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The integration of Bayesian inference techniques with mathematical modeling offers a promising means to im-
prove ecological forecasts and management actions over space and time, while accounting for the uncertainty
underlying model predictions. In this study, we address two important questions related to the ramifications
of the statistical assumptions typically made about the model structural error and the prospect of Bayesian cali-
bration to guide the optimization ofmodel complexity. Regarding the former issue,we examine statistical formu-
lations that whether postulate conditional independence or explicitly accommodate the covariance among the
error terms for various model endpoints. Our analysis evaluates the differences in the posterior parameter pat-
terns and predictive performance of a limiting nutrient (phosphate)–phytoplankton–zooplankton–detritus (par-
ticulate phosphorus) model calibrated with three alternative statistical configurations. The lessons learned from
this exercise are combinedwith those from a second comparative analysis that aims to optimizemodel structure.
In particular, we selected three formulas of the zooplankton mortality term (linear, hyperbolic, sigmoidal) and
examine their capacity to determine the posterior parameterization as well as the reproduction of the observed
ecosystem patterns. Our analysis suggests that the statistical characterization of the model error as well as the
mathematical representation of specific ecological processes can be influential to the inference drawn by a
modeling exercise. Our findings could be useful when selecting the most suitable statistical framework for
model calibration and/ormaking informative decisions aboutmodel structure optimization. In the absence of ad-
equate prior knowledge, we also advocate the use of Bayesian model averaging for obtaining weighted averages
of the forecasts from different model structures and/or statistical descriptions of the process error terms.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The rigorous analysis of decision problems in eutrophication man-
agement requires fundamental understanding of the biogeochemical
cycles; specification of objective functions for evaluating alternative
management strategies; predictive models of ecosystem dynamics
formulated in terms of variables relevant to management objectives; a
finite set of alternative management plans, including any limitations
on their use; and a monitoring program to follow system response to
restoration actions (Arhonditsis et al., 2011). An inherently difficult
task in practical applications of decision theory is the impartial charac-
terization of an objective function, which specifies the value of alterna-
tive management actions and usually accounts for benefits, costs, and
conditional constraints (Dorazio and Johnson, 2003). Likewise, the pre-
dictive models aim to realistically reproduce the relevant behaviors of
aquatic ecosystems that are nonlinear, complex, and are characterized
by spatial, temporal, and organizational heterogeneity (Arhonditsis
and Brett, 2004). Perhaps even greater challenges are posed by the un-
certainty in predictions ofmanagement outcomes. This uncertaintymay
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stem from inadequate control of management actions, incomplete
knowledge of system behavior, errors in measurement and sampling
of aquatic ecosystems, natural variability, and model structural or para-
metric uncertainty (Arhonditsis et al., 2007; Borsuk et al., 2004;Walters
and Holling, 1990). Failure to recognize and account for these sources of
uncertainty can severely compromise management performance, and
in some cases, has led to catastrophic environmental and economic
losses (Williams et al., 1996; Walters, 1986). However, the general
lack of uncertainty estimates for most eutrophication models, the arbi-
trary selection of higher – and often unattainable – threshold values
for water quality standards as a hedge against unknown forecast errors,
riskymodel-basedmanagement decisions and unanticipated system re-
sponses are still the typical management practice (Arhonditsis, 2009;
Arhonditsis et al., 2007; 2008a,b).

Given this ominous context, there has been a growing interest in the
theory of stochastic decision processes and the development of practical
methods that can explicitly accommodate the uncertainty in the re-
sponse of environmental systems to both controlled and uncontrolled
factors (Dorazio and Johnson, 2003). In this regard, particular emphasis
has been placed on the implementation of Bayesian inference methods
that enable the explicit consideration of model uncertainty, can be en-
gaged with the policy practice of adaptive management, and have the
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ability to update and improve model predictions and management ac-
tions in space and time (Kennedy and O'Hagan, 2001; Zhang and
Arhonditsis, 2008). The Bayesian inference is consistent with the scien-
tific process of progressive learning and offers a natural mechanism for
sequentially updating beliefs (specified in terms of model parameters)
every time new data are collected from the system and for predicting
the consequences of future management actions, while properly ac-
counting for uncertainty in the updated beliefs (Arhonditsis et al.,
2008a). Recent research has also shown that the Bayesian paradigm
can effectively alleviate problems of spatiotemporal resolutionmismatch
among different submodels of integrated environmental modeling
systems, overcome the conceptual or scale misalignment between pro-
cesses of interest and supporting information, exploit disparate sources
of information that differ with regard to themeasurement error and res-
olution, and accommodate tightly intertwined environmental processes
operating at different spatiotemporal scales (Boone et al., 2012; Hooten
et al., 2011; Qian et al., 2010; Wikle, 2003; Wikle et al., 1998; Zhang
and Arhonditsis, 2009).

Several recent studies have attempted to demonstrate the benefits
of Bayesian inference techniques in the context of model-based water
quality management. For example, Arhonditsis et al. (2007; 2008a,b;
2011) introduced a Bayesian calibration scheme using a wide range of
complexity mathematical models and statistical formulations that ex-
plicitly accommodate measurement error, parameter uncertainty, and
model structure imperfection. In particular, the statistical characteriza-
tion of the calibration framework was based on one of the following
assumptions: (i) a “perfect” model structure along with additive (or
multiplicative) measurement error; (ii) a simulator that imperfectly
represents the dynamics of the natural system and the process error is
invariant with the input conditions, i.e., the difference between model
and system dynamics was assumed to be constant over the annual
cycle for each state variable; and (iii) amodel structure that imperfectly
represents the dynamics of the environmental system but the corre-
sponding process error varies with the input conditions, i.e., time vari-
ant error terms were specified for each state variable. The former
formulation postulates that the model misfit is solely caused by the
error associated with the data, whereas the latter ones also consider
errors in the model structure, e.g., missing key ecological processes,
misspecified forcing functions, and erroneous mathematical expres-
sions. It should also be noted that, aside from the analytical/sampling
error, the term measurement error also reflects the notion that the ob-
servational data are just a “snapshot” of the real system, an instanta-
neous record of few components from numerous complex and
interactive processes that depending on the sampling network used,
the ecosystem modeled and the questions addressed, can form a prag-
matic basis for evaluating model performance (Arhonditsis and Brett,
2004). The characterization of the uncertainty underlying themodel pa-
rameters prior tomodel calibration (prior parameter distributions) was
based on field observations from the studied system, laboratory studies,
literature information, and expert judgment using the protocol
presented by the Steinberg et al. (1997) study. The Bayesian calibration
framework can then be used to quantify the information the data con-
tain about model inputs, to offer insights into the covariance structure
among parameter estimates, and to obtain predictions alongwith cred-
ible intervals for model outputs.

