihood function (equation (9)) are assessed
individually. Generally, the quantile-quantile plots show that
the residual distributions were centered around the 1:1 line,
although the residuals of measured from estimated ‘‘true’’
loads are characterized by somewhat leptokurtic patterns.
Interestingly, the latter deviation patterns from the normality
assumption were mainly associated with the substantial
uncertainty characterizing the loading estimates from Redhill
Creek (see auxiliary material Figures S1–S5). The two signif-
icant deviations at the lower range of the residuals of ‘‘true’’
from modeled load for SWALLOW I formulation MCMC -
Pred1 both correspond to the year 1999, which as we detail
in section 3.2.2 was characterized by significantly different
parameter values by the SWALLOW II framework. The spa-
tially averaged residuals of the SWALLOW I formulation
are relatively independent in time, while the SWALLOW II
spatially averaged residuals between ‘‘true’’ and modeled
loads manifest some dependence on time (Figure 3, bottom-
right). Interestingly, the negative correlation coefficient sug-
gests an oscillatory pattern of the residuals, instead of the
expected grouping of over and under predictions with each
other, which a positive correlation would indicate. A time se-
ries plot showed oscillatory behavior of the residuals in the
final 3 years of the study. We omitted these 3 years and
calculated a lag-1 correlation coefficient of only �0.35,
which was well below the critical correlation coefficient of
62/

ffiffiffiffiffi
22
p

¼ 0.43, expected from a random process generating
22 time steps of data. The three omitted years correspond to
a time period when only three of the stations were active, the
sparsest period of our data record.

3.2. Posterior Parameter Distributions

[34] Table 4 shows the differences of the posterior pa-
rameter means and standard deviations among the various
models when considering the total precipitation as the sole
temporal predictor. The reported values of the time-varying
parameters are averages of the mean and standard deviation
values across all years examined. The parameter distribu-
tions are generally consistent across the formulations and a
careful inspection of their values offers insights into the
watershed functioning. We found that the consideration of
the proportion of each reach covered by wetlands led to
well-identified delivery coefficients (�). For a reach with
aerial wetland coverage of 6%, the mean of our data set,
the delivery coefficient values predict stream deliveries of
about 57% of the total phosphorus export predicted by the
corresponding coefficients. The total phosphorus export
coefficients from agriculture (�1) and urban land (�2) were
well-identified and broadly in agreement with previous
SPARROW applications [Alexander et al., 2002; Garc�ıa
et al., 2011].

[35] The reservoir (kr) and stream (ks) attenuation coeffi-
cients are generally in agreement with previous SPAR-
ROW applications [Alexander et al., 2002; Garc�ıa et al.,
2011]. The stream attenuation rates were higher for smaller
(first and second order) streams than for larger (third and
higher order) streams, reflecting the greater contact of
water and streambed as well as the longer hydraulic resi-
dence time in smaller streams [Stream Solute Workshop,
1990]. Our parameter results indicate that on average
around 16% of phosphorus is lost per kilometer of small

Table 3. Deviance Information Criterion for All Statistical For-
mulations Used to Model Total Phosphorus Loadinga

Formulation Pred0 Pred1 Pred2

SWALLOW I
MCMC – �26.1 �25.8
WALK – �80.0 �79.7

SWALLOW II
MCMC - �DYN �18.5 �29.9 �30.2
MCMC - �DYN �44.6 �45.2 �45.7
MCMC - ksDYN �78.4 �80.3 �79.9
MCMC - �,ksDYN �38.1 �37.8 �37.1

aPred0 refers to the sole use of SPARROW to accommodate interannual
loading variability; Pred1 refers to the use of SPARROW along with the
total annual precipitation; Pred2 refers to the use of SPARROW along with
the total precipitation and the total annual potential evapotranspiration.
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stream transit and only 4% per kilometer of large stream
transit. The precipitation coefficient (�1) has a value of
roughly 0.3 and is well identified for most of the formula-
tions examined. A positive value of this coefficient indi-
cates that greater precipitation results in greater loading.
We also note that no significant relationships were found
between the time series of the dynamic parameters and the
corresponding annual precipitation inputs when the precipi-
tation was used as a covariate (r2 < 0.2). On a final note,
the SWALLOW II formulations were generally character-
ized by much lower model structural error (�) than their
SWALLOW I counterparts, reinforcing the model improve-
ment with the dynamic watershed parameters.

[36] An interesting systematic effect was observed with
the parameter estimates of the SWALLOW II formulation
that were allowed to vary with time. While the posterior pa-
rameter distributions were fairly consistent across the differ-
ent models examined, the SWALLOW II formulations
resulted in posterior mean values for the dynamic parameters

that could differ substantially compared to their static coun-
terparts. One plausible explanation for this discrepancy may
be the nature of the parameter estimation process along with
the functional role of the priors with the two strategies.
Namely, the SWALLOW I formulations use the literature-
derived priors to update our knowledge about the average
value of the different parameters for the entire time period,
while the SWALLOW II formulations with sequential pa-
rameter estimation use the prior information solely for the
first year, after which the estimate for the previous year sup-
plies the most likely value for the next year’s prior.

3.2.1. Effects of Temporal Predictors on Parameter
Values

[37] The posterior parameter means and standard devia-
tions for the formulation that considers dynamic stream
attenuation coefficients (ks1, ks2) as well as the data uncer-
tainty are provided in Table 5. The total potential evapo-
transpiration is a poor predictor of loading and its

Figure 2. (top) Quantile-quantile plots and (bottom) autocorrelation function plots for SWALLOW I
formulation MCMC - Pred1. Autocorrelation plots show average of residuals across stations. (left)
Residuals of measured from estimated ‘‘true’’ load (Yi;t � Loadi;t, see equation (7)) and (right) residuals
of ‘‘true’’ from modeled load (Loadi;t � �i;t þWv;t�v, see equation (8)). Circles represent posterior mean
residuals, gray lines the 95% credible interval, and black lines the 1:1 line. Gray lines in the autocorrela-
tion plots represent 95% confidence interval for correlation given sample size.
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coefficient was not well identified. This result was observed
even with the much simpler SWALLOW I formulations.
Yet, it is unclear whether the lack of support for potential
evapotranspiration as a predictor of annual loading stems
from its weak causal link with the nutrient export in Hamil-
ton Harbor or its inability to appreciably capture the dy-
namics of actual evapotranspiration. While the parameter
estimates are fairly consistent among the three levels of cli-
mate forcing complexity, the largest differences were found
between Pred0 and the rest of the realizations that consid-
ered temporal predictors. Adding temporal predictors tended
to increase the importance of wetlands in modulating deliv-
ery to streams and decreased both the export coefficients and
the small-stream attenuation coefficient (ks1). We also note
that no significant relationship exists between the annual ks

estimates and annual precipitation for the Pred1 realizations
(r2 < 0.05), whereas the annual precipitation appears to be a
significant predictor of the small stream attenuation coeffi-
cient (r2 ¼ 0.32, slope ¼ �0.6, p < 0.01) with the Pred0
realization. The latter finding highlights the tradeoffs when

using forcing factors and time-varying parameters, in that
the inclusion of significant forcing factors may reduce the
variability of the time-varying watershed parameters.

