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Whenexamining environmental levels of organic contaminants,muchof our focus has been placed onfish due to
their greater potential to bioaccumulate and their direct linkagewith humanas a staple of their diet. Contaminant
levels in Great Lakes fish communities have been closely monitored over the last few decades, and the resulting
information has been indispensable in guiding consumption advisories. In this study, we first conducted
an analysis of temporal trends of three organochlorines (hexachlorobenzene, octachlorostyrene, and α-
hexachlorocyclohexane) infive Lake Erie fish species using dynamic linearmodeling,while explicitly considering
fish length and lipid content as covariates. Our results indicate that the levels of the three compounds have been
steadily decreasing during the late 1970s to 2007, although therewere instances inwhich the fish organochlorine
contents exhibited fluctuations through time. The second part of our analysis focused on the development of a
Bayesian framework to update fish consumption advisories. We present a methodology that incorporates the
uncertainty in contaminant predictions and the natural variability in fish length and lipid content, while
remaining flexible for different human weights and diet patterns. We then illustrate our Bayesian framework for
two important contaminants in the Great Lakes region, mercury and PCBs. We established thresholds for each con-
taminant based on the tolerable daily intake (TDI) values and made predictive statements about the probability of
exceedance of these critical levels. Our study also discusses how failure to account for model uncertainty/error
can have profound implications for the credibility of the predictive risk assessment statements derived. The pro-
posed Bayesian approach to fish consumption advisories can serve as a valuable framework for year-specific, highly
customizable risk assessment statements that also account for the inherent variability in natural systems.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The ecological health of the Laurentian Great Lakes declined during
the 20th century as a result of extensive anthropogenic activities, lead-
ing to issues such as impairment of the resilience of native fish
communities, widespread eutrophication, and the ubiquitous presence
of toxic chemicals (Johnson et al., 1999). The highly populated and
industrialized nature of the surrounding watersheds combined with
the long residence times of the receiving waterbodies made the Great
Lakes highly susceptible to anthropogenic disturbances (DeVault et al.,
1996; Johnson et al., 1999). Growing concerns about the deteriorating
quality of the system led to the ratification of the cross-border Great
Lakes Water Quality Agreement in 1972 (revised in 1978), aiming to
restore the “integrity of the waters,” especially through the reduction
of harmful contaminants (IJC, 1978; Johnson et al., 1999). Even though
the curtailment of external emissions generally led to pollutant declines,
the persistent nature of contaminants was translated into lingering
1 416 287 7279.
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concentrations within the aquatic food web, particularly in top preda-
tors (Bhavsar et al., 2007, 2008; Carlson et al., 2010).

Fish communities have historically been used as ecosystem
health indicators, given their trophic position in aquatic food webs
and their critical link to human consumers (Bentzen et al., 1999).
Since the 1970s, contaminant levels in fish have been routinely
monitored in the Great Lakes, with the resulting information being
used to determine fish consumption advisories (e.g., Bhavsar
et al., 2011; OMOE, 2011). However, despite the valuable insights
gained into contaminant dynamics through the extensive datasets
developed, many studies fail to consider important causal factors
that can influence the perceived spatiotemporal trends, such as
fish age, size, trophic level, growth and lipid content (Sadraddini
et al., 2011a, 2011b; Stow et al., 1997). Variations across monitoring
programs in the type of sampling procedures and the different
statistical methods used may also impede the robust assessment
of contaminant trends (Bhavsar et al., 2007, 2010; Carlson et al.,
2010). It is thus essential to strive for more flexible statistical frame-
works when undertaking such retrospective analyses, in order to
ascertain that the actual contaminant trends are being revealed.
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To this end, a central feature of recentwork in Lake Eriewas the adop-
tion of Bayesian inference techniques as a means for critically assessing
spatiotemporal contaminant trends in fish communities over the last
four decades (Azim et al., 2011a, 2011b; Sadraddini et al., 2011a,
2011b). The advantage of the Bayesian approach when addressing
ecological questions primarily stems from its ability to explicitly accom-
modate model structural and parametric uncertainty (Arhonditsis et al.,
2007; Dorazio and Johnson, 2003; Ellison, 1996, 2004; Sommerfreund
et al., 2010). In particular, temporal trends of total mercury (THg) in
Lake Erie fish were first evaluated using Bayesian configurations of the
single exponential, double exponential, and mixed-order decay models
to assess the presence and magnitude of statistically significant THg
trends (Azim et al., 2011a). This analysis revealed instances of species-
specific increase in THg concentrations in recent years, suggesting a caus-
al association with the changes in the trophodynamics induced by the
invasion of round gobies and dreissenid mussels into the system. A simi-
lar study on the polychlorinated biphenyl (PCB) concentrations using
exponential decaymodels indicated nearlymonotonic declining or some-
times stabilizing trends across the study period, with the main exception
being the recent rise in the walleye PCB levels (Sadraddini et al., 2011a).
To discernwhether these walleye trends are still manifested if we explic-
itly account for fish length as a covariate, a follow-up study by Sadraddini
et al. (2011b) utilized a dynamic linear modeling (DLM) analysis. It was
found that the increasing walleye trend disappeared when using
length-corrected predictions, andwas thus a reflection of the biases intro-
duced by the local sampling procedures (Sadraddini et al., 2011b). These
results reinforce the necessity of accounting for potentially important
causal factors when conducting trend analyses, and also highlight the
usefulness of DLMs as robust hindcasting tools.

In this study, we present a two-pronged Bayesian DLM approach
to address the issue of lingering contaminants in fish and their potential
impacts on human consumers. In the first step, we complete our
modeling work in Lake Erie by examining temporal contaminant trends
of three organochlorines: 1) hexachlorobenzene, a persistent and bio-
accumulative pesticide that severely impacts humans and wildlife
(ATSDR, 2002); 2) octachlorostyrene, a persistent by-product of
industrial processes (CGLI, 1999; Norheim and Roald, 1985); and
3) α-hexachlorocyclohexane (α-HCH), a dominant congener in
the banned pesticide technical-HCH (ATSDR, 2005). The second part
of this paper aims to broaden our scope and cohesively link together
the entire body of thework conducted in Lake Erie to date; our attention
is shifted towards relating the derived spatiotemporal contaminant
trends to the application of fish consumption advisories. The task of
establishing a general framework for fish consumption advisories is a
challenging process, given the wide array of both known and unknown
factors that can conceivably shape the detected contaminant trends.We
also emphasize the issue ofmodel uncertainty that has been profoundly
neglected by various fish consumption advisory frameworks. In this
regard, we propose a Bayesian DLM strategy that is suitable to explicitly
account for all sources of uncertainty, such as model adequacy,
parametric uncertainty as well as sampling bias and variability in fish
characteristics. In this study, we illustrate the capacity of the proposed
approach to develop comprehensive advisories by generating customiz-
able risk statements of the probability of exceedance of critical THg and
PCB levels in the human body through the consumption of fish of differ-
ent lengths and lipid contents.