A common denominator of the aforementioned statistical formula-
tions was the postulation of conditional independence among the
error terms for various model endpoints. Striving for simplicity, this
strategy offers a convenient statistical description of the “model calibra-
tion” problem, but profoundly downplays the observed covariance
patterns among interconnected ecosystem variables, e.g., nutrients-
phytoplankton–zooplankton. The question arising though is to what
extent this pragmatic approach introduces a systematic bias in the
model parameterization and may affect the capacity of the modeling
exercise to support robust predictive statements. To this end, our
analysis evaluates the posterior parameter patterns and predictive
performance of a limiting nutrient–phytoplankton–zooplankton–
detritus model when the Bayesian calibration framework explicitly
accommodates the covariance of the error terms associated with
different state variables. We synthesize the lessons learned from this
exercise with the findings of a second comparative analysis that aims
to optimize model structure. In particular, we selected three formulas
of the zooplankton mortality term (linear, hyperbolic, sigmoidal) and
examine their capacity to determine the posterior parameterization as
well as the reproduction of the observed patterns. Our intent is to
illustrate the variety of options along with the critical decisions
involved when selecting the most suitable statistical framework for
model calibration and/or the optimal model structure. It is our belief
that our case study will offer – much needed – prescriptive guidelines
for the effective integration of Bayesian inference with process-based
models.

2. Methods

2.1. Case study

The study site for our modeling work was the Hamilton Harbour,
Ontario, Canada, a large embaymentwith long history of eutrophication
problems primarily manifested as excessive algal blooms, low
water transparency, predominance of toxic cyanobacteria, and low
hypolimnetic oxygen concentrations during the late summer (Hiriart-
Baer et al., 2009; Ramin et al., 2011). Since the mid 80s, when the
Harbour was identified as one of the 43 Areas of Concern (AOC) in the
Great Lakes area, the Hamilton Harbour Remedial Action Plan (RAP)
was formulated through a variety of government, private sector, and
community participants to provide the framework for actions aimed
at restoring the Harbour environment (Hall et al., 2006). The foundation
of the remedial measures and the setting of water quality goals reflect
an ecosystem-type approach that considers the complex interplay be-
tween abiotic variables and biotic components pertinent to its beneficial
uses (Charlton, 2001). The drastic nutrient loading reduction has histor-
ically played a central role in the restoration efforts, although the deter-
mination of the critical levels has been a thorny issue as the population
growth and increasing urbanization accentuate the pressure for expan-
sion of the local wastewater treatment plants (WWTPs) (Charlton,
2001).

Recent modeling work suggests that the water quality goals for TP
levels b20 μg L−1, chlorophyll a concentrations between 5–10 μg L−1

and water clarity N3 m will likely be met, if the proposed phosphorus
loading reductions at the level of 142 kg day−1 are actually achieved
(Gudimov et al., 2010; 2011; Ramin et al., 2011). However, it was em-
phasized that the predictive capacity of any modeling exercise in the
Harbour is conditional upon the credibility of the contemporary nutri-
ent loading estimates, which are uncertain and appear to inadequately
account for the contribution of non-point sources, episodic meteorolog-
ical events (e.g., spring thaw, intense summer storms), and short-term
variability at the localWWTPs (Gudimov et al., 2011). A follow-up anal-
ysis considered the fact that there is no true model of an ecological sys-
tem and used an averaging scheme for obtaining weighted averages of
the forecasts from two models of different complexity (Ramin et al.,
2012). Two important unknown factors were identified that can poten-
tially modulate the response of the system to the exogenous nutrient
loading reduction and may shape the duration of the transient phase
as well as the system resilience in the “post-recovery” era. First, the dy-
namics of phosphorus in the sediment-water column interface are
still poorly understood, and thus the historical notion that the internal
loading in the Harbour is minimal may be inaccurate. Second, the lack
of fundamental knowledge of the regulatory factors of herbivorous zoo-
plankton abundance and composition, even though existing evidence
suggests that a thriving zooplankton community can be instrumental
for achieving faster recovery rates in the Harbour. The latter prospect
highlights a central conclusion drawn from the recent modeling work
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that the bottom–up (i.e., nutrient loading reduction) approach histori-
cally followed in the area was sufficient to bring the system in its pres-
ent state, but any further improvements should be sought in the context
of a combined bottom–up and top–down control (Gudimov et al., 2011;
Ramin et al., 2011).

2.2. Mathematical model

We used a simple mathematical model that considers the interplay
among the limiting nutrient (phosphate), phytoplankton, zooplankton,
and detritus (particulate phosphorus), also known asNPZDmodel in the
literature. The spatial segmentation of themodel consists of three com-
partments representing the epilimnion, thermocline, and hypolimnion
of the system. Detailed presentation of the mathematical equations
and various assumptions can be found elsewhere (Arhonditsis et al.,
2007; 2008a,b; Ramin et al., 2012), and thus we provide here a brief de-
scription of the mechanistic foundation of the model. The equation for
phytoplankton biomass accounts for production, losses due to basalme-
tabolism, herbivorous zooplankton grazing, and settling. Phytoplankton
growth is directly linked to the ambient phosphorus concentrations
without explicit consideration of the control exerted by the intra-
cellular storage strategies. Phytoplankton basalmetabolic losses include
all internal processes that decrease algal biomass aswell as naturalmor-
tality. The phosphate equation considers the phytoplankton uptake, the
gains due to zooplankton excretion/predation, the bacteria-mediated
mineralization of detritus, and the net diffusive fluxes between adjacent
compartments. The detritus equation takes into account the contribu-
tions from phytoplankton respiration and zooplankton excretion, and
the losses due to bacteria-mediated mineralization and settling. The ef-
fects of the seasonal temperature cycle on phosphate diffusion and sed-
iment forcing are described by a trigonometric function (Arhonditsis
et al., 2007). Phosphorus release from the sediments in the three spatial
segmentswas represented by normal probability distributions, founded
upon empirical estimates from previous studies in the Harbour (Azcue
et al., 1998;Mayer andManning, 1990), whichwere then independent-
ly updated by the Bayesian calibration exercise.

The zooplankton biomass equation considers zooplankton growth
and losses due to natural mortality and predation. Zooplankton feeds
upon phytoplankton and detritus with kinetics described by the Holling
Type III function. Contrary to our earlierwork (Law et al., 2009), the pal-
atability of the two food sources (ω) is treated as a stochastic node
assigned a prior distribution and subjected to updating by the calibra-
tion dataset. The zooplankton mortality/higher predation closure term
can have a strong influence on the dynamics of plankton models
(Edwards and Yool, 2000). In this study, we evaluated three formulas
of the zooplanktonmortality term and examined their capacity to influ-
ence the posterior parameterization and subsequently match the cali-
bration data. The linear form postulates a mortality rate independent
of zooplankton concentration and may be interpreted as representing
a predator whose biomass does not fluctuate (Edwards and Brindley,
1999). This functional form is used in cases where there is not sufficient
information to justify the use of more complex mathematical expres-
sions. On the other hand, both the hyperbolic and sigmoidal forms are
characterized by a plateau at high zooplankton concentrations,
representing satiable predators, e.g., long handling times for the food
items, upper bounds on predator density due to finite carrying capacity
of the habitat or due to direct interference among the predator them-
selves (Edwards and Yool, 2000). The sigmoidal differs from the hyper-
bolic form in its predictions at low zooplankton concentrations, in that
the former response leads to lower rates of predation than the latter
one (Malchow, 1994). As zooplankton density increases though, the
sigmoidal equation predicts faster increase in predation rate and the
overall response resembles to a “S-shaped” pattern. This kind of preda-
tion mimics a predator with threshold behavior that switches among
different prey types; namely, a predator that targets a prey only if its
density exceeds a certain level to make a net biomass gain for the effort
expended (Edwards and Yool, 2000). A fraction of the zooplankton
grazing is assimilated and fuels growth, another fraction is excreted as
phosphate, while the remaining fraction represents the fecal pellets
contributing to the detritus pool. Finally, we assumed a unimodal re-
sponse of the planktonic processes on temperature seasonal variability
modeled by a Gaussian-like probability curve (Arhonditsis and Brett,
2005).