3.2.2. Temporal Variability of Walk Errors and
SWALLOW II Parameters

[38] We found plausible mechanisms to explain the
interannual variability of the WALK correlated errors
(vt terms) as well as the posterior medians of the SWALLOW
II parameters from various formulations. We first consider
the vt terms, as these empirical autocorrelated error terms
encapsulate the ‘‘missing signal’’ from the static parameter-
ization. Figure 4 shows that annual streamflow explains
most of the variability of the vt autocorrelated error terms
of the WALK E1 - Pred1 realization. Likewise, the vt terms
appear to covary with the large stream attenuation parame-
ter estimates of the most parsimonious SWALLOW II - E1
realization, MCMC - ksDYN - E1 - Pred1. Further, the vt

terms explain the majority of the variability in the agricul-
tural export terms in the MCMC - ksDYN - E1 - Pred0

Figure 3. (top) Quantile-quantile plots and (bottom) autocorrelation function plots for SWALLOW II
MCMC - ksDYN formulation with the Pred1 climate forcing complexity. Autocorrelation plots show average
of residuals across stations. (left) Residuals of measured from estimated ‘‘true’’ load (Yi;t � Loadi;t, see
equation (7)) and right panels represents residuals of ‘‘true’’ from modeled load (Loadi;t � �i;t þWv;t�v,
see equation (8)). Circles represent posterior mean residuals, gray lines the 95% credible interval, and black
lines the 1:1 line. Gray lines in the autocorrelation plots represent 95% confidence interval for correlation
given sample size.
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realization (r2 ¼ 0.60) and the delivery terms in the
MCMC - �DYN - E1 - Pred1 realization (r2 ¼ 0.79). On the
other hand, there were no significant relationships of the vt

terms with the runoff ratio (total runoff/total flow; r2 <
0.15), nor with the annual population of the Hamilton Cen-
sus Metropolitan Area (r2 < 0.01). Interestingly, precipita-
tion was also not correlated with the vt terms (r2 < 0.02),
so some aspect of the system related to flow other than total
precipitation is being captured by the vt terms.

[39] Figure 5 shows the stream attenuation coefficients
as a function of average annual streamflow measured at
Grindstone Creek, the largest watershed with an unman-
aged flow regime. Little of the variability of the small-
stream attenuation estimates can be explained by the flows
at Grindstone Creek. This counterintuitive result is likely

due to the deficiency of the calibration data set in head-
water sites, as further described in section 3.4. More than
half of the variability of the large-stream attenuation is
explained by the average streamflow. This suggests that the
attenuation parameter values could partially compensate
for the lack of information about the rainfall-runoff process
in the model. We also note that the lower attenuation values
during periods of higher flow are plausible and in agree-
ment with previous theoretical and empirical work on
stream ecology, as the biotic (uptake) and abiotic (settling)
processes responsible for attenuation have much less time
to exert control on the nutrient load en route to the receiv-
ing water body when the streamflow rate is higher [Stream
Solute Workshop, 1990; Donner et al., 2004; Basu et al.,
2011]. The emergence of this pattern from an empirical
model is a very interesting result. Figure 6 presents time series
plots of the posterior values of the stream attenuation coeffi-
cients for one SWALLOW I realization (MCMC - Pred1 -
E1) and one SWALLOW II realization (MCMC - ksDYN

Pred1 - E1). The spike in large-stream attenuation in 1999
corresponds with the year of the lowest average and maxi-
mum flows during the study for Grindstone (station 3) and
Spencer Creeks (station 6) and the third (fourth) lowest aver-
age (maximum) streamflow values for Redhill Creek (station
2). As previously mentioned, these two formulations have dif-
ferent relationships to the literature prior, and therefore it is
unlikely to obtain complete agreement of the resulting param-
eterizations. However, it is clear that there is significant inter-
annual variability of the stream attenuation coefficients. This
variability is important to take into account when a temporally
static SPARROW implementation is used to estimate the
locations of nutrient source areas, as discussed in section 3.3.

3.3. Spatio-Temporal Identification of Source Areas

[40] The spatially distributed nature of the SPARROW
model offers estimates of the sources and movement of
contaminant masses within the basin, and the dynamic

Table 4. Markov Chain Monte Carlo Estimates of the SWALLOW Models Parameterized With Total Phosphorus Dataa

Parameters

SWALLOW I SWALLOW II

MCMC WALK MCMC - �DYN MCMC - �DYN MCMC - ksDYN MCMC - �,ksDYN

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

� 8.32 1.41 9.45 1.25 10.59 1.77 9.81 1.07 9.23 1.32 10.50 1.36
�1 0.17 0.04 0.17 0.04 0.18 0.04 0.20 0.05 0.13 0.02 0.16 0.07
�2 0.08 0.02 0.08 0.03 0.07 0.02 0.10 0.07 0.06 0.02 0.07 0.06
kr 14.08 4.13 15.07 4.16 14.52 4.40 14.80 3.68 15.39 3.65 15.58 3.70
ks1 0.19 0.07 0.18 0.07 0.17 0.06 0.19 0.05 0.13 0.07 0.13 0.11
ks2 0.04 0.02 0.04 0.01 0.04 0.02 0.05 0.01 0.03 0.01 0.03 0.02
�1 0.35 0.05 0.29 0.08 0.35 0.05 0.39 0.31 0.29 0.08 0.12 0.31
� 0.21 0.02 0.05 0.02 0.17 0.02 0.04 0.01 0.03 0.01 0.03 0.01
 0.31 0.06
�� 3.30 0.17
�1� 1.64 0.08 1.64 0.08
�2� 1.82 0.09 1.82 0.09
ks1� 0.71 0.01 0.71 0.01
ks2� 1.00 0.02 1.00 0.02
DIC �26.1 �80.0 �29.9 �45.2 �80.3 �37.8
RMSE 0.26 0.14 0.23 0.10 0.14 0.11
WRMSE 0.25 0.09 0.19 0.07 0.08 0.05

aAll statistical formulations refer to the Pred1 level of climate forcing complexity. Reported values of � and ks are averages of the mean and SD across
all years of the study period. Units of � are tons P km�2 yr�1. Units of ks are km�1. Units of kr are m yr�1.