2. Methods

2.1. Organochlorine trends in Lake Erie fish

Our study used fish contaminant data from the Ontario Ministry of
the Environment (OMOE) Sport Fish ContaminantMonitoring Program,
which routinely collects samples of a wide range of fish species and an-
alyzes contaminant levels mainly in the dorsal skinless–boneless filet
(SBF) portions. This information is then used to guide biennial fish
consumption advisories. In our analysis, we selected fish species based
on data availability and/or the species' commercial importance. For
each contaminant, we examined five fish species: channel catfish
(Ictalurus punctatus), common carp (Cyprinus carpio), coho salmon
(Oncorhynchus kisutch), rainbow trout (Oncorhynchus mykiss) and
white bass (Morone chrysops). All samples were collected from various
locations on the Canadian side of Lake Erie and correspond to a time
span of approximately three decades (1976–2007). The collected
samples were analyzed at the OMOE Toronto laboratories, where their
organochlorine concentrations were determined through gas liquid
chromatography-electron capture detection (GLC-ECD), in accordance
with OMOE method PFAOC-E3136 (see OMOE, 2007).

2.1.1. Modeling framework
We developed a series of DLMs to examine temporal trends of the

three organochlorine compounds. We explicitly account for the fact
thatfish length and lipid content typically co-varywith the contaminant
concentrations and that fish of different sizes and lipid compositions
may have been sampled over time (Gewurtz et al., 2011a,b). To com-
pare the relative influence of each of these covariates, we ran the
DLMs for each congener-fish species combination a total of four times:
without any covariates (“random walk”), using the fish length or lipid
content alone or both fish length and lipid content as covariates. We
thus ran a total of 60 models (5 fish species × 3 compounds × 4 covar-
iate combinations) over the course of this study. Unlike static regression
models that have fixed parameters, DLMs have an evolving structure
that allows parameters to shift through time (Lamon et al., 1998). This
“dynamic” feature allows our models to more accurately reflect the
intra- and inter-annual variability of theunderlying ecological processes
and the level of the response variable. An important property of these
models is the explicit recognition of structure in the time series; there
is a sequential ordering of the data and at each time step, the level of
the response variable is related to its level at earlier time steps
(Lamon et al., 1998;West and Harrison, 1989). DLM posterior estimates
are influenced only by prior and current information (not subsequent
data), which is another distinct feature relative to traditional regression
analyses (Azim et al., 2011b). Furthermore, DLMs minimize the impact
of outliers and easily handle missing values or unequally spaced data.
Parameters in these models are time-specific, but are also related to
one another stochastically by virtue of an error term (Pole et al., 1994).

The main components of any DLM are an observation equation
and subsequent system equations. For the sake of brevity, we outline
the model for hexachlorobenzene that considers both fish length and
lipid content as covariates:

Observation equation:

ln HCB½ �ti ¼ levelt þ βt1 ln length½ �ti þ βt2 ln lipid½ �ti þ ψti ψti eN 0;Ψt½ � ð1Þ

System equations:

levelt ¼ levelt−1 þ ratet þωt1 ωt1 eN 0;Ωt1½ � ð2Þ

ratet ¼ ratet−1 þωt2 ωt2 eN 0;Ωt2½ � ð3Þ

βt1 ¼ βt1−1 þωt3 ωt3 eN 0;Ωt3½ � ð4Þ

βt2 ¼ βt2−1 þωt4 ωt4 eN 0;Ωt4½ � ð5Þ

1=Ω2
tj ¼ ζ t−1 �1=Ω2

1 j; 1=Ψ2
t ¼ ζ t−1·1=Ψ2

1 tN1 and j ¼ 1 to 4
level1; rate1; β1 eN 0;10000ð Þ t ¼ 1
1=Ω2

1 j; 1=Ψ2
1 e G 0:001;0:001ð Þ

ð6Þ

where ln[HCB]ti is the observed HCB concentration at time t in the
individual sample i; levelt is the mean HCB concentration at time t
when accounting for the covariance with the fish length and lipid
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content; ln[length]ti is the observed (standardized) fish length at time
t in the individual sample i; ln[lipid]ti is the observed (standardized)
fish lipid content; ratet is the rate of change of the level variable; βt1 is
a length (regression) coefficient; βt2 is a lipid (regression) coefficient;
ψt and ωtj are the error terms for year t sampled from normal distribu-
tions with zero mean and variances Ψt

2 and Ωtj
2, respectively; the

discount factor ζ represents the aging of information with the passage
of time; N(0, 10,000) is the normal distribution with mean 0 and
variance 10,000; and G(0.001, 0.001) is the gamma distribution with
shape and scale parameters of 0.001. The prior distributions for the
parameters of the initial year level1, rate1, β11, β21, 1/ Ω1j

2 , and 1/ Ψ1
2 are

considered “non-informative” or vague.
The sequential updating of a DLM makes a forecast for time t based

on prior knowledge of the parameters, and then we observe data at
time t (Lamon et al., 1998). Based on Bayes' Theorem, our knowledge
regarding the parameters is updated using the likelihood of the data
and the prior knowledgewe have (Congdon, 2003). A discounting factor
is then applied to this new posterior belief, such that older observations
are weighted less than newer ones; the discounted posterior then
becomes the prior for the next time step, and the process is repeated.
In this analysis, we introduce non-constant and data-driven variances
(with respect to time) using a discount factor on the first period prior
(West and Harrison, 1989). Discount factors between 0.8 and 1.0 were
examined during the specification of our modeling framework. We
settled on a value of 0.95 that optimally balances between performance,
i.e., deviance (=−2log[likelihood]) values, and uncertainty of the year-
specific estimates of the stochastic nodes considered, i.e., regression
coefficients, rates of change, fish contaminant concentrations corrected
for the lipid content and fish length variability aswell as the error terms.
The likelihood of bias due to multiple measurements below the
detection limit was considered using a Tobit dynamic linear modeling
approach (Amemiya, 1973). Specifically, our model used a bounded
distribution for the measurements, where the upper bound was equal
to either the detection limit or a very large (arbitrary) number, depending
onwhether themeasurement fell below the detection limit or not (Fig. 1;
see also the model code in Appendix A). The determination of the most
parsimonious model for each fish species/congener combination was
based on the use of the Deviance Information Criterion (DIC) values,
a Bayesian measure of model fit and complexity, where models with
Fig. 1. Basic concepts of Tobit dynamic linear modeling: The sequential flow allows
parameter values to vary over time by discounting older observations relative to more
recent ones. Values below the detection limit are treated as random draws from a normal
distribution parameterized such that 99% of their values are lyingwithin the analytical and
actual zero. Our approach uses a bounded distribution for the measurements with
an upper bound equal to either the detection limit or a very large (arbitrary) number,
depending on whether the measurement falls below the detection limit or not. Thus, the
Gibbs sampler samples the observations we have set below the detection limit from the
tail of the distribution.
lower DIC values are expected to effectively balance between predictive
capacity and complexity (Spiegelhalter et al., 2003).

2.1.2. Model computations
Using Markov-chain Monte Carlo (MCMC) simulations (Gilks et al.,

1998), we obtained sequences of realizations from the model posterior
distributions. We used a general normal-proposal Metropolis algorithm
that is based on a symmetric normal proposal distribution, whose
standard deviation is adjusted over the first 4000 iterations, so that
the acceptance rate ranges between 20 and 40%. For each analysis, we
used three chain runs of 100,000 iterations, keeping every 20th iteration
(thin of 20) tominimize serial correlation. Samples were taken after the
MCMC simulation converged to the true posterior distribution; conver-
gence was assessed using the modified Gelman–Rubin convergence
statistic (Brooks and Gelman, 1998). The convergence of the sequences
occurred fairly quickly (~1000 iterations) and thus our summary
statistics reported are based on the remaining draws. Finally, to ensure
the accuracy of our posterior parameter values, we confirmed that
the Monte Carlo error for parameters (an estimate of the difference
between the true posterior mean and the mean of the sampled values)
was less than 5% of the sample standard deviation (Spiegelhalter et al.,
2003).