2.3. Statistical formulations

All of the statistical formulations examined are founded upon the as-
sumption that the plankton model is an imperfect simulator of the sys-
tem dynamics and the structural error is constant over the annual cycle
for each state variable. The uncertainty associated with the dataset is
also accounted for with a data quality submodel (Wellen et al., 2012).
This component of our framework stipulates that each observation
from the system is a random draw from a normal distribution, in
which the mean value represents the (latent) error-free observation
(also referred to as “true value”) and the variance is associated with
the sampling error or other sources of uncertainty, e.g., variability in
time/space (Carroll et al., 2006). In particular, we assumed that the
monthly standard deviations of the modeled water quality variables
were 25% of the corresponding mean monthly values, a fraction that
comprises both analytical error and the inter-annual variability in the
Hamilton Harbour (Hiriart-Baer et al., 2009; Ramin et al., 2011). Under
the assumption of conditional independence among the model error
terms, an observation i for the state variable j, yij, can be described as:

yij eN byij;σ ijobs

� �
byij eN f θ; xi; y0ð Þ;σ j

� �
θeMVLN θµ;∑θ

� �
y0 eMVN y0µ;∑0

� �
σ ijobs

2 ¼ 0:25 � yij
� �2

1=σ j
2 eGamma 0:001;0:001ð Þ

i¼1;2;3;…;n and j¼1;…;m

ð1Þ

where ŷij represents the latent “true value” used to parameterize the
process-based models; σijobs corresponds to the observation error; f(θ,
xi, y0) denotes the plankton models that consider linear (Model 4), sig-
moidal (Model 5), and hyperbolic (Model 6) zooplanktonmortality (clo-
sure) terms; σj is the time-independent, variable-specific process
(structural) error term; xi is a vector of time-dependent control vari-
ables (e.g., boundary conditions, forcing functions) describing the pre-
vailing nutrient loading/weather conditions; the vector θ is a time
independent set of the calibration model parameters; θμ indicates the
vector of the mean values of θ in logarithmic scale; Σθ = Il · σθ

T · σθ

and σθ = [σθ1,…, σθl]T corresponds to the vector of the shape parame-
ters of the l lognormal distributions (standard deviation of log θ),
where l = 16 and 17 depending on themodel selected; y0 corresponds
to the vector of the values of the state variables at the initial time point t0
(initial conditions); the vector y0μ = [y1,1,…, y1,π]T corresponds to the
January values of all the state variables of the model; π = 12 (simple
model: 4 state variables × 3 spatial compartments); m (=6) corre-
sponds to the number of state variables for which empirical information
from the system exists and thus contribute to the model likelihood
(phosphate, phytoplankton, zooplankton, and particulate phosphorus
in the epilimnion along with hypolimnetic phosphate and particulate
phosphorus); n is the number of observations in time used to calibrate
the model (12 average monthly values); MVLN and MVN represent the
multivariate lognormal and multivariate normal distributions, respec-
tively. The characterization of the prior density of their initial values
was based on the assumption of a Gaussian distribution with mean
values derived from the January monthly averages and moderately dif-
fuse standard deviations, specified as 25% of the mean value for each
state variable j; i.e., Σ0 = Iπ · (0.25)2 · y0μ

T · y0μ. Notably, when flat



110 M. Ramin, G.B. Arhonditsis / Ecological Informatics 18 (2013) 107–116
priors were assigned to the initial conditions, the inference drawn
remained practically unaltered, although the posterior uncertainty as-
sociated with the initial conditions was somewhat greater.

In the next step, our Bayesian calibration approach explicitly accom-
modated the covariance of the error terms associatedwith the state var-
iables of themathematicalmodelwith the linear zooplanktonmortality.
We examined three statistical formulations that assumed (i) no prior
knowledge on the process error values but high confidence on our
knowledge of their correlation patterns (Model 1), (ii) some prior
knowledge on the variance and covariance of the error terms (Model
2), and (iii) high level of confidence on both process error variance
and covariance values (Model 3). Based on these specifications, an ob-
servation yij can be described as follows:

yij eN byij;σ ijobs

� �
byij eMVN f θ; xi; y0ð Þ;ΣMð Þ

θeMVLN θµ;Σθ

� �
y0eMVN y0µ;Σ0

� �
σ ijobs

2 ¼ 0:25·yij
� �2

ΣM ¼ ρ·σT·σ

ρ ¼
1; r12; :::; r1 j−1; r1 j
::::::::::::::::::::::
r j1; r j2; :::; r j−11;1

24 35 ;σ ¼ σ1;…;σ j

h iT
1=σ j

2 eGamma 0:001;0:001ð Þ Model 1ð Þ
ΣM

−1 eWishart Ω;nð Þ Model 2ð Þ
1=σ j

2 e Gamma α1;α2ð Þ Model 3ð Þ
i ¼ 1;2;3;…;n and j ¼ 1;…;m

ð2Þ

where ΣM represents the process (structural) error covariance matrix,
which provides the basis for the three statistical formulations: (i) the
error variances are treated as stochastic nodes with no prior knowledge
on the respective values, while the correlation coefficients are assumed
to be known and thus remained fixed during the model updating. Spe-
cifically, the error precision terms, 1/σj

2 are assigned flat gamma priors
and the process error correlation values are specified by the matrix ρ,
reflecting the spatio-temporal correlation patterns among the corre-
sponding water quality variables in the system, i.e., phosphate, chloro-
phyll a, zooplankton biomass, and particulate phosphorus (Model 1);
(ii) the entire process error covariance matrix is treated stochastically.
Namely, the precision (inverse covariance) matrix ΣM

−1 is assigned a
Wishart prior (Model 2), in which the scale matrix Ω represents an as-
sessment of the order of magnitude of the covariance matrix among
the water quality variables, as has been historically manifested in the
system (Hiriart-Baer et al., 2009). To represent some confidence on
the existing information, we chose eight degrees of freedom for
this distribution (n = 8), which is greater than the rank of the matrix
(=6); and (iii) informative priors for the individual error terms σj are
combined with the empirical correlation matrix ρ (Model 3). In particu-
lar, we assumed that the average error precisions are equal to the
values typically reported for the same state variables in themodeling lit-
erature in eutrophic systems (see Arhonditsis and Brett, 2004). That is,
the mean square error for phosphate, particulate phosphorus, phyto-
plankton and zooplankton biomass were assumed to be equal to
1.5 μg P L−1, 2 μg P L−1, 200 μg C L−1, and 50 μg C L−1, respectively,
while the corresponding uncertainty (standard deviation) was set half
to their mean values.