Table 5. Markov Chain Monte Carlo Estimates of the MCMC -
ksDYN Formulation Parameterized With Total Phosphorus Data
Across Different Levels of Climate Forcing Complexitya

Parameters

Pred0 Pred1 Pred2

Mean SD Mean SD Mean SD

� 8.73 0.88 9.23 1.32 9.17 1.28
�1 0.16 0.02 0.13 0.02 0.13 0.02
�2 0.08 0.02 0.06 0.02 0.06 0.02
kr 15.94 3.77 15.39 3.65 15.32 3.56
ks1 0.19 0.07 0.13 0.07 0.13 0.07
ks2 0.03 0.02 0.03 0.01 0.03 0.02
�1 0.29 0.08 0.32 0.11
�2 0.04 0.10
� 0.03 0.01 0.03 0.01 0.04 0.01
ks1� 0.71 0.01 0.71 0.01 0.71 0.01
ks2� 1.00 0.02 1.00 0.02 1.00 0.02
DIC �75.0 �77.0 �76.6
RMSE 0.14 0.14 0.15
WRMSE 0.07 0.08 0.08

aReported values of ks are averages of the mean and SD across all years
of the study period.
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augmentation allows this analysis to be extended in time to
gain an understanding of how contaminant source and sink
processes and source areas change through time. Of course,
the inference drawn regarding the temporal variability of
source areas in this particular exercise is subject to the abil-
ity of our calibration data set to represent temporal trends
in loading. As we document in section 2.5.2, we may be
underestimating the true interannual variability of our load
estimates, and thus an exploration into how the annual esti-
mates of loading propagate through the model to estimate
the year-to-year contributions of source areas can offer
insights into the credibility of any modeling exercise that
aims to accommodate the interannual variability in a water-
shed context. We used the posterior parameter distributions
from the MCMC - ksDYN - E1 - Pred1 realizations to esti-
mate annual basin loads and source areas. Estimated basin
load of total phosphorus ranged from 6.6 6 2.2 to 18.1 6
4.7 tons per year with a mean of 11.0 6 3.3 t (the errors are
in units of 1 standard deviation). While we recognize that
these whole-basin load estimates are subject to the caveat
of applying the model coefficients to areas smaller than the
calibration subwatersheds, it should be noted that less than
15% of the total basin area falls into this category. The an-
nual precipitation alone explained a substantial portion of
the temporal variability of whole basin estimates of total
phosphorus (r2 ¼ 0.61, p < 0.01).

[41] Our year-specific estimates of watershed parameters
offer insights into the nutrient delivery in the Harbor for
each year in addition to the static estimates typically made
with SPARROW. Figure 7 shows the spatial and temporal
variability of total phosphorus yield delivered to Hamilton
Harbor at both the subwatershed and the reach scale. The
subwatershed scale maps show the importance of proximity

to the Harbor as an important factor in determining the load
levels, but the reach scale maps reveal that proximity to the
large (third order and higher) streams is also a significant
predictor of high areal delivery, likely because the small-
stream attenuation coefficients were consistently higher
than the large-stream attenuation coefficients. The coeffi-
cient of variability of interannual phosphorus delivery
appears to increase upstream from the Harbor, where the
effect of the variability of the stream coefficients is the
highest. Figure 8 presents the estimated per area deliveries
at the subwatershed and reach scale for the years 1999 and
2006, i.e., the years of the highest and lowest values of
large stream attenuation (see ks2 values in Figure 6). It is
clear that the temporal variability of the watershed parame-
ters affects the spatial variability of estimated watershed per
area deliveries for total phosphorus. The estimated whole-
basin delivery of total phosphorus in 1999 was 6.7 6 2.1
tons and in 2006 was 15.0 6 4.1 tons.

3.4. Jack-Knife Model Evaluation

[42] While the time for space substitution allowed us to
parameterize the model, the spatial sampling intensity of
the calibration data set was admittedly low. To evaluate
whether our data contain sufficient information to impar-
tially draw inferences about the relative contribution of dif-
ferent source areas as well as the interplay between
temporal and spatial variability, we performed a jackknife
experiment in which the most parsimonious model realiza-
tion (MCMC - ksDYN - Pred1 - E1) was parameterized
against a set of data without the load measurements from
one of the six stations. The same exercise was repeated six
times, each time omitting a different station. Our hypothe-
sis was that if the calibration data set does not have enough

Figure 4. Scatterplots of random walk correction factor (vt), average annual flow, and large stream
attenuation (ks2) for total phosphorus. Calculations were carried out using the MCMC - ksDYN formulation
with the Pred1 climate forcing complexity.
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spatial detail, the parameter values should change signifi-
cantly when the data from any particular station are omit-
ted. This is of course subject to the caveat that we do not
learn how well the model performs in areas which are not
explicitly represented in the calibration data set, e.g., small
streams with drainage basins less than 25 km2, which
include headwater areas and areas along the shore of the
Harbor. The total phosphorus parameter posteriors were
fairly consistent across the moving window (Table 6). The
station omission realization with the least correspondence
to the posteriors obtained with the full data set is the one
without the headwater station for Spencer Creek (station 4),
which is the only headwater station of the entire study
catchment (Figure 1). The largest discrepancy of phospho-
rus export coefficients occurs when one of the two urban
stations is omitted (station 1).

[43] We also used the jackknife experiment to gauge the
strength of the space for time substitution. We wanted to as-
certain whether the model was able to reproduce the values
of the omitted stations. More specifically, from column 1 in

Table 6, we took the predictions of the (logged) load at sta-
tion 1. From column 2, we took the loads predicted at sta-
tion 2, and so on. These were used as the independent
variables in a regression with the measured (logged) loading
data. This regression was significant (p < 0.001, r2 ¼ 0.91,
slope ¼ 0.85). Even with less information in space, the
model is able to reasonably predict loads at locations not
used in calibration, provided those locations are comparable
to those included in the calibration data set.

