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Abstract:

How can spatially explicit nonlinear regression modelling be used for obtaining nonpoint source loading estimates in watersheds
with limited information? What is the value of additional monitoring and where should future data-collection efforts focus on? In
this study, we address two frequently asked questions in watershed modelling by implementing Bayesian inference techniques to
parameterize SPAtially Referenced Regressions On Watershed attributes (SPARROW), a model that empirically estimates the
relation between in-stream measurements of nutrient fluxes and the sources/sinks of nutrients within the watershed. Our case study
is the Hamilton Harbour watershed, a mixed agricultural and urban residential area located at the western end of Lake Ontario,
Canada. The proposed Bayesian approach explicitly accounts for the uncertainty associated with the existing knowledge from the
system and the different types of spatial correlation typically underlying the parameter estimation of watershed models. Informative
prior parameter distributions were formulated to overcome the problem of inadequate data quantity and quality, whereas the
potential bias introduced from the pertinent assumptions is subsequently examined by quantifying the relative change of the
posterior parameter patterns. Our modelling exercise offers the first estimates of export coefficients and delivery rates from
the different subcatchments and thus generates testable hypotheses regarding the nutrient export ‘hot spots’ in the studied
watershed. Despite substantial uncertainties characterizing our calibration dataset, ranging from 17% to nearly 400%, we arrived at
an uncertainty level for the whole-basin nutrient export estimates of only 36%. Finally, we conduct modelling experiments that
evaluate the potential improvement of themodel parameter estimates and the decrease of the predictive uncertainty if the uncertainty
associated with the current nutrient loading estimates is reduced. Copyright © 2012 John Wiley & Sons, Ltd.
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INTRODUCTION

Despite decades of research on the nutrient export
dynamics of watersheds, nonpoint sources of excess
nutrients continue to impair the quality of receiving water
bodies, leaving a substantial number of North American
and European lakes classified as eutrophic or hypereu-
trophic (Schindler, 2006). In this regard, there is a pressing
demand for watershed models which can support water
quality management goals, such as the estimation of
nonpoint source nutrient loads and the examination of
alternative land use scenarios (Rode et al., 2010). While a
suite of distributed process-based models exists to meet
these needs (e.g. SWAT, Arnold et al., 1994; HSPF,
Donigian et al., 1995; see also review by Borah and Bera,
2003), such models are often too complex and data-
demanding to be applied in any but the most intensively
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monitored catchments (Borah and Bera, 2004). At the other
end of the complexity spectrum, simple empirical models
for estimating loads do exist (Cohn et al., 1989, 1992), but
their application does not offer any insights into watershed
functioning, and thus no ability to project future watershed
response to management interventions and changing
climatic conditions or land uses. The SPAtially Referenced
Regressions on Watershed attributes (SPARROW) mod-
elling approach was developed to bridge the gap between
process-based and empirical models of catchment water
quality (Schwarz et al., 2006). SPARROWexpresses mean
annual loads (mass year�1) as nonlinear functions of
watershed attributes, including nutrient sources, deliveries,
stream and reservoir attenuation. Albeit a regression
model, SPARROW explicitly considers a number of
processes that enable the exploration of land use scenarios.
To date, the SPARROW model has been applied only in

catchments which have been comparatively well studied,
with study sites having at least 36 water quality monitoring
stations with bi-weekly sampling (Schwarz et al., 2006; see
their Table 1.1). Yet, many watersheds of management
interest are not intensively monitored, and the development
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of methodological frameworks to guide model implemen-
tation in such cases is often highlighted as one of the
emerging imperatives of the contemporary modelling
practice (Rode et al., 2010). In this context, uncertainty
analysis must be a cornerstone feature for quantifying
predictive uncertainty associated with model inputs as
well as knowledge gaps from the studied catchment
(Pappenberger and Beven, 2006). Formal Bayesian
approaches have been proposed as a promising means to
accommodate the uncertainty underlying the challenges of
watershed modelling in a comprehensive and statistically
defensible manner (Kuczera and Parent, 1998; Vrugt et al.,
2005). These challenges include the spatial and temporal
correlation of real-world processes and model residuals
(Yang et al., 2007, 2008; Rode et al., 2010) as well as the
lack of commensurability between measured variables and
model inputs, e.g., point precipitation is often measured,
whereas mean aerial precipitation is used for model input
(Kavetski et al., 2006a,b; Vrugt et al., 2008; Balin et al.,
2010). A major advantage of the Bayesian methods when
calibration data are scarce is the incorporation of prior
knowledge on model parameters, thereby improving our
capacity to locate realistic areas of the parameter space
associated with high model likelihood values (Omlin and
Reichert, 1999; Qian et al., 2003). Importantly, Bayesian
uncertainty analysis techniques feature statistically sound
likelihood functions, the use of which provide meaningful
credible intervals for model predictions (Hong et al., 2005).
There are multiple techniques of different degrees of
complexity to quantify model uncertainty due to parameters
and other model inputs, model structure and data error
(Wagener and Gupta, 2005; Ajami et al., 2007; Arhonditsis
et al., 2008a,b; Rode et al., 2010).
Qian et al. (2005) present a Bayesian application of