Sequences of realizations from the posterior distribution of the
modelwere obtained usingMarkov chainMonte Carlo (MCMC) simula-
tions (Gilks et al., 1998).We used the general normal-proposal Metrop-
olis algorithm coupled with an ordered over-relaxation to control the
serial correlation of the MCMC samples (Neal, 1998). As originally pro-
posed by Arhonditsis et al. (2007), the present Bayesian parameter esti-
mation is based on two parallel chains with starting points: (i) a vector
that consists of the mean values of the prior parameter distributions,
and (ii) a vector based on a preliminary deterministic calibration of
the two models. The models were run for 30,000 iterations and con-
vergence was assessed with the modified Gelman–Rubin convergence
statistic (Brooks and Gelman, 1998). The accuracy of the posterior pa-
rameter values was inspected by assuring that the Monte Carlo error
for all parameters was less than 5% of the sample standard deviation.
Our framework is implemented in the WinBUGS Differential Interface
(WBDiff), an interface that allows numerical solution of systems of ordi-
nary differential equations within the WinBUGS software. Aside from
the differences in the central tendency and the underlying uncertainty,
we also evaluated the degree of updating between parameter priors and
posteriors by assessing the changes in the shape of the corresponding
distributions using the delta index (Endres and Schindelin, 2003;
Hong et al., 2005). The delta index measures the distance between
two probability distributions:

δθi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∫ π θið Þ log 2π θið Þ

π θið Þ þ π θijDð Þ þ π θijDð Þ log 2π θijDð Þ
π θið Þ þ π θijDð Þ

� �
dθ

s
ð3Þ

where π(θi) and π(θi|D) represent the marginal prior and posterior dis-
tributions of parameter θi, respectively. This metric is equal to zero if
there is no difference between the two distributions, and equal toffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log2

p
if there is no overlap between the two distributions. All delta

index values will be presented as percentages of this maximum value.

3. Results–discussion

3.1. How robust is the posterior parameterization among the differentmod-
el configurations?

The two MCMC sequences for all the models examined converged
rapidly (≈4500–5000 iterations) and the statistics reported were
based on the last 25,000 draws by keeping every 20th iteration
(thin = 20). Posterior mean values and standard deviations of the cali-
bration parameter vector of the statistical formulation that treats all the
entries of the error covariancematrix as stochastic nodes (Model 2) and
the model that considers sigmoid zooplankton mortality (Model 5) are
provided in Tables 1 and Figs. 1–2. Similarly, the central tendencies of
the rest of the model configurations along with the underlying uncer-
tainty are presented in Table 1 and Figs. 1–4 in the electronic Supple-
mentary material. Relative to the prior parameter specification, the
posterior statistics generally indicate that a substantial amount of
knowledge was gained for most of the parameters after the model
updating. Characteristic examples were the distinct shifts of the most
likely values of the zooplankton half saturation constant (μ), respiration
rate (r), detritus sinking rate (ψ), detritus mineralization rate (φ), and
the zooplankton preference for detritus relative to phytoplankton (ω).
Likewise, several of the marginal posteriors were characterized by sig-
nificantly narrower standard deviations compared to those specified
prior to model calibration, such as the mineralization rate (φ), detritus
sinking rate (ψ), zooplankton preference for detritus relative to phyto-
plankton (ω), zooplankton grazing rate (λ), and phosphorus half satura-
tion constant (Kp). Simply, the consideration of the calibration data
suggests that the kinetics of zooplankton grazing are somewhat slower
than what was assumed based on prior literature information, zoo-
planktonmore heavily relies upon the algal standing stock in the system
(i.e., higher selectivity for algal food items), the mineralization rates
of particulate phosphorus are relatively slower than what is typically
experienced in eutrophic systems, the particle settling rate varies
between 0.4–0.8 m day−1, and the phytoplankton characterization
tends towards higher respiration rates and somewhat faster phospho-
rus kinetics. On theother hand, therewere several parameterswith pos-
terior distributions that remained – almost consistently – unaltered,
suggesting that the dataset used did not offer substantial insights
into the parameterization of the phytoplankton settling rate (s), the



Table 1
Parameter definitions and posterior estimates of themean values and standard deviations of the stochastic nodes of statistical formulations that assign aWishart prior to the error covari-
ance matrix (Model 2), and a model that considers sigmoid (Model 5) zooplankton mortality.

Parameters Description Units Priors Posteriors

Model 2 Model 5

Min Max Mean SD Mean SD

a Maximum phytoplankton growth rate day−1 1.000 3.000 2.221 0.364 2.243 0.368
d Zooplankton mortality rate day−1 0.080 0.160 0.128 0.016 0.115 0.014
Kp Half-saturation constant for PO4 uptake mg P m−3 5.000 30.00 9.988 2.854 9.994 2.537
r Phytoplankton respiration rate day−1 0.010 0.100 0.119 0.026 0.099 0.026
s Phytoplankton sinking loss rate m day−1 0.010 0.300 0.064 0.045 0.082 0.058
μ Zooplankton grazing half-saturation coefficient mg P m−3 1.000 20.00 13.54 2.285 15.24 4.016
φ Detritus mineralization rate day−1 0.010 0.150 0.013 0.005 0.012 0.004
ψ Detritus sinking rate m day−1 0.050 1.500 0.447 0.062 0.422 0.031
λ Maximum zooplankton grazing rate day−1 0.400 0.800 0.554 0.045 0.487 0.072
kb Background light extinction coefficient m−1 0.150 0.300 0.202 0.025 0.205 0.026

kc Light extinction coefficient due to chlorophyll a m2 mg−1 0.010 0.080 0.023 0.009 0.021 0.006
a Zooplankton assimilation efficiency – 0.400 0.600 0.479 0.036 0.461 0.031
β Zooplankton excretion fraction to phosphate – 0.200 0.700 0.319 0.070 0.337 0.082
γ Zooplankton predation excretion fraction to phosphate – 0.200 0.700 0.353 0.073 0.407 0.102
ω Relative zooplankton preference for detritus compared to phytoplankton – 0.200 1.000 0.329 0.108 0.271 0.095
Is Half saturation light intensity MJ m−2 day−1 100.0 250.0 142.6 22.56 146.9 22.79
pred Half saturation constant for predation mg C m−3 35 80 – – 40.36 10.06
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background light attenuation (Kb), the light half saturation constant
(Ik), and the zooplankton predation excretion fraction to phosphate (γ).