4. Discussion
[44] In this paper, we presented a methodological frame-

work that aims to facilitate SPARROW application on
scales of relevance to local management and to study the
relative contribution of loading source areas over time. Our
analysis offers a new perspective into the SPARROW mod-
eling practice by shifting the focus toward an examination
of the interplay between time and space. We adopted a
repeated measures approach that enables the model to be

Figure 5. Scatterplots of yearly stream attenuation coefficient (ks1 refers to attenuation in first and
second-order streams, ks2 to attenuation in third and higher order streams) values Total Phosphorus
model against average streamflow. These results correspond to the MCMC - ksDYN formulation with the
Pred1 climate forcing complexity.
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parameterized in relatively small areas with comparatively
few monitoring sites, and subsequently examined two strat-
egies to accommodate temporal variability of the nutrient
loading estimates. The first approach (SWALLOW I)
assumes that the SPARROW model provides a time-invariant
baseline estimate of watershed loading, while weather-related
forcing factors describe the temporal variability. The second
one (SWALLOW II) assumes that the processes described by
the SPARROW model are dynamic and are further modu-
lated by temporal predictors. We integrated this framework
with Bayesian calibration schemes, founded upon informa-
tive prior parameter distributions and statistical formulations
that can explicitly consider the data uncertainty and/or the
temporal structure of model residuals. Our results show that
the SWALLOW framework is able to accommodate the
interannual variability of the nutrient loading estimates.
Importantly, the dynamic SWALLOW II approach appears
to effectively balance between performance and complexity.
We also found that the temporal changes of SPARROW
model parameters can be significant, thereby driving year-to-
year variability of model-estimated total phosphorus source

areas. The remainder of the discussion is structured to
address the factors comprising the study design (statistical
formulation and temporal predictors), the role of the spatial
sampling protocol, and a final section examines the plausibil-
ity of the model parameterization obtained.

4.1. Role of Statistical Formulations and Temporal
Predictors

[45] Previous research has considered time-varying pa-
rameters in the context of conceptual rainfall-runoff models
[e.g., Reichert and Mieleitner, 2009] as well as models of
other environmental systems (e.g., a managed pond, Lin
and Beck [2007]). While some of these efforts have signifi-
cantly improved our predictive capacity, the resulting time
series of parameter values does not always give clear ideas
about the structural model deficiencies. In this study, we
provided two pieces of evidence that corroborate the mech-
anistic basis of our time-varying stream attenuation coeffi-
cients. First, we showed that the annual stream attenuation
estimates of phosphorus are inversely proportional to the
error terms of our WALK formulation, suggesting that the

Figure 6. Time series plots of ks for the total phosphorus model. Black and gray lines refer to parame-
ters from the MCMC - ksDYN and MCMC formulation with the Pred1 climate forcing complexity. Dashed
lines indicate upper and lower limits of the 95% credible interval, solid lines indicate the medians of the
distributions.
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Figure 7. Spatial variability of total phosphorus delivered yield at the (top) watershed and (bottom)
reach scales. (left) Mean percent contribution of total load to the Harbor for all years per square kilome-
ter. (right) The coefficients of variability of mean percent contribution across years. These results corre-
spond to the MCMC - ksDYN formulation with the Pred1 climate forcing complexity.
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assumption of a static attenuation parameter may be re-
sponsible for much of the error variability [Sadraddini
et al., 2011a]. Second, consistent with empirical findings
and ecological theory [Stream Solute Workshop, 1990],
model estimated (log transformed) stream attenuation is
inversely proportional to the (log transformed) mean annual
flow. The latter finding may partly indicate that the values

of in-stream attenuation compensate for the structural inad-
equacy of the SWALLOW I model in describing the transfor-
mation of precipitation into runoff. Earlier work postulated a
resemblance between time-varying parameters and mean-
reverting statistical processes [Riechert and Mieleitner,
2009; Tomassini et al., 2009], whereas we here adopt a for-
mulation akin to that used in dynamic linear modeling

Figure 8. Spatial-temporal variability of total phosphorus delivered yield at the (top) watershed and
(bottom) reach scales. (left) The percent contribution of total load to the Harbor per square kilometer for
2006, the year with the lowest value of ks2. (right) The percent contribution of total load to the Harbor
per square kilometer for 1999, the year with the highest value of ks2. These results correspond to the
MCMC - ksDYN formulation with the Pred1 climate forcing complexity.
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[Sadraddini et al., 2011a, 2011b]. By contrast to a mean-
reverting process, intended to control the uncertainty of pos-
terior parameter values, our approach led to a minor broaden-
ing of the 95% credible intervals of the posterior distributions
of the dynamic parameters (Figure 6). Yet, our dynamic
approach represents a way to relax the assumption of statio-
narity that a mean-reverting process assumes, and therefore
depicts systematic trends that cannot be otherwise accommo-
dated, such as the effect of in-stream nutrient attenuation on
the interannual variability of the nutrient source areas of the
Harbor.

[46] Our study identified the total annual precipitation as
the key predictor variable to accommodate the interannual
variability of the total nutrient loading into Hamilton Harbor.
In particular, a preliminary exploratory analysis showed that
precipitation accounts for a substantial portion of the variabil-
ity of the log-transformed phosphorus loads of Redhill,
Grindstone, and Spencer Creeks (r2 ¼ 0.41, p < 0.001 for
phosphorus). Yet, should the SWALLOW model be applied
elsewhere, we recommend that a variety of temporal predic-
tors be examined. In urban areas, predictors related to popula-
tion or population density could augment the land cover data
typically used to infer impervious surface cover. Categorical
variables related to local management practices, such as
upgrades to storm water management systems or passage of
stricter land use controls in agricultural systems, could also
be incorporated to model their effects on watershed function-
ing. Further, if the SWALLOW framework is applied to
broader spatial scales, the spatial variability of the temporal
predictors may also need to be taken into account, i.e., our W
matrix could vary in space as well as in time and each entry
would correspond to the value of a predictor at a specific sub-
watershed or reach for a particular year.

4.2. Role of Watershed Spatial Sampling Protocol on
the Model Parameterization

[47] The modeling of phosphorus was resilient to the sta-
tion omissions of the jackknife experiment. By far the
greatest discrepancy occurred when station 4 was omitted,
which was the only nonurban station draining a predomi-
nantly headwater catchment. Station 4 also drains the sub-
watershed with the largest density of wetlands, so it is no
surprise that the delivery coefficient and the small-stream
attenuation parameter vary the most with respect to the full

data set when station 4 is omitted. Also surprisingly, the
jackknife experiment showed that when information from
one station is omitted, the model is able to reasonably
reproduce the posterior median loads from the omitted sta-
tions. In other words, the model is able to borrow enough
strength from the included sites to model the load at the
omitted site. It is not clear that this would be the case if
more than one station were to be omitted, but this result
does bolster the strength of the argument that the informa-
tion in space we have is able to produce some (albeit uncer-
tain) inference. Of course, the loads at the ‘‘missing
stations’’ as estimated by the model when calibrated to only
five stations are subject to more uncertainty than when the
same loads are estimated over the entire data set. The aver-
age value of the posterior standard deviation of the log-
transformed loads was 0.11, while for the loads estimated
by the model calibrated to only five stations of data it was
0.14. Another caveat of the present exercise is that we were
not able to condition model parameterization upon areas not
explicitly represented in the calibration data set, such as
small streams with drainage basins less than 25 km2, which
include many headwater areas and areas along the shore of
the Harbor.