2.2. Statistical framework for fish consumption advisories

The illustration of our Bayesian approach to fish consumption
advisories was focused on THg and PCB concentrations in Lake Erie
walleye communities, given the high profile of these two contaminants,
the popularity of walleye as a sport fish (e.g., Imm et al., 2005), and
the consistency of the collected information over time. The proposed
strategy involves a DLM framework that incorporates the uncertainty
in contaminant predictions and the natural variability in fish length
and lipid content, while remaining flexible for different human weights
and meal frequencies. We established thresholds for each contaminant
based on their tolerable daily intake (TDI) values and were then able to
make predictive statements about the probability of exceeding critical
levels of that contaminant through consumption of fish of a specific
size and lipid content. For the purpose of prediction, it is important to
note that the Bayesian approach generates a posterior predictive distri-
bution that represents the current estimate of the value of the response
variable (THg and PCB levels in walleye), taking into account both the
uncertainty about the parameters and the uncertainty that remains
when the parameters are known (Ellison, 2004). Therefore, estimates
of the uncertainty of Bayesian model predictions are more realistic
(usually larger) than those based on classical procedures. Predictions are
expressed as probability distributions, thereby conveying significantly
more information than point estimates with regards to uncertainty.

Our analysis is founded upon the THg and PCB dynamic linear
models presented by Sadraddini et al. (2011b). We first selected three
years in order to examine through our model whether there was a
distinct change of the fish contaminant levels over time, e.g., 1986,
1996 and 2006. We then identified a range of human weights and
meal patterns to demonstrate the flexibility of our statistical approach
to fish consumption advisories. For human weights, we chose 50 kg
(lower weight), 75 kg (average weight) and 100 kg (heavier weight),
while the fish consumption frequency ranged from one to eight fish
meals per month. Similar to the value used by OMOE when producing
their established advisories, we used a standard fish meal size of 227 g
in our analysis. Our next step was to calculate critical thresholds for
each contaminant. The TDI values for THg and total PCBs were obtained
from OMOE, which generally receives guidelines from Health Canada
and modifies where appropriate (e.g., total PCB). The TDI is defined as
the maximum allowable daily intake of a substance that, if consumed
over a lifetime, will not lead to adverse health effects (Health Canada,
1996). TDI values are generally expressed for a specific body weight,
such as μg per kg of body weight (or kgbw) per day. Specifically, we



Table 1
Summary statistics of hexachlorobenzene concentrations in skinless–boneless filet data (ng/g wet weight) for five fish species in Lake Erie (study period 1976–2007).

Species N Mean SD Median IQR Skewness Kurtosis Best modela

Channel catfish
Ictalurus punctatus

533 2.27 2.88 1.00 1.00 4.35 24.18 L + L

Common carp
Cyprinus carpio

374 3.05 7.64 1.00 1.00 8.44 82.85 L + L

Coho salmon
Oncorhynchus kisutch

634 2.82 3.7 2.00 2.00 9.32 140.5 L + L

Rainbow trout
Oncorhynchus mykiss

310 2.16 1.90 1.00 2.00 2.44 6.92 L + L

White bass
Morone chrysops

1158 1.42 2.32 1.00 0.00 23.13 667.91 L + L

a Based on lowest DIC value (LNG = model with length as covariate; LPD = model with lipid as covariate; L + L = model considering both length and lipid as covariates).
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used the values of 0.52 μg THg/kgbwper day and 0.09 μg PCB/kgbwper
day, and calculated the thresholds for each of the hypothetical
scenarios as follows:

Threshold ¼ human weight kg½ � � TDI ng=kgbw=month½ �ð Þ= meal size�meal numberð Þ:
ð7Þ

Having established these critical thresholds for each scenario, our
next task was to calculate the corresponding frequency of exceedances,
given the predicted contaminant levels for a specific combination offish
length and lipid content.

3. Results and discussion

3.1. Organochlorine temporal trends

For each contaminant, we report the summary statistics of the
measured concentrations (ng/g wet weight or ww) of the five fish
species examined (Tables 1–3). The high standard deviation values
were indicative of the considerable inter- and intra-annual variability
in contaminant levels. Further, the positive skewness and kurtosis
values suggest right-skewed and leptokurtic distributions; we thus
applied a natural log transformation to the data before commencing
our DLM analyses. We also found that across all the organochlorines,
the most favorable dynamic linear model was the one that considered
both fish length and lipid content as covariates (see last columns
of Tables 1–3). The only exception was the rainbow trout model
for α-hexachlorocyclohexane, in which the use of lipid content as the
sole covariate provided the most parsimonious model.

3.1.1. Hexachlorobenzene (HCB)
The persistence of hexachlorobenzene in Great Lakes sediments,

biota, and water primarily stems from its chemical stability and high
lipophilicity (Burton and Bennett, 1987; Ma et al., 2003; Niimi, 1979),
which typically translates into significant levels of biomagnification in
Table 2
Summary statistics of octachlorostyrene concentrations in skinless–boneless filet data (ng/g w

Species N Mean SD Me

Channel catfish
Ictalurus punctatus

497 5.10 8.16 2.00

Common carp
Cyprinus carpio

364 5.46 11.85 1.00

Coho salmon
Oncorhynchus kisutch

529 2.26 1.58 2.00

Rainbow trout
Oncorhynchus mykiss

271 1.57 1.55 1.00

White bass
Morone chrysops

1040 1.24 1.16 1.00

a Based on lowest DIC value (LNG = model with length as covariate; LPD = model with lip
fish (Courtney, 1979). HCB is not a naturally occurring compound
(ATSDR, 2002) and was primarily used as a fungicide on seed grains,
such as wheat and barley (Burton and Bennett, 1987; Courtney, 1979).
This pesticide was applied in Canada until 1972, while the U.S. banned
its use seven years earlier (Sun et al., 2006). The contaminant
also enters the environment as a by-product in the manufacture
of several chlorinated solvents (e.g., tetrachloroethylene); other
chlorinated compounds (e.g., vinyl chloride); several pesticides,
including pentachloronitrobenzene and pentachlorophenol; and
with flue gas effluents from municipal incineration (see Bailey,
2001; Courtney, 1979). Because of its persistence and widespread
presence, hexachlorobenzene was earmarked as one of 11 “critical
Great Lakes pollutants” by the IJC in 1985 (Johnson et al., 1999).
Similar regulatory attention worldwide for HCB resulted in global
declines in North American and European environments since
the 1970s (see Bailey, 2001 for a review) Although not acutely
toxic to humans, the substance has been associated with the presence
of porphyrins, and elevated concentrations have been measured in
human breast milk and adipose tissue (see Burton and Bennett, 1987).