A notable feature of the posterior patterns of the three statistical for-
mulations that explicitly accommodate the process error covariance was
the bi- or multimodality trends characterizing some of the parameters,
such as the zooplankton mortality rate (d), the maximum zooplankton
grazing rate (λ), and the detritus sinking rate (ψ). Nonetheless, the cor-
relation structure of the model parameters, as depicted by the MCMC
Fig. 1. Comparison between prior and posterior parameter distributions of the calibration vecto
matrix (Model 2).
posterior samples revealed distinct differences among the three formula-
tions (Tables 2–5 in electronic Supplementary material). In particular,
the formulation that treats all the entries of the error covariance matrix
as stochastic nodes was characterized by strong correlations among the
model parameters, which in turn may reflect an incomplete coverage
of their joint posterior distribution (Qian et al., 2003). However, the
assessment of the changes in the shape of the parametermarginal distri-
butions after model updating does not provide strong support of the
r of the statistical formulations that assign a Wishart prior to the process error covariance



Fig. 2. Comparison between prior and posterior parameter distributions of the calibration vector of the model with the sigmoid closure term (Model 5).
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latter assertion, as the delta index values associated with Model 2 were
not distinctly different from the rest of the configurations examined
(Fig. 5). Interestingly, the correlation parameter patterns were less pro-
nounced with the formulation that assumes conditional independence
among the process error terms (Model 4), and even weaker correlations
were manifested when all the off-diagonal entries of the covariance ma-
trixwere assignedfixed correlation values of the process error terms, i.e.,
Models 1 and 3 (See electronic Supplementary material).

The delta index reiterates our previous assertion that there are pa-
rameters, such as the zooplankton grazing half-saturation constant
(μ), mineralization rate (φ), detritus sinking rate (ψ), phytoplankton
respiration rate (r), and zooplankton preference for detritus relative to
phytoplankton (ω) that consistently demonstrate the highest distance
between priors and posteriors, while other parameters, such as the
background light extinction coefficient (kb), the phytoplankton settling
rate (s), zooplankton excretion fraction to phosphate (β), and maxi-
mum zooplankton grazing rate (λ) are characterized by the lowest
delta values across all the model configurations examined (Fig. 5). We
also note the relatively uniform patterns of the delta index across the
calibration parameter vector, when assigningflat gammapriors coupled
with fixed correlation to the entries of the process error covariancema-
trix (Model 1). Generally, even though there were discrepancies in the
marginal posterior distributions of the calibration parameters, our anal-
ysis provides evidence that neither the statistical characterization of the
model error nor the closure term alone can dramatically alter the pa-
rameterization of plankton models when fitting a specific dataset.
3.2. What is the optimal model configuration to fit the calibration dataset?

As noted by Ramin et al. (2012), the present model structure cannot
adequately reproduce the observed plankton patterns in the Hamilton
Harbour, and this result was evident across all the model configurations
examined. Generally, the posterior medians along with the 95% credible
intervals derived from the calibration of the six model variations were
close to the observed data for epilimnetic phosphate and total phospho-
rus, but there were substantial discrepancies with respect to the mea-
sured chlorophyll a concentrations, total zooplankton biomass, and
hypolimnetic phosphate (Figs. 5–6 in the electronic Supplementary ma-
terial). In particular, the model accurately predicts the epilimnetic phos-
phate and total phosphorus levels including the winter maxima and
summer minima. The model closely represents the summer chlorophyll
a concentrations (≈15–17 μg chla L−1), but the algal abundance in the
fall is distinctly over-predicted (N10 μg chla L−1). The two major peaks
of the zooplankton biomass are underestimated, and the model does
not reproduce the phosphate hypolimnetic accumulation in the summer.

Despite the apparent similarities in their performance though,
the posterior estimates of the process error terms paint a somewhat dif-
ferent picture in that there were some distinct differences among the
different model configurations (Table 2). First, the statistical formula-
tion that treats all the entries of the error covariancematrix as stochastic
nodes (Model 2) appears to be characterized by significantly lower error
estimates for several state variables, such as the phytoplankton abun-
dance, zooplankton biomass, and epilimnetic particulate phosphorus.



Fig. 3.Assessment of the changes in the shape of parameter distributions of the sixmodel configurations examined. Thedelta index is equal to zero if there is nodifference between the two
distributions, and equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log2

p
if there is no overlap between the two distributions. All delta values are presented as percentages of this maximum value.
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However, this finding should be interpreted with caution as the incor-
poration of the measurement/observation error submodel alters the
conventional meaning of the structural error. Specifically, our calibra-
tion framework considers both the discrepancies between measured
and “true” data as well as between “true” values and model outputs
(Carroll et al., 2006). As such, the likelihood of the observation i for
the state variable j given our mechanistic model is the product of the
likelihood of the two levels of our hierarchical configuration:

pðyijjbyijÞ � pðbyijj f θ; xi; y0Þð Þ ¼
1ffiffiffiffiffiffi

2π
p

σ ijobs

exp −
yij−byij� �2

2σ2
ijobs

0B@
1CA�

1ffiffiffiffiffiffi
2π

p
σ jj− j

exp −
byij− f θ; xi; y0ð Þ

� �2

2σ2
jj− j

0B@
1CA

σ2
jj− j ¼ σ2

j−Σ j;− jΣ
−1
− jΣ− j; j

ð4Þ

where σj| − j
2 corresponds to the error variance for the state variable j

conditional on the rest model outputs −j; and the elements of Σ−j

and Σ−j,j represent the process error variance for the state variables
−j and the covariance between j and−j. Thus, the realistic discrimina-
tion between measurement and process errors comes with a price as it
adds an additional number ofm × n stochastic nodes, thereby substan-
tially increasing the complexity of the calibration exercise. Importantly,
our analysis provides evidence that the estimation of the “true” data can
differ significantly depending on the statistical description of themodel
error. In particular, the most complex statistical formulation (Model 2)
results in estimates of the “true” data that significantly distance them-
selves from the observed values (Fig. 4). It is also important to note
that the posterior predictions of the same configuration demonstrate
considerable discrepancy from the measured data, and thus the
aforementioned low structural error values stem from the shifts in the
“true” data values rather than from a thorough exploration of the
parameter space and subsequent improvement of the model fit.
By contrast, the two formulations that postulate a more rigid error co-
variance structure (Models 1 & 3) are practically characterized by an
overlap between “true” and observed data as well as an improved
agreement with the actual observations (Fig. 4). Further, the higher
delta index values for the majority of the parameters of the latter two
configurations are indicative of a more efficient use of the mechanistic
foundation of the modeling framework to reproduce the observed pat-
terns (Fig. 3).



Fig. 4. Comparison between the observed phytoplankton biomass (chlorophyll a) values
(black dots) and (A) the median values of the stochastic variable “true observations” or
(B) the median predicted phytoplankton biomass values based on the models that assign
to the process (structural) error terms flat gamma priors and prespecified correlation
(Model 1), a Wishart prior (Model 2), and informative gamma priors coupled with fixed
correlation (Model 3).