4.3. Plausibility of the Parameterization

[48] We compare the understanding of the functioning of
the Hamilton Harbor watershed obtained from our model-
ing work with results from the SPARROW literature as
well as other empirical evidence from the study area. This
comparison will allow us to gauge the plausibility of the
model parameterization, while enriching our understanding
of the functioning of this site of intense management inter-
est. Our model parameterization suggests that agricultural
land uses result in higher phosphorus export than urban
land uses. This is consistent with some previous SPAR-
ROW studies [Moore et al., 2004] and empirical work
[Law et al., 2004; Soldat and Petrovic, 2008; Soldat et al.,
2009]. However, other SPARROW applications [Alexander
et al., 2004; Garc�ıa et al., 2011] and empirical literature
[Beaulac and Reckhow, 1982] have found the opposite –
urban land exports more phosphorus than agricultural land.
Some studies in Southern Ontario tend to agree with the lat-
ter assertion [e.g., Winter and Duthie, 2000]. Both agricul-
tural and urban nutrient export fluxes are highly variable

Table 6. Jackknife Experiment-Markov Chain Monte Carlo Estimates of the MCMC - ksDYN Formulation With the Pred1 Climate Forc-
ing Complexity Parameterized With Total Phosphorus Dataa

Parameters

Station Omitted

0 1 2 3 4 5 6

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

� 9.23 1.32 8.33 1.14 8.74 1.21 9.72 1.50 6.12 2.18 9.04 1.47 9.40 1.27
�1 0.13 0.02 0.14 0.02 0.13 0.02 0.12 0.02 0.09 0.02 0.13 0.02 0.13 0.02
�2 0.06 0.02 0.06 0.02 0.08 0.03 0.05 0.02 0.05 0.01 0.06 0.02 0.06 0.02
kr 15.39 3.65 15.97 3.79 15.84 3.69 15.43 3.65 10.90 3.14 13.95 3.99 16.32 4.96
ks1 0.13 0.07 0.18 0.10 0.15 0.08 0.10 0.07 0.07 0.05 0.12 0.08 0.11 0.07
ks2 0.03 0.01 0.02 0.01 0.03 0.01 0.03 0.02 0.03 0.01 0.03 0.02 0.03 0.02
�1 0.29 0.08 0.30 0.09 0.29 0.08 0.30 0.07 0.29 0.06 0.27 0.08 0.26 0.08
� 0.03 0.01 0.03 0.01 0.04 0.01 0.04 0.01 0.04 0.01 0.04 0.02 0.04 0.02
ks1� 0.71 0.01 0.71 0.01 0.71 0.01 0.71 0.01 0.71 0.01 0.71 0.01 0.71 0.01
ks2� 1.00 0.02 1.00 0.02 1.00 0.03 1.00 0.02 1.00 0.02 1.00 0.02 1.00 0.02

aEach column indicates which station was omitted. The first column is taken from Table 4 and is intended for comparison purposes.
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and contingent upon a number of regulatory factors, includ-
ing soil type, urban storm water management, agricultural
intensity and conservation practices [Beaulac and Reck-
how, 1982]. Our estimates of urban phosphorus export are
slightly higher than estimates obtained from the Great
Lakes region in the United States [Robertson and Saad,
2011], but comparable to those from the American South-
east [Garc�ıa et al., 2011].

[49] Following empirical work, previous SPARROW
applications have generally used soil parameters as delivery
variables for phosphorus [Beaulac and Reckhow, 1982].
Wetlands have been shown to attenuate the loadings of
phosphorus through processes such as particle settling, deni-
trification, and biotic uptake [Reddy et al., 1999; Krieger,
2003], but have not been explicitly included in SPARROW
models as a delivery factor. While some SPARROW model
applications have considered soil properties that would im-
plicitly address wetlands, such as soil organic matter and
soil pH [Garc�ıa et al., 2011], these factors would describe
delivery from both wetland and upland areas and may not
reflect processes unique to wetlands [Reddy et al., 1999;
Krieger 2003]. Working in the Laurentian Great Lakes,
Robertson and Saad [2011] included a land use class
intended to describe phosphorus from background sources,
into which they combined wetlands, forest and scrubland.
Our present results suggest that wetlands do not necessarily
act as a source but may also as a sink for phosphorus at the
landscape scale. In this regard, one of the lessons learned
from our analysis is that SPARROW applications should
consider wetland coverage as a candidate delivery variable.

[50] While we did not allow reservoir attenuation proc-
esses to vary through time, they were nonetheless an impor-
tant aspect of the spatial variability of phosphorus delivery
to the Harbor. The posterior mean settling velocity (kr) for
total phosphorus was about 15.4 m yr�1 with a 95% credi-
ble interval of 9.2–23.4 m yr�1. The total phosphorus set-
tling velocity is close to that of 14.3 m yr�1 obtained by
Alexander et al. [2004] for the continental United States,
but substantially greater than the value of 4.8 m yr�1

obtained by Robertson and Saad [2011] for the United
States’ Laurentian Great Lakes and Midwest. Notably, empir-
ical research conducted in Cootes Paradise, a coastal wetland
draining about half of Hamilton Harbor’s basin, corroborates
our phosphorus settling velocity results. Prescott and Tsanis
[1997] review the net settling velocity estimates for Cootes
Paradise and report values ranging from 10 to 16 m yr�1. We
used our posterior settling velocities to estimate 95% credible
intervals for the retention of phosphorus for Cootes Paradise.
Total phosphorus retention ranged from 16% to 36%, with a
median of 25%. These values are in agreement with those
reported by Krieger [2003] for a coastal wetland in the Lake
Erie basin. This implies that Cootes Paradise plays a major
part in reducing nutrient loading to Hamilton Harbor and, not
surprisingly, the water quality in Cootes Paradise itself is
degraded [Prescott and Tsanis, 1997].