The significant reductions of exogenous HCB discharges have
resulted in decreases of the sediment concentrations in Lake Erie over
the past two decades (Marvin et al., 2004a). Further, Gewurtz et al.
(2010) recently reported that hexachlorobenzene declines in fish from
the Lake Huron–Erie corridor, though rates slowed in the 1990s. Our
analysis similarly revealed decreasing trends for hexachlorobenzene
across the fish species examined. Of the five fish species, the highest av-
erage HCB concentrations were recorded in common carp (3.05 ng/g),
followed by coho salmon (2.82 ng/g), channel catfish (2.27 ng/g), and
rainbow trout (2.16 ng/g) (Table 1). The lowest concentrations of this
chemical were observed in white bass (1.42 ng/g). It is also worthwhile
to note that the majority of the concentrations in the later sampling
years were recorded below the detection limit of 1 ng/g, and thus the
median concentrations for four fish species remained at that value;
the only exception was coho salmon (median 2 ng/g), a species which
was sparsely sampled after the mid-90s and whose median value was
thus less impacted by the HCB drop to the detection limit. According
et weight) for five fish species in Lake Erie (study period 1981–2007).

dian IQR Skewness Kurtosis Best modela

4.00 4.04 23.71 L + L

4.00 5.21 33.26 L + L

2.00 1.85 4.77 L + L

0.00 3.74 16.94 L + L

0.00 10.10 133.05 L + L

id as covariate; L + L = model considering both length and lipid as covariates).



Table 3
Summary statistics of α-hexachlorocyclohexane concentrations in skinless–boneless filet data (ng/g wet weight) for five fish species in Lake Erie (study period 1976–2007).

Species N Mean SD Median IQR Skewness Kurtosis Best modela

Channel catfish
Ictalurus punctatus

533 2.72 4.63 1.00 1.00 3.86 16.74 L + L

Common carp
Cyprinus carpio

374 1.3 1.49 1.00 0.00 7.49 64.23 L + L

Coho salmon
Oncorhynchus kisutch

634 2.86 3.88 1.00 2.00 5.77 56.38 L + L

Rainbow trout
Oncorhynchus mykiss

308 2.16 2.80 1.00 1.00 3.17 10.95 LPD

White bass
Morone chrysops

1158 1.39 1.12 1.00 0.00 3.83 18.04 L + L

a Based on lowest DIC value (LNG = model with length as covariate; LPD = model with lipid as covariate; L + L = model considering both length and lipid as covariates).
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to our DLM analysis, both common carp and rainbow trout demonstrated
an increase until the mid-80s and a downward oscillatory pattern
thereafter (Fig. 2b,d). The mean annual rates of change of the HCB levels
for the two species were weakly positive in the early years and nearly
zero ever since (Fig. 3b,d). In particular, the odds that the rate parameter
was positive is on average 1.3:1 for common carp and 2.2:1 for rainbow
trout until the mid-80s, but fall close to a 50% probability (even odds)
for the rest of the study period. [Note that the odds ratio of the rate pa-
rameter being above zero in a particular year is the ratio of the probability
mass above zero to the mass below zero.] Channel catfish demonstrated
an overall decreasing trend, although there were fluctuations in the
meanHCB levels through time (Fig. 2a). The rates of change of the annual
concentrations for this species remained fairly close to zero throughout
the study period (Fig. 3a). Similarly, coho salmon demonstrated minor
fluctuations early on in the sampling period, but the mean trends
projected after the mid-90s should be interpreted with caution due to
the sparse data available (Fig. 2c). The corresponding growth rates
for coho began weakly positive but switched to very weakly negative
towards the end of the years studied (Fig. 3c). White bass was character-
ized by relatively stable mean concentrations around the detection limit
(Fig. 2e), and the corresponding rates of change hovered around zero
(Fig. 3e). On a final note, recent studies suggest that Lake Erie may have
switched to a source of HCB to the atmosphere through volatilization
of the compound out of the lake (Hoff et al., 1996; Kelly et al., 1991;
Marvin et al., 2004b). The latter possibility along with the continued
release of HCB as unintended by-product could perhaps explain the
fluctuating levels reported in our study; however, HCB is generally not
considered to be of concern in current fish consumption advisories
(Bhavsar et al., 2011; Gewurtz et al., 2010).

3.1.2. Octachlorostyrene (OCS)
First identified in wildlife of the Netherlands (Koeman et al., 1969;

Kuehl et al., 1981; ten Noever de Brauw and Koeman, 1972/73),
octachlorostyrene concentrations were detected in fish of the lower
Great Lakes during the mid-1970s (Kuehl et al., 1976). The discovery
of this compound in environmental systems was initially a perplexing
phenomenon, given the apparent lack of evidence for a causal associa-
tion with anthropogenic activities (Chu et al., 2003; Kaminsky and
Hites, 1984). It was eventually deduced that OCS was a by-product
formed from high temperature industrial processes involving chlorine,
such as the electrolytic production of chlorine gas or magnesium, the
chlorination and distillation processes, and the refining and degassing of
an aluminum smelt (CGLI, 1999; Kaminsky and Hites, 1984; Norheim
and Roald, 1985). The rapid growth of the chlorine industry prior to
the 1970s resulted in mounting OCS concentrations in the Great Lakes
sediments, but the subsequent shift to metal electrodes in the early
1970s soon resulted in marked declines (see Kaminsky and Hites, 1984
for a review).Within the Lake Erie system (including the Huron–Erie cor-
ridor), elevated levels of this persistent and toxic pollutantwere observed
infish fromaround themouth of theAshtabula River tributary (Kaminsky
and Hites, 1984; Kuehl et al., 1981), while St. Clair River sediments and
fish from Lake St. Clair also demonstrated high OCS concentrations
(Pugsley et al., 1985; Suns et al., 1985). Octachlorostyrene is a persistent
substance (likely due to its chemical structure [Norheim and Roald,
1985]) and studies examining concentration differences between water
and fish liver have shown high “bioconcentration and adsorption
potential” (Ernst et al., 1984; Pugsley et al., 1985). Furthermore, while
our understanding of the eco-toxicology of this pollutant remains unclear,
there were instances of increased urinary porphyrins in workers exposed
to octachlorostyrene, and some studies suggest OCS may have a half-life
twice as long as hexachlorobenzene (see Chu et al., 2003 for a review).