Fig. 5. Comparison between the observed zooplankton biomass data (black dots) and
(A) the median values of the stochastic variable “true observations” or (B) the median
predicted zooplankton biomass values based on the models with linear (circle), sigmoid
(lozenge), and hyperbolic (triangle) closure terms.
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According to our analysis, the assumption of conditional indepen-
dence of the process error terms does not prohibit major excursions of
the stochastic node “true” values from the observed data, although the
posterior error estimates are not as low as with the full stochastic treat-
ment of the error covariance matrix (Table 2 & Fig. 5). In particular, the
consideration of sigmoid zooplankton mortality appears to more effec-
tively balance between a process-based fit of the zooplankton dynamics
and a relaxation of our confidence on the credibility of the calibration
dataset used (Fig. 5). It is also interesting to note that the use of
linear zooplankton mortality (Model 4) is characterized by the lowest
process error values among the closure terms examined, suggesting a
greater susceptibility to the previously reported calibration pattern
(Fig. 7 in electronic Supplementary material). From a management
point of view, the eutrophication risk assessment statements supported
by the different model configurations are fairly similar, although a
careful inspection of the marginal and joint predictive posteriors of
chlorophyll a and total phosphorus provided by the third statistical for-
mulation (Model 3) are characterized by somewhat fatter tails relative
to the second model (Fig. 8 in electronic Supplementary material). Im-
portantly, the difference in the projected exceedance frequencies of
the threshold value of 40 μg TP L−1 (b1% versus 21%) suggests that
the statistical characterization of themodel error can alter the inference
drawn regarding the assessment of prevailing environmental condi-
tions (e.g., delisting decisions).

4. Conclusions–future perspectives

In this study, we attempted to elucidate the broader implications of
the statistical assumptions typically made about the model structural
error as well as to evaluate the prospect of Bayesian calibration to
guide the optimization of model structure. We examined statistical for-
mulations that either postulate conditional independence or explicitly
accommodate the covariance among the process error terms for various
model endpoints. We also selected three mathematical expressions of
the zooplankton mortality term (linear, hyperbolic, sigmoidal) and
assessed their capacity to determine the posterior model parameteriza-
tion and the reproduction of the observed ecosystempatterns. The basic
lessons learned from the present analysis are as follows:

• Our analysis provides evidence that neither the statistical characteriza-
tion of themodel error nor the zooplanktonmortality/higher predation
term alone can significantly change the parameterization of plankton
modelswhenfitting a specific dataset. Although therewere differences
in the marginal posterior distributions, the ecosystem functioning
postulated after the updating of the six model configurations with
the training dataset was practically similar. Several parameters related
to zooplankton feeding patterns, such as the zooplankton grazing half-



Table 2
Monte Carlo posterior estimates of the mean values and standard deviations of the process (structure) error terms of the six model configurations examined.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Parameter Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

σPO4epi 0.508 0.521 0.303 0.084 1.339 0.248 0.891 0.477 1.117 0.525 1.112 0.548
σPHYTepi 245.5 75.19 19.22 5.463 235.6 41.60 106.4 67.53 171.3 75.76 151.3 70.53
σZOOPepi 77.35 27.16 8.659 2.374 73.59 22.10 7.634 11.53 21.57 11.86 12.58 9.982
σDETepi 9.069 9.266 0.284 0.081 1.851 0.405 0.636 0.861 0.588 0.831 0.685 0.894
σPO4hypo 1.076 0.423 0.089 0.290 0.089 0.343 1.846 0.640 2.021 0.674 2.003 0.664
σDEThypo 6.978 4.118 0.104 0.360 0.104 0.715 0.743 0.999 0.673 0.910 0.724 0.991
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saturation constant (μ), and zooplankton preference for detritus rela-
tive to phytoplankton (ω), or the epilimnetic dynamics of particulate
matter, such as mineralization rate (φ), detritus sinking rate (ψ), and
phytoplankton respiration rate (r), demonstrated the highest degree
of change relative to our prior knowledge on their values.

• Depending on the assumptions made about the process error, the
correlation patterns of the posterior parameter space were character-
ized by distinct differences, which in turn reflect different levels of
coverage/exploration of their joint posterior distribution. Strong corre-
lations among the model parameters were found with the statistical
formulation that considers all the entries of the error covariancematrix
as stochastic nodes, whereas the formulation that assumes conditional
independence among the process error terms demonstrated weaker
correlation patterns. The weakest parameter correlations though
were found when the correlation values associated with the off-
diagonal elements of the process error covariance matrix were speci-
fied prior to the model calibration.

• Our analysis revealed an interesting interplay among the error covari-
ance structure, the zooplankton closure term, and the statistical formu-
lation that accommodates the error associated with the calibration
dataset.We provided evidence that the statistical assumption of condi-
tional independence of the process error terms as well as the complete
probabilistic treatment of the error covariance can place more empha-
sis on the characterization of the observation error, and thus may inef-
ficiently capitalize on the mechanistic basis of the modeling exercise.
Our study showed that these statistical configurations can overinflate
the discrepancy between the latent variable “true values” and the actu-
al data, a pattern that was not manifested when we postulated a rigid
process error correlation structure. Thus, the reproduction of the ob-
served patterns with the latter strategy appears to be based on a
moremeticulous scrutiny of the potential model realizations, although
it is admittedly founded upon an empirical but somewhat subjective
(or at least site-specific) specification of the co-dependence of the pro-
cess error terms.

• Seeking for the optimal likelihood expression to quantify model struc-
tural error, our earlier work showed that the assumption of a “perfect”
model structure, postulating that the misfit is solely caused by
the measurement error associated with the data, usually results in
narrow-shaped parameter distributions due to an over-estimation of
the information content of the observations. This over-conditioning
of the parameter estimates on the calibration dataset can limit the
potential applicability of the model in the extrapolation domain
(Arhonditsis et al., 2008a). On the other hand, the development of sta-
tistical formulations explicitly recognizing the lack of perfect simula-
tors of natural system dynamics is a promising prospect for the
Bayesian calibration framework, but a set of prescriptive guidelines is
necessary to make informative decisions with respect to the selection
of spatiotemporally variant or invariant process error and the explicit
consideration of the covariance structure or conditional independence
of the error terms. In this regard, our work suggests that the error for-
mulation alone cannot induce dramatic changes in themodel parame-
terization, but the differences in the inference drawn can be non-trivial
depending on the dataset used, the model structure considered or the
management questions addressed (Arhonditsis et al., 2007; 2008a,b).
In the absence of adequate prior knowledge, an appealing alternative
could also be the use of Bayesian model averaging for obtaining
weighted averages of the forecasts from different model structures
and/or statistical descriptions of the process error terms (Ramin
et al., 2012). In the context of ecological process-based modeling, this
approach should not be viewed solely as a framework to improve our
predictive tools, but rather as an opportunity to compare alternative
ecological dynamics to challenge existing empirical information, to in-
tegrate across conflicting paradigms, and to compare different statisti-
cal assumptions regarding the model structural uncertainty.

• In this study, our approach is on parwith the recent trend in themodel-
ing practice to attain calibration techniques that are statistically-based
and thus allow deriving probabilistic model predictions (Reichert
and Schuwirth, 2012). Our findings should assist with existing
efforts to combine statistical descriptions of bias in model outputs
(Bayarri et al., 2007; Higdon et al., 2004; Kennedy and O'Hagan,
2001) with multiobjective optimization techniques (Efstratiadis and
Koutsoyiannis, 2010; Gupta et al., 2003; Madsen et al., 2002; Reichert
and Schuwirth, 2012; Vrugt et al., 2003). Future work should focus on
the development of procedures to support ecological forecasts in the
extrapolation model domain while impartially accounting for the
process error and to efficiently accommodate the bias associated
with variables for which no observations exist. While we believe that
the latter issue should primarily be a factor that shapesmodel complex-
ity, our experience has been that the increase of complexity remains a
popular practice to reduce model bias and improve the fidelity of our
simulators.
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Table 1: Mathematical description of the plankton model: equations and their constituent processes.  
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* Exogenous loading, inflows and outflows are only considered in the epilimnion (i=1) 

 

 



 

Table 2: Description of the parameters that were not considered during the Bayesian calibration of the 

eutrophication model. 