[51] The posterior means of small-stream phosphorus
attenuation were somewhat lower than previous SPARROW
work in New Zealand [Alexander et al., 2002], but nonethe-
less reasonably commensurate. Although our separation of
stream classes was based on Strahler’s [1952] stream order
and not the discharge or travel time, our results are consist-
ent with other SPARROW studies in that the values of small

stream attenuation (ks1) were smaller than those for large
stream attenuation (ks2), reflecting the higher attenuation
rates of smaller streams [Stream Solute Workshop, 1990;
Alexander et al., 2002, Figure 7]. It should again be stressed
that our database is deficient in headwater sampling sites, so
our estimates of small-stream attenuation and its variation in
time are subject to substantial uncertainty. Nonetheless, the
SWALLOW II framework is a promising one for accommo-
dating interannual variability into SPARROW models.

[52] Estimated large stream attenuation coefficients proved
to be quite variable in time for most statistical formulations.
The mechanisms that modulate the variability of nutrient
attenuation across stream size are fairly well established in
the literature. They generally refer to the tighter coupling of
smaller streams with their streambeds, whereby biological
and chemical removal processes in the sediments have
greater access to the nutrients in the water column [Stream
Solute Workshop, 1990; Alexander et al., 2002; Alexander
et al., 2004]. The longer hydraulic residence time of smaller
streams also allows these processes to operate for longer
times. Recent work suggests that stream stage explains the
interannual variation of nutrient attenuation at a particular
site over time [Basu et al., 2011], implying that the coupling
between the streambed and water column changes from year
to year. Consistent with Basu et al.’s [2011] findings, we
here show that the interannual variability of the average dis-
charge, a function of stream stage, can explain more than
half of the variability of stream attenuation estimates from
the SPARROW model.

[53] An interesting implication of this study is that for
Hamilton Harbor’s basin, the interannual variability of the
contribution of phosphorus source areas may be strongly
affected by the capacity of stream reaches to attenuate nu-
trient loads (Figure 8). Empirical studies of nutrient uptake
in rivers indicate significant variability of nutrient attenua-
tion rates at annual timescales for phosphorus [Doyle et al.,
2003] and nitrogen [Claessens et al., 2009]. Donner et al.
[2004] found that nutrient attenuation rates varied nearly
two-fold between wet and dry years in the Mississippi
River, with wet years exhibiting lower attenuation. Basu
et al. [2011] also showed an inverse relationship between
stream stage and nutrient attenuation that was consistently
manifested across spatial and temporal scales. This finding
implies that fluctuations in stage (and discharge) may indeed
affect the spatial location of significant nutrient source areas
at a variety of scales and is not an artifact of the present anal-
ysis. While previous research has documented the variability
of in-stream attenuation at annual timescales, the SWAL-
LOW framework allows us to estimate how this variability
impacts basin-scale nutrient source areas.

[54] In conclusion, SPARROW is a spatially distributed,
empirical model that can be used to identify areas of unusually
high delivery of nutrient loads to water bodies and prioritize
the allocation of scarce management resources accordingly.
Yet, nutrient loads, source/sink processes, and source areas
are subjected to significant interannual variability, and thus a
temporally static approach can oversimplify the broad range
of dynamics typically experienced in a watershed context. As
an alternative to employing complex, process-based models to
understand the mechanisms of this variability, our SWAL-
LOW modeling framework offers a parsimonious representa-
tion of watershed functioning through time that builds upon
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the SPARROW foundation. Consistent with empirical and
theoretical work, our model parameterization suggests that in-
stream attenuation rates varied inversely with streamflow,
which also affects the location of nutrient source areas. While
we found little support for the use of time-varying export coef-
ficients and stream attenuation coefficients, it is most likely
that nutrient export and delivery to streams varies at annual
timescales as well as in-stream attenuation processes. The
SWALLOW II framework we present in this paper is a prom-
ising approach to arrive at a balanced depiction of the interac-
tion of nutrient export, landscape delivery, attenuation, and
climate when applied to larger datasets. By quantifying the
interannual variability of nutrient delivery to the receiving
water body, we believe that the modeling framework proposed
can meaningfully assist long-term watershed management
planning. The Bayesian nature of our approach allows the esti-
mation of critical nutrient loads that could result in acceptable
probabilities of compliance with different water quality crite-
ria, while accounting for the different sources of uncertainty
(model structure imperfection, measurement error, model
input uncertainty) as well as natural system variability.

[55] On a final note, we believe that models are a worth-
while scientific activity and a sound basis for the policy-
making process only if the underlying assumptions are
acknowledged and impartially communicated [Zhang and
Arhonditsis, 2008]. For example, our jackknife experiment
showed that the watershed sampling protocol is deficient in
headwater sampling sites. Model development is a
dynamic, iterative process similar to the policy practice of
adaptive management. The model parameterization/struc-
ture can be sequentially refined as new knowledge is
obtained from the system, and this gradual model evolution
should provide the basis for revised (and improved) man-
agement actions.
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1) CALCULATION OF POTENTIAL EVAPOTRANSPIRATION 

1: Master Equation: We employed the Food & Agriculture Organization (FAO) implementation of the 

Penman-Monteith approach [Allen et al., 1998] to calculate daily evapotranspration from a reference 

surface with properties similar to an extended area of actively-growing, well-watered, green grass of 

uniform height, that is, a height of 0.12 m, a surface resistance of 70 s m
-1

, and an albedo of 0.23: 
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where ET0 is the reference evapotranspiration (mm day
-1

), Rn is the net radiation at the vegetative 

surface (MJ m
-2

 day
-1

), G is the soil heat flux density (MJ m
-2

 day
-1

), T is the mean daily air 

temperature at 2 m height (°C), u2 is the wind speed at 2 m height (m s
-1

), es is the saturation vapor 

pressure (kPa), ea is the actual vapor pressure (kPa), Δ is the slope of the vapor pressure curve (kPa  

°C
-1

), and γ is the psychrometric constant (kPa °C
-1

). 

2: Non-radiation terms: This subsection deals with the terms of ESM 1 unconnected with Rn and G. 

These latter two terms are significantly more complex and are dealt with in subsection 3. 

2.1: Psychrometric Constant and Slope of the Vapor Pressure Curve: We assumed the psychrometric 

constant is a function of pressure: 

P
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 which in turn was calculated as a function of elevation above sea level: 
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where cp refers to the specific heat of air at a constant pressure (1.013 10
-3

 MJ kg
-1

 °C
-1

), P refers to 

atmospheric pressure (kPa), ε is the ratio of molecular weight of water vapor to dry air (0.622), λ refers 

to the latent heat of vaporization of water (2.45 MJ kg
-1

), and z refers to height above sea level (m). 