In particular, we found that common carp exhibited the highest
concentrations of this contaminant (mean 5.46 ng/g), followed by
channel catfish (5.10 ng/g), coho salmon (2.26 ng/g) and rainbow
trout (1.57 ng/g) (Table 2). White bass again had the lowest concentra-
tions, with a mean value of 1.24 ng/g. Similar to the pattern reported for
the hexachlorobenzene levels, themedian values for common carp, rain-
bow trout and white bass remained at the detection limit of 1 ng/g.
Exceptions were the coho salmon (for the reason discussed earlier)
and channel catfish (median 2 ng/g), whose OCS concentrations were
subjected to wider fluctuations in the later sampling years. It is also
important to note that the octachlorostyrene monitoring in our dataset
began at various points in the 1980s, and thus the true maxima of this
contaminant may have not been captured. Channel catfish, common
carp, coho salmon and rainbow trout were characterized by decreasing
trends with fluctuations until the mid-1990s, followed by nearly mono-
tonic decline to the detection limit since then (Fig. 4a–d). The corre-
sponding rates of change were negative throughout the study period
(Fig. 5a–c), but with slowing decline rates for rainbow trout over time
(Fig. 5d). In particular, the odds that the rate parameter was negative
are on average 3.0:1 for channel catfish, 4.1:1 for common carp, 3.1:1
for coho salmon, and 5.8:1 for rainbow trout, but fall close to 1.2:1 for
rainbow trout during the rest of the study period. Finally, white bass
showed aminor increase in the1980s and stable levels around the detec-
tion limit ever since (Fig. 4e). The rates of change for this species reflect
the initial peak and subsequent decline in the mid-1980s, followed
by practically zero rates until the end of the study period (Fig. 5e).
Generally, our analysis suggests decreasing OCS trends through time,
which is on par with CGLI's (1999) assertion that the levels of this
compound have been substantially declining in the Great Lakes over the
past two decades. For example, studies of spottail shiners in the lower Ni-
agara River indicated falling OCS concentrations from the mid-1980s
down to the detection limit during the 1990s (see CGLI, 1999 for a re-
view). Similar declines were also reported in fish from the Huron–Erie
corridor (Gewurtz et al., 2010). The attention paid to octachlorostyrene
as a toxic effluent into the lakes (e.g., St. Clair RAP Team, 2006) along
with the aforementioned shift to non-OCS producing metal electrodes is
likely to have contributed to the reported decrease of fish OCS levels.

3.1.3. α-Hexachlorocyclohexane (α-HCH)
Highly similar to hexachlorobenzene is our final compound of

consideration, hexachlorocyclohexane (HCH), or more specifically, the



Fig. 2. Dynamic linear modeling analysis depicting the actual hexachlorobenzene concentrations (ng/g wet weight) (gray dots) against the predicted annual hexachlorobenzene trends
when accounting for the covariance with the fish length and lipid content (black lines) in (a) channel catfish, (b) common carp, (c) coho salmon, (d) rainbow trout and (e) white bass
in Lake Erie (study period 1976–2007). The solid and dashed lines correspond to the median and 95% posterior predictive intervals of the levelt term in Eq. (1), respectively.
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alpha-isomer α-HCH; this substance is often erroneously called
“benzenehexachloride” (Willett et al., 1998). Composed of eight
isomers, HCH was generally applied as the pesticide technical-HCH
(in which the α-congener was dominant) and later as “lindane”,
which in turn primarily consists of γ-HCH (ATSDR, 2005; Kutz et al.,
1991; Safe, 1993). Similar to other persistent organic pollutants, HCH



Fig. 3. Dynamic linear modeling analysis depicting the annual rates of change of hexachlorobenzene concentrations (ng/g wet weight) in (a) channel catfish, (b) common carp,
(c) coho salmon, (d) rainbow trout and (e) white bass in Lake Erie (study period 1976–2007). The solid and dashed lines correspond to the median and the 95% posterior predictive
intervals, respectively.
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has the potential to bioaccumulate and be transported in long distances
(Bhatt et al., 2009). While studies have generally focused more on
lindane trends in space and time due to its contemporary use in agri-
cultural practices, concentrations of α-HCH remain in air, precipitation
and surface waters, often greater than the γ-isomer (Bhatt et al., 2009).
These higher α-HCH environmental levels probably stem from its
increased stability relative to γ-HCH and/or the γ-HCH degradation to
its α-congener (Easton et al., 2002). Generally, a larger proportion of



Fig. 4. Dynamic linear modeling analysis depicting the actual octachlorostyrene concentrations (ng/g wet weight) (gray dots) against the predicted annual median octachlorostyrene
trends when accounting for the covariance with the fish length and lipid content (black lines) in (a) channel catfish, (b) common carp, (c) coho salmon, (d) rainbow trout and
(e) white bass in Lake Erie (study period 1981–2007).
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α-HCH in environmental media is thought to be an indication of either
recent application of technical-HCH or atmospheric deposition, while
higher proportions of the beta-isomer (themost stable)would probably
indicate distant application (Willet et al., 1998).
In our study, the highest α-HCH concentrations were recorded
in coho salmon (2.86 ng/g), followed by channel catfish (2.72 ng/g),
rainbow trout (2.16 ng/g), white bass (1.39 ng/g) and common carp
(1.3 ng/g) (Table 3). The recent decline down to the detection limit



Fig. 5.Dynamic linearmodeling analysis depicting the annual rates of change of octachlorostyrene concentrations (ng/gwetweight) in (a) channel catfish, (b) common carp, (c) coho salmon,
(d) rainbow trout and (e) white bass in Lake Erie (study period 1981–2007).
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translated into recurring 1 ng/g median values. Mirroring the patterns
of the observed data, the predicted mean α-HCH levels generally
showed an initial increase and subsequent decline after the mid-1980s
(Fig. 6), with the exception of common carp, which lacked this early
peak (Fig. 6b). The rates of change for coho salmon, rainbow trout
and white bass switched from weakly positive to negative over time
(Fig. 7c–e), while those of channel catfish and common carp started
off weakly negative, became slightly more negative in the 1980s and



Fig. 6.Dynamic linear modeling analysis depicting the actual α-hexachlorocyclohexane concentrations (ng/g wet weight) (gray dots) against the predicted annual median
α-hexachlorocyclohexane trends when accounting for the covariance with the fish length and lipid content (black lines) in (a) channel catfish, (b) common carp, (c) coho salmon,
(d) rainbow trout and (e) white bass in Lake Erie (study period 1976–2007).
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then subsequently slowed to the end of the sampling period (Fig. 7a,b).
In particular, we note that the odds that the earlier rates of changewere
negative are on average 5.7:1 for channel catfish, and 21:1 for common
carp, but gradually tend to an even odds ratio after the early 90s. As the
use of technical-HCH declined worldwide in response to multiple bans,
atmospheric α-HCH concentrations were expected to follow suit (Li



Fig. 7. Dynamic linear modeling analysis depicting the annual rates of change of α-hexachlorocyclohexane concentrations (ng/g wet weight) in (a) channel catfish, (b) common carp,
(c) coho salmon, (d) rainbow trout and (e) white bass in Lake Erie (study period 1976–2007).
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et al., 1998). The α-HCH levels dropped dramatically in Great Lake
precipitation levels during the 1990s (Buehler et al., 2002; Chan
et al., 2003) and α-HCH has also declined significantly in the
sediments of Lake Erie (Marvin et al., 2004a). As such, our
declining α-HCH trajectories in the fish species examined are not
surprising.
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3.2. Framework for fish consumption advisories

3.2.1. Background
The prevalence of persistent, toxic and bioaccumulative substances

within the Great Lakes system has been the focal point of numerous
legislations and analyses over the past half-century, with concerns
raised not only for preserving the ecological health of the waters but
also for minimizing the potential ramifications for consumers of local
fish. Among the hallmarks of contaminants like PCBs or the pesticide
dichlorodiphenyltrichloroethane (DDT) is their high degree of lipo-
philicity and thus their potential to progressively biomagnify up the
food chain (Johnson et al., 1999; Tilden et al., 1997). Even though the
emissions of many contaminants have been banned or significantly
curtailed, there is often an extended lag time before these results are
reflected in the biota (Burger andGochfeld, 2006). In an effort to protect
the public from the harmful impacts of ingested contaminants, fish con-
sumption advisories were instated to encourage voluntary restriction of
potentially tainted fish (in amanner thatmaximizes angler compliance),
while also reminding consumers about the benefits of fish consumption
(Buchanan et al., 2005; see Tilden et al., 1997 for an overview). The ear-
liest advisories were produced for PCBs in the 1970s (Buchanan et al.,
2005) and were gradually expanded to include contaminants such as
mercury, chlordane, and DDT (see Burger, 2000). To date, the entire
Great Lakes region is under advisories, with the total number in the US
increasing by 125% since 1993 (Burger and Gochfeld, 2006; USEPA,
2004). On the Canadian side of the Great Lakes, the OMOE has been reg-
ularly issuing biennial fish advisories since the 1970s, with a site- and
Fig. 8. Probability of exceedance of the PCB tolerable daily intake through the consumption of w
fish lengths consumed (with the lipid content set equal to 1.2%) in 1986, 1996, and 2006.
species-specific approach based on extensive contaminant databases
(Bhavsar et al., 2011; OMOE, 2011).