Parameter Description Unit 

kt Effect of temperature on phytoplankton processes 0.005 
o
C

-2
 

ktz Effect of temperature on zooplankton processes 0.006 
o
C

-2
 

P/Cphyto Phosphorus to carbon ratio for phytoplankton 0.015 mg P· (mg C)
-1

 

P/Czoop Phosphorus to carbon ratio for zooplankton 0.029 mg P· (mg C)
-1

 

Tempref Reference temperature 20 
o
C 

ε Shape parameter for the trigonometric function tσ  0.85 



Table 3: Parameter definitions and Markov Chain Monte Carlo posterior estimates of the mean values and standard deviations of the 

stochastic nodes of statistical configurations that assign to the process (structural) error terms flat gamma priors and prespecified correlation 

(Model 1), and informative gamma priors coupled with fixed correlation (Model 3) and two models that consider linear (Model 4), and 

hyperbolic (Model 6) zooplankton mortality (closure) terms.  

Parameter Description Units 
Priors 

    Posteriors 

Model1 Model3 Model4 Model6 

Min Max Mean SD Mean SD Mean SD Mean SD 

a 
Maximum phytoplankton growth 

rate 
day

−1 
1.000 3.000 1.915 0.222 2.209 0.042 1.972 0.346 2.109 0.357 

d Zooplankton mortality rate day
−1 

0.080 0.160 0.139 0.017 0.089 0.061 0.165 0.015 0.126 0.014 

Kp 
Half-saturation constant for PO4 

uptake 
mg P m

−3
 5.000 30.00 8.357 1.530 10.98 2.180 10.71 3.609 9.369 2.665 

r 
Phytoplankton respiration  

rate 
day

−1
 0.010 0.100 0.069 0.014 0.070 0.013 0.074 0.033 0.107 0.023 

s 
Phytoplankton sinking loss  

rate 
m day

−1
 0.010 0.300 0.065 0.035 0.084 0.059 0.110 0.093 0.073 0.053 

µ 
Zooplankton grazing half-

saturation coefficient 
mg P m

−3
 1.000 20.00 8.206 1.164 9.682 2.205 6.806 1.315 15.17 2.739 

φ 
Detritus mineralization  

rate 
day

−1
 0.010 0.150 0.020 0.010 0.013 0.007 0.011 0.006 0.012 0.006 

ψ 
Detritus sinking  

rate 
m day

−1
 0.050 1.500 0.860 0.430 0.441 0.048 0.452 0.046 0.437 0.056 

λ 
Maximum zooplankton grazing 

rate 
day

−1
 0.400 0.800 0.560 0.019 0.597 0.037 0.519 0.030 0.510 0.066 

kb 
Background light extinction 

coefficient 
m

−1
 0.150 0.300 0.232 0.027 0.209 0.024 0.218 0.036 0.201 0.026 

kc 
Light extinction coefficient due to 

chlorophyll a 
m

2
 mg

−1
 0.010 0.080 0.017 0.006 0.017 0.005 0.021 0.006 0.021 0.008 

a 
Zooplankton assimilation 

efficiency 
- 0.400 0.600 0.438 0.024 0.448 0.042 0.471 0.014 0.458 0.033 

β 
Zooplankton excretion fraction to 

phosphate 
- 0.200 0.700 0.233 0.031 0.235 0.041 0.276 0.061 0.345 0.088 

γ 
Zooplankton predation excretion 

fraction to phosphate 
- 0.200 0.700 0.306 0.045 0.298 0.061 0.305 0.067 0.432 0.118 

ω 

Relative zooplankton preference 

for detritus compared to 

phytoplankton 

- 0.200 1.000 0.224 0.047 0.159 0.044 0.219 0.106 0.222 0.072 

Is Half saturation light intensity MJ m
-2

 day
−1

 100.0 250.0 142.3 16.93 140.4 23.09 138.0 19.93 143.7 21.81 

pred 
Half saturation constant for 

predation 
mg C m

−3
 35 80 - - - - - - 43.45 9.013 



Table 4: Parameter correlation matrix of the statistical formulation that assigns flat gamma priors along with fixed correlation to the 

entries of the process error covariance matrix (Model 1). (Bold numbers correspond to correlation coefficients with absolute value 

greater than 0.5) 

  Is a α β d Kp γ kb kc λ µ ω φ ψ r s 

Is 0.234 0.046 0.010 -0.014 -0.023 -0.051 -0.117 -0.029 0.000 0.029 -0.008 -0.114 0.012 -0.095 -0.051 

a -0.015 0.029 -0.027 0.404 0.017 0.122 0.304 -0.010 0.007 0.046 0.169 -0.035 0.216 0.101 

α 0.097 -0.006 0.019 0.137 -0.022 -0.009 -0.209 0.314 0.130 -0.046 -0.101 0.071 -0.021 

β -0.037 -0.045 -0.033 0.007 -0.012 -0.135 0.118 0.185 -0.021 -0.029 0.256 -0.042 

d -0.090 0.024 0.001 0.067 0.056 -0.479 -0.073 -0.045 -0.011 -0.090 -0.001 

Kp -0.026 -0.073 -0.412 -0.104 -0.028 -0.025 -0.097 -0.034 -0.179 -0.008 

γ -0.011 -0.002 -0.041 0.089 0.132 -0.057 0.258 0.184 -0.004 

kb -0.049 0.000 -0.023 -0.019 -0.091 0.007 -0.039 -0.012 

kc 0.011 -0.022 0.039 -0.072 -0.071 -0.017 0.019 

λ 0.394 -0.294 0.035 0.039 0.010 0.047 

µ 0.504 0.129 -0.158 0.191 -0.022 

ω 0.103 -0.253 0.305 -0.037 

φ -0.198 0.508 0.053 

ψ 0.019 -0.304 

r -0.056 

s                                 

 

 

 

 

 

 

 

 



Table 5: Parameter correlation matrix of the statistical formulation that treats all the entries of the process error covariance matrix 

as stochastic nodes (Model 2). (Bold numbers correspond to correlation coefficients with absolute value greater than 0.5) 

 

 

 

 

 

 

 

 

 
Is a α β d Kp γ kb kc λ µ ω φ ψ r s 

Is 
 

0.056 0.115 -0.523 -0.056 -0.205 -0.492 -0.342 0.532 0.285 -0.166 -0.371 -0.201 0.139 -0.547 -0.296 

a 
  

-0.640 0.198 0.590 0.209 -0.195 0.480 -0.069 -0.358 -0.545 -0.497 -0.622 -0.626 0.306 0.258 