The slope of the saturation vapor pressure curve (Δ) was calculated as a function of daily mean 

air temperature T (°C): 
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2.2: Daily Air Temperatures: Mean daily air temperatures (°C) were calculated as the average between 

the maximum and the minimum daily temperatures: 

2
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2.3: Vapor Pressure Terms: The saturation vapor pressure refers to the partial vapor pressure of water 

in air at which the rates of condensation and evaporation are equal, a measurement of the capacity of a 

parcel of air to ‘hold’ water vapor. It is a function of temperature alone:   
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where e°(T) refers to the saturation vapor pressure at the air temperature T (kPa, °C). 

The saturation vapor pressure was calculated using the daily maximum and minimum air 

temperatures to correct for the non-linear response of saturation vapor pressure to air temperature: 

2

)()( minmax TeTe
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where e°(T) refers to the saturation vapor pressure at the air temperature T (kPa °C), and es refers to the 

daily saturation vapor pressure. 

The actual vapor pressure (ea), which refers to the partial pressure of the water vapor in the air 

at any one time, was derived from relative humidity data: 
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where RHmax and RHmin are the daily relative maximum and mimimum relative humidity, respectively, 

in percent, and Tmax and Tmin are the daily maximum and minimum temperature (°C), respectively. 

2.4: Wind Speed: We transformed the wind speeds measured at Environment Canada's Hamilton 

Airport station (Climate ID: 6153194; WMO ID: 71263) at 10 m from the surface to wind speed 

estimates at 2 meters from the surface using the following equation: 
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where z refers to the height above the surface of the wind measurements (10 m).  

3: Radiation terms: This subsection offers the details of the calculation of Rn, the net radiation at the 

crop surface (MJ m
-2

 day
-1

). Our radiation calculations assumed that the effects of the net daily flux of 

radiation into the soil (G) were negligible, a defensible assumption when constructing an annual time 

series.  

3.1: Net Radiation (Rn): We estimated Rn as the difference between incoming net shortwave radiation 

(Rns, MJ m
-2

 day
-1

) and the outgoing net longwave radiation (Rnl, MJ m
-2

 day
-1

): 

nlnsn RRR                                                           (ESM 10) 

3.2: Net Incoming Shortwave Radiation: The term Rns is an estimate of the amount of shortwave 

radiation absorbed by the surface assuming a fraction is reflected back into space. This fraction is a 

function of the surface albedo (α), assumed to be 0.23 for the grass reference crop: 

sns RR )1(                                                         (ESM 11) 

where Rs refers to the incoming solar radiation (MJ m
-2

 day
-1

), which was estimated using Hargreaves’ 

radiation formula:  

aRs RTTkR
s

)( minmax                                                (ESM 12) 



where Ra refers to the extraterrestrial radiation (MJ m
-2

 day
-1

), Tmax and Tmin refer to the daily maximum 

and minimum air temperature (°C), and kRs is an adjustment coefficient. The adjustment coefficient 

differs for coastal and interior regions. Values in the vicinity of 0.16 are suggested for continental 

regions, while values close to 0.19 are suggested for maritime areas. Hamilton’s climate is influenced 

by its proximity to the Great Lakes, so we used a value of 0.18, assuming near-maritime conditions. 

3.3: Extraterrestrial Radiation: We calculated Ra, the solar radiation at the top of the atmosphere, as: 

 )cos()cos()cos()sin()sin(
)60(24
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where Gsc refers to the solar constant (0.082 MJ m
-2

min
-1

), dr refers to the inverse relative earth-sun 

distance, ωs refers to the sunset hour ansgle, δ refers to the solar decimation, and φ refers to the site 

latitude (43.171687 decimal degrees) expressed in radians (0.753488 radians). 

We calculated the inverse relative earth-sun distance (dr) as: 
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where J refers to the day of the year (1 – 365). The sunset hour angle, ωs, was calculated as: 

                                            )tan()tan(arccos  s                                                   (ESM 15) 

and the solar decimation (δ) as: 
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3.4: Net Outgoing Radiaiton: We calculated Rnl, the net outgoing longwave radiation (MJ m
-2

 day
-1

), as  
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where σ refers to the Stefan-Boltzmann constant (4.903 10
-9

 MJ K
-4

 m
-2

 day
-1

), Tmax,K and Tmin,K refer to 

the maximum and minimum daily temperatures (degrees Kelvin), ea refers to the actual vapor pressure 

(kPa), Rs refers to the solar radiation (MJ m
-2

 day
-1

), and Rso refers to the clear sky radiation (MJ m
-2

 

day
-1

), calculated as: 

  aso RzR 510275.0                                                    (ESM 18) 



where z refers to the station elevation above sea level (237.7 m). 



2) SPATIAL DATA 

      2.1 Topography: The delineation of subwatersheds and reach catchments is done using a digital 

elevation model (DEM). A stream-corrected 10 m cell size DEM generated through the application of 

photogrammetric methods was used for this purpose (Ontario Ministry of Natural Resources, Greater 

Toronto Area Digital Elevation Model). Water quality monitoring stations were used as the discharge 

point for the subwatersheds. Our calibration dataset consisted of 6 subwatersheds. Their areas ranged 

from 25.5 – 75.8 km
2
, with a mean of 49.3 km

2 
and a standard deviation of 24.1 km

2
. The Water 

Survey of Canada maintains a series of stream gauging stations which were used to develop a 

discharge-area (DA) model for the basin [Viessman and Lewis, 2002]. All flows on record from all the 

Water Survey of Canada stations in the basin were used (Water Survey of Canada, 2011, available 

from http://www.wsc.ec.gc.ca/applications/H2O/). The DA model related the mean total yearly flow 

(m
3
yr

-1
, Flow) to the subwatershed area (km

2
, Area) with the following equation: 

Flow = 390431×Area – 2393505 (r
2
 = 0.93, n = 9)                          (ESM 19) 

     2.2 Streams, Lakes, and Reservoirs: Geographic Information System (GIS) layer files for streams, 

lakes, and reservoirs were obtained in two layers digitized from Natural Resource Canada’s National 

Topographic System of maps. The 1:50,000 scale map series was used as the source of the dataset. To 

avoid the proliferation of miniscule reach catchments, we imposed a minimum reach catchment area of 

10,000 m
2
 as well as a minimum stream reach length of 750 m for consideration in the model. While 

the National Hydrographic Dataset of the United States (NHD) generally contains reaches greater than 

1 mile (1600 m) in length, we opted for a lower bound of 750 m due to the finer scale of our study as 

compared to the NHD’s national scope (United States Geological Survey, National Hydrography 

Dataset: Concepts and Contents, available from nhd.usgs.gov). The final stream layer has a mean 

length of 2.4 km and an interquartile range of 3.2-1.2=2.0 km. There are a total of 118 reach 



catchments, and each reach catchment discharges into a confluence, reservoir, or water quality 

monitoring station. Reach catchment areas ranged from 0.02 – 12.3 km
2
, with a mean of 2.5 km

2
 and 

an interquartile range of 3.5-1.3=2.2 km
2
. We imposed two criteria that a reservoir had to fulfill in 

order to be included in the model. First, it had to have a minimum area of 4.05 ha, the threshold for 

inclusion in the NHD (United States Geological Survey, National Hydrography Dataset: Concepts and 

Contents, available from nhd.usgs.gov). Second, it had to drain an area of at least 500 ha. This was 

roughly the x-intercept of Equation 6, and represented the limit of our confidence in its application. 