The development of fish consumption advisories differs among
regions, although there have been concerted efforts in recent years to
establish protocols and region-wide guidelines to ensure consistency.
The first step involves the establishment of a reference concentration,
representing an estimate of the daily human exposure to a contaminant
that will not result in adverse health effects over a lifetime, e.g., USEPA
reference dose, health protection value, tolerable daily intake, and
minimal risk level (Dourson and Clark, 1990; HPTF, 2004). Calculation
of these reference levels may consider uncertainty factors to account
for the extrapolation of toxicity data from animals to humans or to
accommodate different tolerance levels in humans (USEPA, 2000).
The next step in developing advisory guidelines is to identify standard
values for fish meal sizes, human weights, amount of contaminants
remaining in fish after cooking, frequency of consumption, and cancer
risk factors (GLC, 2007; WVITC, 2007). Depending on the amount/
quality of data and the region characteristics, the production of the
advisories may be based on regression models, mean/median concen-
trations or frequency distributions (GLC, 2007). Regression models are
used to relate contaminant data to the size of various fish species, pos-
tulating a relationship between the two variables across the fish sizes
sampled, while the selection of the best-fit model (e.g., original or loga-
rithmic scale) is typically based on the coefficient of determination (r2)
values (GLC, 2007). If no relationship exists with the fish length or the
data are inadequate to conduct regression analysis, data pooling may
be used to obtain species-specific average concentrations (GLC, 2007).
alleye from a 75-kg person: 2, 4, and 8 fishmeals/month. Results are presented for different



Fig. 9. Probability of exceedance of the PCB tolerable daily intake through the consumption
ofwalleye fromdifferent humanweight categories: 50, 75, and 100 kg. Results are presented
for different fish lengths (with the standard lipid content of 1.2%) and a fixed consumption of
8 meals per month in 2006.
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Further, despite the aversion of stakeholders and decision makers
when confronted with a “range” of values instead of a “fixed” value
(Hope et al., 2007; Tannenbaum et al., 2003), there has been a gradual
emergence of probabilistic methods in the risk assessment paradigm
(e.g., Antonijevic et al., 2007; see Bilau et al., 2007; Harris and Jones,
2008; Roberts et al., 2007; Wilson et al., 2001; Zhang et al., 2009),
due to their ability to accommodate the associated uncertainty or more
faithfully depict the risk of “outliers” in a fish population (Johnston and
Snow, 2007; Sioen et al., 2008).

3.2.2. Bayesian approach to fish consumption advisories
Our analysis is conceptually on par with the aforementioned

shift towards probabilistic advisory frameworks in the context of fish
consumption advisories. Compared with the conventional regression
modeling practices underlying fish consumption advisories, our DLM
approach has five distinct features: (i) the models have an evolving
structure that allows parameters to vary over time; (ii) the data are
sequentially ordered and the level of the response variable at each
time step is related to its levels at earlier time steps in the data series;
as such, the year-specific predictive fish contaminant distributions
are conditioned upon prior and current information, not by subsequent
data; (iii) instead of using annual average concentrations, the long-term
fish contaminant trends are based on individual samples to explic-
itly accommodate both intra- and interannual variability; (iv) the
Bayesian nature of the framework allows both parametric uncer-
tainty and structural error (model misfit) to be reflected in the
model predictions; and (v) bearing in mind that the apparent
error rate (sensu Efron, 1986) or the observed inaccuracy of the
fitted model applied to the original data usually underestimates
its actual capacity to predict future observations (true error rate),
we base our retrospective analysis on the most parsimonious rather
than the highest performing but likely overfitted model.

For illustration purposes, we used the dynamic linear models
originally developed by Sadraddini et al. (2011b) to detect THg and
PCB temporal trends in walleye. The optimal model (lowest DIC value)
for the former case had the fish length as the sole covariate, whereas
the latter one was based on both fish length and lipid content. We
selected the predictive distributions for three years, e.g., 1986, 1996
and 2006, to examine how the intra- and inter-annual variability in the
walleye contaminant levels as well as the total model (structural and
parametric) uncertainty shape the risk assessment statements related
to human fish consumption. Our first example presents the probability
of exceedance of PCB tolerable daily intake through the consumption
of Lake Erie walleye for a 75-kg person in different fish consumption
scenarios: 2, 4, and 8fish meals/month (Fig. 8). The results are presented
for differentfish lengths consumed, 22 to 74 cm,while the standard lipid
content was set equal to 1.2%.

Our analysis (plausibly) suggests that increasing the number of
meals per month translates to a greater risk of exposure. In particular,
while two meals per month resulted in negligible exceedances across
all fish lengths and years examined, four and eight meals can signifi-
cantly increase the risk of violation of the PCB tolerable daily intake.
The risk of exceeding the critical PCB level has distinctly decreased
over time, as seen from the reduced probabilities of exceedance
from 1986 to 2006. Further, when we consume fish of greater length,
the probability of exceeding safe PCB levels rises as well; especially
consumption of fish longer than 50 cm appears to be associated with
more than 20% probability of exceedance of the PCB tolerable daily
intake even in 2006.While these predictionswere aimed at the average
human weight, our analysis also suggests that the risk of PCB exposure
in individuals with weight 50 kg (or less) can exceed the level of
30%, when fish with length greater than 50 cm is consumed twice per
week (Fig. 9). The risk is clearly lower for heavier adults, and can drop
below 20% when we consider individuals with body weights of 100 kg
or more.