α 
   

-0.157 -0.653 -0.004 -0.148 -0.520 0.412 0.681 0.666 0.359 0.391 0.687 -0.467 -0.113 

β 
    

-0.167 0.297 0.419 0.113 -0.157 0.032 0.310 0.468 0.337 0.118 0.174 0.482 

d 
     

-0.229 -0.226 0.639 -0.512 -0.818 -0.937 -0.794 -0.820 -0.964 0.713 -0.055 

Kp 
      

0.207 -0.123 -0.158 0.278 0.262 0.170 0.007 0.163 -0.204 0.531 

γ 
       

-0.014 -0.297 -0.014 0.275 0.516 0.471 0.212 0.096 0.296 

kb 
        

-0.604 -0.651 -0.503 -0.362 -0.439 -0.669 0.617 0.026 

kc 
         

0.641 0.361 0.151 0.229 0.559 -0.698 -0.242 

λ 
          

0.736 0.433 0.483 0.842 -0.779 0.078 

µ 
           

0.866 0.815 0.876 -0.528 0.092 

ω 
            

0.906 0.733 -0.272 0.142 

φ 
             

0.802 -0.377 -0.017 

ψ 
              

-0.779 -0.042 

r 
               

0.047 

s 
                



Table 6: Parameter correlation matrix of the statistical formulation that assigns informative gamma priors and fixed correlation to 

the entries of the process error covariance matrix (Model 3). (Bold numbers correspond to correlation coefficients with absolute 

value greater than 0.5) 

  Is a α β d Kp γ kb kc λ µ ω φ ψ r s 

Is 0.285 -0.078 -0.020 0.068 0.071 -0.043 -0.065 -0.001 0.016 -0.081 -0.003 -0.089 0.096 -0.160 -0.010 

a -0.170 -0.074 0.062 0.495 0.212 0.141 0.213 0.017 -0.131 0.084 0.066 0.191 -0.037 0.166 

α 0.427 -0.375 -0.260 0.111 -0.103 0.006 -0.147 0.689 -0.064 0.117 -0.411 0.365 -0.031 

β -0.339 -0.199 0.030 -0.006 -0.038 -0.011 0.416 -0.103 -0.034 -0.113 0.315 -0.040 

d 0.123 -0.151 0.082 -0.084 0.135 -0.840 0.038 -0.031 0.144 -0.170 0.032 

Kp 0.131 -0.072 -0.324 -0.110 -0.212 0.214 -0.035 0.190 -0.243 0.128 

γ 0.007 -0.006 -0.118 0.136 0.095 -0.010 0.145 0.306 -0.090 

kb -0.026 0.031 -0.095 0.022 -0.147 0.041 -0.084 0.018 

kc -0.023 0.037 -0.023 -0.177 -0.134 -0.176 0.005 

λ -0.177 -0.792 0.133 0.389 0.309 -0.119 

µ 0.093 0.122 -0.414 0.250 -0.007 

ω -0.126 -0.205 -0.270 0.129 

φ -0.047 0.286 0.105 

ψ 0.117 -0.311 

r -0.297 

s                                 

 

 

 

 

 

 

 

 



Table 7: Parameter correlation matrix when assuming conditional independence among the process error terms with the model that 

considers linear zooplankton mortality (Model 4). (Bold numbers correspond to correlation coefficients with absolute value greater 

than 0.5) 

  Is a α β d Kp γ kb kc λ µ ω φ ψ r s 

Is 0.00 0.258 -0.137 -0.134 -0.232 0.029 -0.034 -0.052 0.388 0.361 -0.214 -0.307 -0.010 -0.360 -0.087 

a 0.020 -0.114 0.082 0.502 0.077 0.299 0.343 0.031 0.007 -0.017 -0.024 -0.068 -0.001 -0.038 

α 0.070 -0.664 -0.127 0.137 0.076 0.208 0.337 0.891 -0.772 -0.173 -0.007 -0.223 0.177 

β 0.069 -0.060 -0.053 -0.074 -0.100 -0.159 -0.031 -0.058 0.146 -0.032 0.343 0.016 

d 0.237 0.021 -0.156 -0.295 -0.169 -0.725 0.716 0.249 0.106 0.435 -0.463 

Kp 0.165 -0.058 -0.109 -0.136 -0.239 0.082 -0.075 0.109 0.193 -0.173 

γ 0.040 -0.038 0.192 0.150 -0.092 -0.180 0.400 0.217 -0.114 

kb 0.043 0.074 0.089 -0.138 -0.041 0.022 -0.031 0.170 

kc 0.192 0.257 -0.153 -0.358 -0.127 -0.342 0.157 

λ 0.608 -0.188 -0.521 0.231 -0.111 -0.031 

µ -0.674 -0.320 -0.030 -0.322 0.157 

ω 0.173 -0.016 0.405 -0.302 

φ 0.004 0.451 -0.115 

ψ 0.295 -0.294 

r -0.257 

s                                 

 

 

 

 

 



FIGURES LEGENDS 

 

Figure 1: Comparison between the prior and posterior parameter distributions of the calibration vector of 

the statistical configuration that assigns to the process (structural) error terms flat gamma priors and 

prespecified correlation (Model 1). 

 

Figure 2: Comparison between the prior and posterior parameter distributions of the calibration vector of 

the statistical configuration that assigns to the process (structural) error terms informative gamma priors 

coupled with fixed correlation (Model 3). 

 

Figure 3: Comparison between the prior and posterior parameter distributions of the calibration vector of 

the model with a linear closure term (Model 4). 

 

Figure 4: Comparison between the prior and posterior parameter distributions of the calibration vector of 

the plankton model with a hyperbolic closure term (Model 6). 

 

Figure 5: Comparison between the observed data (black dots) and the median predictions for phosphate, 

total phosphorus, chlorophyll a, and total zooplankton biomass of the statistical configurations that assign 

to the process (structural) error terms flat gamma priors and prespecified correlation (Model 1), a Wishart 

prior (Model 2), and informative gamma priors coupled with fixed correlation (Model 3). The 95% credible 

intervals represent the uncertainty pertaining to the model parameters. 

 

 



Figure 6: Comparison between the observed data (black dots) and the median predictions for phosphate, 

total phosphorus, chlorophyll a, and total zooplankton biomass of the models with linear (Model 4), sigmoid 

(Model 5) and hyperbolic (Model 6) closure term. The 95% credible intervals represent the uncertainty 

pertaining to the model parameters. 

 

Figure 7: Comparison between the observed phytoplankton (chlorophyll a) biomass (black dots) and (A) the 

median values of the stochastic variable “true observations”, and (B) the median predicted values of the total 

phytoplankton biomass, based on the models with linear (Model 4), sigmoid (Model 5) and hyperbolic 

(Model 6) closure term. 

 

Figure 8: Predictions of the summer epilimnetic total phosphorus and chlorophyll a concentrations along 

with their joint posterior distribution, based on the model that assigns a Wishart prior to the process error 

terms (Model 2) and the one that considers informative gamma priors coupled with fixed correlation (Model 

3). 
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