Aerial hydraulic loads were calculated as the ratio of the mean total yearly flow to the reservoir area. 

Four reservoirs were used during the parameter estimation of the SPARROW model. 

     2.3 Nutrient Sources: Both point and non-point nutrient sources were included in the SPARROW 

model of Hamilton Harbour. While there is a combined sewer overflow (CSO) outfall upstream of the 

most downstream monitoring station of Redhill Creek, no information was available regarding the 

CSO loadings there, and so these loadings were accounted for implicitly by the model 

parameterization. We also explicitly considered the Waterdown Waste Water Treatment Plant 

(WWTP), a small water treatment plant which discharged into a tributary of Grindstone Creek during 

the study period. The mean loading for this plant between 1996 and 2007 was 0.3 tons of phosphorus 

per year, with an interquartile range of 0.4-0.2=0.2 tons per year (Hamilton Harbour Remedial Action 

Plan Technical Team, Contaminant Loadings and Concentrations to Hamilton Harbour: 2003-2007 

Update, Hamilton Harbour Remedial Action Plan Office, Burlington, Ontario, Canada).  

     The non-point sources of total phosphorus were limited to agricultural and urban land, which 

included paved areas and urban green space. These two land use types were selected because they have 

been found to be by far the greatest sources of nitrogen and phosphorus to receiving waters at the 

landscape scale [Beaulac and Reckhow, 1982; Alexander et al., 2004] and because they together 



comprise about 80% of the study area. Land uses were derived from a supervised classification of 

satellite imagery from 2002 (SOLRIS, Ontario Ministry of Natural Resources, 2008, available from 

http://lioapp.lrc.gov.on.ca). Total agricultural and urban areas were estimated for each reach using GIS 

overlay analysis.  

     2.4 Landscape Characteristics: Landscape characteristics can influence the delivery of phosphorus 

to stream edges. While most SPARROW applications have focused on soil properties as controlling 

delivery factors, we found during preliminary model applications that soil properties were not an 

effective way to parameterize phosphorus delivery. Nutrient delivery was parameterized as a function 

of the proportion of each reach covered by wetlands, due to their role in moderating nutrient fluxes to 

receiving waterbodies [Krieger, 2003]. Wetlands were included in the Southern Ontario Land 

Resource Information System (SOLRIS, Ontario Ministry of Natural Resources, 2008, available from 

http://lioapp.lrc.gov.on.ca). The proportion of wetlands covering each reach was estimated using GIS 

overlay analysis. Proportions of wetland ranged from 0 to 1 with a mean of 0.06 and an interquartile 

range of 0.06 – 0=0.06. 
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3) TABLES AND FIGURES 

Table ESM3.1: Prior parameter distributions for all models. 

Parameter Median Standard Deviation Shape Source 

α 0 3.17 Normal - 

β1 0.07 1.25 Log normal Beaulac and Reckhow, (1982) 

β2 0.10 3.5 Log normal Beaulac and Reckhow, (1982) 

kr 12.84 4.76 Log normal 
Cheng et al., (2010) and 

reference therein 

ks1 0.22 0.23 Log normal - 

ks2 0.05 0.1 Log normal - 

γv 0 31.62 Normal - 



 

Table ESM3.2: Root Mean Squared Error (RMSE) values for all statistical formulations 

used to model total phosphorus loading. Pred0 refers to the sole use of SPARROW to 

accommodate interannual loading variability; Pred1 refers to the use of SPARROW along 

with the total annual precipitation; Pred2 refers to the use of SPARROW along with the 

total precipitation and the total annual potential evapotranspiration. 

Formulation   Pred 0 Pred 1 Pred 2 

MCMC  - 0.26 0.26 

WALK  - 0.14 0.14 

MCMC - αDYN  0.28 0.23 0.23 

MCMC - βDYN  0.10 0.10 0.10 

MCMC - ksDYN  0.14 0.14 0.15 

MCMC - β,ksDYN  0.11 0.11 0.11 

 



Table ESM3.3: Weighted Root Mean Squared Error (WRMSE) values for all statistical 

formulations used to model total phosphorus loading. Pred0 refers to the sole use of 

SPARROW to accommodate interannual loading variability; Pred1 refers to the use of 

SPARROW along with the total annual precipitation; Pred2 refers to the use of SPARROW 

along with the total precipitation and the total annual potential evapotranspiration. 

Formulation Pred 0 Pred 1 Pred 2 

MCMC - 0.25 0.24 

WALK - 0.09 0.09 

MCMC - αDYN 0.23 0.19 0.18 

MCMC - βDYN 0.08 0.07 0.07 

MCMC - ksDYN 0.07 0.08 0.08 

MCMC - β,ksDYN 0.05 0.05 0.05 

 

 

Figure ESM 3.1: Coefficient of variability (CV) associated with the loadings from different 

Creeks. CVs were calculated as 1)exp( 2  CV  [Limpert et al., 2001]. 

 
 

Figure ESM 3.2: Quantile-quantile plot residuals of measured from estimated ‘true’ load 

( titi LoadY ,,  , see Equation 7) for MCMC-Pred1. Grey lines indicate 95% credible intervals. 



 
Figure ESM 3.3: Quantile-quantile plot of residuals of ‘true’ from modeled load 

( vtvtiti WLoad  ,,,  , see Equation 8) for MCMC-Pred1. Grey lines indicate 95% credible 

intervals. 

 



Figure ESM 3.4: Quantile-quantile plot of residuals of measured from estimated ‘true’ load 

( titi LoadY ,,  , see Equation 7) for MCMC - ksDYN formulation with the Pred1 climate forcing 

complexity. Grey lines indicate 95% credible intervals. 

 
Figure ESM 3.5: Quantile-quantile plot of residuals of ‘true’ from modeled load 

( vtvtiti WLoad  ,,,  , see Equation 8) for MCMC - ksDYN formulation with the Pred1 climate 

forcing complexity. Grey lines indicate 95% credible intervals. 
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