As a follow-up exercise, we examined how model performance can
influence our capacity to obtain reliable risk assessment statements. In
particular,we compared themeanpredictedwalleye THg concentrations
as derived from three DLMs: the model that considers the covariance
between THg and fish length; the one with the lipid content as the
sole covariate; and the more complex structure with both fish length
and lipid content as covariates (Fig. 10a). The threemodelswere updated
with the parameter posteriors for 2006, and the corresponding pre-
dictions are based on an assortment of fish length and lipid content
values falling within the range observed over the last four decades in
Lake Erie. In doing so, our intent was to reproduce the broadest range
of THg concentrations that could potentially be measured in walleye,
given the parameterization of the model for that particular year.
The dotted line in Fig. 10a represents the lowest threshold value to



Fig. 10. (a) Mean predictions of walleye THg concentrations (μg/g) based on the range
of fish lengths and lipid contents measured over the last four decades in Lake Erie.
The numbered lines correspond to predictions from the dynamic linear models that con-
sider fish length (1), lipid content (2), and both length and lipid values (3) as covariates.
The three models were updated with the parameter posteriors for 2006. The predictions
are plotted against the historically observed THg values (gray dots), while the dotted
line represents the lowest threshold value to avoid harmful THg intake for a 42 kg person
that has 4 meals of fish per month. (b) Comparison between the measured and median
predicted THg concentrations from the three models.
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avoid harmful intake of THg for a 50 kg person (e.g., adult with
low body weight) that has 4 fish meals per month. First, we note
that all the mean model predictions fall well below the critical level,
indicating that THg does not currently produce a major cause for alarm.
Second, the lipid model clearly underestimates the potential range of
THg concentrations in the walleye community, indicative of its inferior
performance or the weak covariance between THg and fish lipid content
(Fig. 10b; r2 b 0.07), On the other hand, the length and length/lipid
models are equally proficient at recreating the potential range of fish
contamination levels in the system. Notably, the discrepancy between
the observed THg levels in 2006 and the predicted ones from the length
and length/lipid models primarily stems from the broader range of fish
lengths used for our predictive exercise relative to the systematically
larger fish sampled in recent years (Bhavsar et al., 2007; Sadraddini
et al., 2011a). The higher predictive capacity of the length and
length/lipid models is also reflected by the significantly higher r2
values (N0.64) between measured concentrations and predicted
median values (Fig. 10b).

Contrary to the inability of themean predictions from the lipidmodel
to capture the within-year THg variability in walleye, the consideration
of the total uncertainty associated with the corresponding predictions
paints a different picture. In particular, when using the average lipid
content of 1.2%, the higher median prediction of the lipid model along
with the wider 95% predictive interval (higher model error) result in a
marginal exceedance of the threshold value (Fig. 11a). Although the
use of logarithmic scale is somewhat misleading, the predictive uncer-
tainty of the lipid model suggests that 95% of the THg concentrations
fall within the 0.04–1.0 μg/g range, whereas the corresponding uncer-
tainty zone for the other two models lies between 0.03 and 0.6 μg/g.
More solid evidence for the ramifications of the higher predictive uncer-
tainty of an inferiormodel is presented in Fig. 11b,where the 95% predic-
tive intervals of the lipidmodel against the observed THg concentrations
are two- to five times broader than the (generally overlapping) points
for the other twomodels. Hence, the adoption of probabilistic statements
does not conceal the weaknesses of a model, but rather the inflated
error/uncertainty makes the corresponding predictions practically un-
informative for risk management. Simply put, the selection of an erro-
neous model in our example resulted in unjustifiably comforting risk
statements when our retrospective analysis is solely based on the mean
predictions, and in overly alarmist (or otherwise uninformative)
projections when we also consider the underlying predictive error.

3.2.3. Outstanding issues with the fish consumption advisories
Aside from the accommodation of observed variability and predictive

uncertainty, another key challenge with the development of proper fish
advisories involves their capacity to effectively convey the benefits offish
consumption while stressing the associated contaminant risks for public
health (Tilden et al., 1997). Although the repercussions of ingesting
contaminants through fish consumption are well-established, fish also
provide an excellent dietary source of high quality and easily digestible
protein and omega-3 fatty acids (see Burger, 2000; Cohen et al.,
2005; Smith and Sahyoun, 2005 for reviews). A wide array of work has
been published relating dietary fatty acids to everything from cognitive
functioning and nervous system maintenance (Minokoshi et al., 2002),
to hormonal imbalances and insulin resistance complications (Yamauchi
et al., 2001). Longer chain omega-3 fatty acids may also be important in
preventing chronic health conditions, such as Alzheimer's disease, type
II diabetes, kidney disease, rheumatoid arthritis, high blood pressure,
coronary heart disease, alcoholism, and possibly cancer (Das, 2006). In
this regard, the American Heart Association has advocated the adoption
of two meals of fish per week to capitalize on these advantageous health
effects (Kris-Etherton et al., 2002; Oken et al., 2003). It is therefore
plausible that the public faces considerable confusion when dealing
with these mixed messages from “restrictive” advisories and “encour-
aging” nutritionists, and so a large body of work has centered around
assessing the relative risks of fish consumption and examining how
consumers are dealing with this conflicting information (e.g., Burger
and Gochfeld, 2006; Mozaffarian and Rimm, 2006; Stern and Korn,
2011). To ensure that guidelines do not completely inhibit fish con-
sumption (see Cohen et al., 2005), advisories selectively recommend
that people should avoid eating certain species/sizes of fish caught
from certain contaminated locations. Yet, there is still no widely accepted
methodology to generate integrative statements that impartially weigh
the benefits and net risks of consumingfish, though there are some recent
proposals (e.g. Stern and Korn, 2011).

In addition to balancing the risks and benefits of fish, a lengthy list
of additional challenges plagues the production of fish consumption
advisories (e.g., see Oken et al., 2012). One of the primary issues revolves
around ensuring effective communication, as many anglers may not
be aware of the advisories or may opt to downplay the advisories due
to preconceived notions, such as optimism about their catch, failure to
understand the advisories or distrust of the government (see Burger,



Fig. 11. (a) PredictedwalleyeHg concentrations (μg/g) for the averagefish length and lipid
valuesmeasured over the last four decades in Lake Erie. The numbered lines correspond to
model predictionswith the average fish length of 40 cm (1), the average fish lipid content
of 1.2% (2), and both average length and lipid content (3). The central markers on each
numbered line correspond to the median model prediction, while the outer markers
represent the 2.5 and 97.5 percentiles. The threemodelswere updatedwith theparameter
posteriors for 2006; (b) 95% predictive intervals against observed THg (μg/g) concentra-
tions in 2006, using the three dynamic linear models.
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2000; Burger and Gochfeld, 2006; Oken et al., 2012; Pflugh et al., 1999;
Tan et al., 2011). As such, a number of studies have primarily focused
onworkingwith target populations to identify possible ways of enhanc-
ing advisories and improving their tone and readability of the advisories
(Connelly and Knuth, 1998; Jardine, 2003; Tan et al., 2011; Velicer
and Knuth, 1994). Other communication challenges include the failure
to reach vulnerable subgroups, such as pregnant women, women of
childbearing age, children under 15, Hispanics and African-Americans
(Anderson et al., 2004; Lepak et al., 2009; Scherer et al., 2008;
Shimshack et al., 2007); disconnect with Native populations (see
Donatuto and Harper, 2008); and lack of consensus about the definition
of what is a “sensitive” population (Lepak et al., 2009). Aside from these
“communication-centric” issues, the production of fish consumption
advisories is also made inherently more complex by the synergistic
effects among multiple contaminants (Clark et al., 1987; Scherer et al.,
2008), and the differential impacts of cleaning and cooking fish on
different contaminants (GLSFATF, 1993).

4. Conclusions

We used dynamic linear modeling to examine the temporal
trends of three organochlorine compounds (hexachlorobenzene,
octachlorostyrene, and α-hexachlorocyclohexane) in five Lake Erie
fish species. Our analysis indicates that the levels of organochlorines
have been decreasing over the last three decades, although there
were cases that exhibited fluctuations through time. The present results
reinforce the findings of our recent work that the levels of several
important contaminants, such as THg (Azim et al., 2011a; Sadraddini
et al., 2011b), PCB (Sadraddini et al., 2011a, 2011b), chlordane (Azim
et al., 2011b), and dichlorodiphenyltrichloroethane (Mahmood et al.,
in press) have been declining in the fish communities of Lake Erie
over the past few decades and do not produce major causes for alarm.
However, it must be noted that there are fish species (walleye,
smallmouth bass, rainbow trout, white bass, freshwater drum)with dif-
ferences in their dietary habits, foraging behavior and competition
strategies, which exhibit weakly increasing trends of their THg and/or
PCB body burdens following the mid- or late 1990s (Azim et al.,
2011a; Sadraddini et al., 2011b). Thus, it is important to closelymonitor
these trends, particularly in fish species regularly chosen for human
consumption. We also presented a Bayesian framework to update fish
consumption advisories that incorporates the uncertainty in contami-
nant predictions and the natural variability in fish length and lipid con-
tent, while remaining flexible for different human weights and diet
patterns. Our results demonstrate that the risk of exposure has clearly
decreased over time, but there is still substantial likelihood of exceed-
ance of the tolerable daily intake for PCBs in sensitive populations
(e.g., children with low body weight) with frequent consumption of
large fish. Future augmentations of the present framework need to
focus on its capacity to generate integrative statements that impartially
weigh benefits and net risks of consuming fish, and special emphasis
should be given to the increased sensitivity of vulnerable groups.
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Appendix A. Tobit dynamic linear modeling approach

The WinBUGS code associated with the dynamic linear model for
the hexachlorobenzene (HCB) concentrations is as follows:

model {
for (i in 1:N) {
upper.lim[i] b - DETLIM[i]*is.detlim[i] + UPPERLIM*(1 - is.detlim[i])
is.detlim[i] b -step(0-LogHCB[i])
DETLIM[i] ~ dnorm(-4.605,0.511)
lengthstdev[i] b -(length[i]-3.3958199)/0.1828117
lipidstdev[i] b -(lipid[i]-1.014126)/0.559355
LogHCBm[i] b -level[time[i] + 1] + beta1[time[i] + 1]*
lengthstdev[i] + beta2[time[i] + 1]*lipidstdev[i]
LogHCB[i] ~ dnorm(LogHCBm[i],mtau[time[i] + 1])I(,upper.lim[i])
LogPredHCB[i] ~ dnorm(LogHCBm[i],mtau[time[i] + 1])
PredHCB[i] b -exp(LogPredHCB[i])}
for (t in 2:31) {
beta1[year[t]] ~ dnorm(beta1[year[t-1]],btau1[year[t]])
beta2[year[t]] ~ dnorm(beta2[year[t-1]],btau2[year[t]])
growth[year[t]] ~ dnorm(growth[year[t-1]],gtau[year[t]])
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levelm[year[t]] b -level[year[t-1]] + growth[year[t]]
level[year[t]] ~ dnorm(levelm[year[t]],ltau[year[t]])
ltau[year[t]] b -ltau.in*pow(0.95,year[t]-1)
lsigma[year[t]] b -sqrt(1/ltau[year[t]])
btau1[year[t]] b -btau1.in*pow(0.95,year[t]-1)
btau2[year[t]] b -btau2.in*pow(0.95,year[t]-1)
bsigma1[year[t]] b -sqrt(1/btau1[year[t]])
bsigma2[year[t]] b -sqrt(1/btau2[year[t]])
gtau[year[t]] b -gtau.in*pow(0.95,year[t]-1)
gsigma[year[t]] b -sqrt(1/gtau[year[t]])
mtau[year[t]] b -mtau.in*pow(0.95,year[t]-1)
msigma[year[t]] b -sqrt(1/mtau[year[t]])
}
beta1[year[1]] ~ dnorm(beta1[1],btau1[year[1]])
beta2[year[1]] ~ dnorm(beta2[1],btau2[year[1]])
growth[year[1]] ~ dnorm(growth[1],gtau[year[1]])
levelm[year[1]] b -level[1] + growth[year[1]]
level[year[1]] ~ dnorm(levelm[year[1]],ltau[year[1]])
ltau[year[1]] b -ltau.in
lsigma[year[1]] b -sqrt(1/ltau[year[1]])
btau1[year[1]] b -btau1.in
btau2[year[1]] b -btau2.in
bsigma1[year[1]] b -sqrt(1/btau1[year[1]])
bsigma2[year[1]] b -sqrt(1/btau2[year[1]])
gtau[year[1]] b -gtau.in
gsigma[year[1]] b -sqrt(1/gtau[year[1]])
mtau[year[1]] b -mtau.in
msigma[year[1]] b -sqrt(1/mtau[year[1]])
beta10 ~ dnorm(0,0.0001)
beta20 ~ dnorm(0,0.0001)
growth0 ~ dnorm(0,0.0001)
level0 ~ dnorm(0,0.0001)
ltau.in ~ dgamma(0.001,0.001)
btau1.in ~ dgamma(0.001,0.001)
btau2.in ~ dgamma(0.001,0.001)
gtau.in ~ dgamma(0.001,0.001)
mtau.in ~ dgamma(0.001,0.001)
}
Inference data
list(N = 1158, UPPERLIM = 10,000,
year = c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,
22,23,24,25,26,27,28,29,30,31),
time = c(paste time.dat here),
LogHCB = c(paste whitebassHCB.dat here),
lipid = c(paste lipid.dat here),
length = c(paste length.dat here)),
Initial values 1
list(beta10 = 0.5,beta20 = 0.5,growth0 = 0.5,level0 = 0.5,
beta1 = c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5),
beta2 = c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5),
growth = c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5),
level = c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5),
mtau.in = 0.2,ltau.in = 0.2,btau1.in = 1, btau2.in = 1,gtau.in = 1,
LogPredHCB = c(paste whitebassHCB.dat here))
Initial values 2
list(beta10 = 0.25,beta20 = 0.25,growth0 = 0.25,level0 = 0.25,
beta1 = c(0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,
0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,
0.25,0.25,0.25,0.25,0.25,0.25,0.25),
beta2 = c(0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,
0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,
0.25,0.25,0.25,0.25,0.25,0.25,0.25),
growth = c(0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,
0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,
0.25,0.25,0.25,0.25,0.25,0.25,0.25),
level = c(0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,
0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,
0.25,0.25,0.25,0.25,0.25,0.25),
mtau.in = 0.5,ltau.in = 0.5,btau1.in = 0.5,
btau2.in = 0.5,gtau.in = 0.5,
LogPredHCB = c(paste whitebassHCB.dat here))
Initial values 3
list(beta10 = 0.05,beta20 = 0.05,growth0 = 0.05,level0 = 0.05,
beta1 = c(0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,
0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,
0.18,0.18,0.18,0.18,0.18,0.18,0.18),
beta2 = c(0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,
0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,
0.18,0.18,0.18,0.18,0.18,0.18,0.18),
growth = c(0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,
0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,
0.18,0.18,0.18,0.18,0.18,0.18,0.18),
level = c(0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,
0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,0.18,
0.18,0.18,0.18,0.18,0.18,0.18),
mtau.in = 0.05,ltau.in = 0.05,btau1.in = 0.05,
btau2.in = 0.05,gtau.in = 0.05,
LogPredHCB = c(paste whitebassHCB.dat here))
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