SPARROW which clearly demonstrated the advantages of
statistical formulations characterizing the spatial structure of
model residuals due to autocorrelated forcing factors, e.g.,
climate and soils. Wellen et al. (2012) demonstrated a
Bayesian approach to incorporate interannual variability
into the SPARROW model. Hitherto, there has not been a
Bayesian application of SPARROW focused on addressing
three fairly core issues, and the second two have been
entirely neglected: (i) the uncertainty of model calibration
data; (ii) the importance (or lack thereof) of informative
prior parameter distributions in assisting model calibration;
and (iii) the implications of the covariance of model
parameters on the inference drawn and the posterior patterns
derived. The first problem is quite critical considering that
estimates of mean annual load are often obtained by rating
curve models and are typically characterized by substantial
uncertainty (Cohn et al., 1989, 1992; Alexander et al., 2002,
2004; Moatar and Meybeck, 2005). Despite the question-
able quality of the calibration datasets, most SPARROW
applications do not explicitly account for their uncertainty.
Regarding the second issue, the use of information about the
relative plausibility of parameter values aims to reduce the
disparity between what ideally we want to learn (internal
description of the system) and the data available to guide
model calibration. In doing so, we can conceivably
Copyright © 2012 John Wiley & Sons, Ltd.
overcome the problem of poor parameter identification
when basing model calibration on limited data. Evidence
about the latter problem was provided by Qian et al. (2005),
who showed that three of the SPARROW parameters were
highly correlated and concentrated around a narrow banana-
shaped region of the prespecified parameter space. Because
this covariance pattern can undermine the search of the
maximum likelihood with conventional numerical
optimization algorithms, the same study also underscored
the importance of selecting (i) an efficient sampling scheme
for generating input vectors, which are then evaluated
with regard to the model performance, and (ii) a proper
statistical description of the prior parameter space and
likelihood function.
The main objective of this study was to develop a

Bayesian framework for applying SPARROW towatersheds
which are not intensively monitored, and subsequently to
assess the uncertainty of the model application while
addressing the three core issues mentioned previously. After
introducing the case study and describing thewatershed data,
we present the calculation of the mean annual loads and the
associated uncertainties, relying directly on mean values of
concentration and flow. We then develop data quality
submodels, which quantify the uncertainty of the load
estimated at each water quality monitoring station, thereby
ensuring that the predictive statements made by the model
also reflect the uncertainty surrounding the calibration
dataset. We examine three data error characterizations and
five statistical configurations of the SPARROWmodel, two
of which aim to overcome the spatial autocorrelation of
model residuals. There are also two statistical formulations
designed to explicitly accommodate parameter covariance,
an issue not examined before in the context of SPARROW
models. Finally, we conduct modelling experiments that
evaluate the potential improvement of parameter estimates
and the decrease of predictive uncertainty if the precision of
the currently available nutrient loading estimates is increased.
METHODOLOGY

Case study

Hamilton Harbour is a large embayment at the western
end of Lake Ontario, which has a history of eutrophication
problems manifested as algal blooms, low water transpar-
ency, prevalence of toxic cyanobacteria and low hypolim-
netic oxygen concentrations during the late summer
(Hiriart-Baer et al., 2009; Ramin et al., 2011). Although
it is clear from earlier work that the sewage treatment plants
play a critical role in governing total phosphorus and
chlorophyll a concentrations in the Harbour, there is
substantial uncertainty in the ambient conditions driven by
the nutrient loadings from the drainage basin (Gudimov
et al., 2010). Hamilton Harbour’s drainage basin is
about 450 km2 in aerial extent and consists of watersheds
dominated by agricultural land use (Grindstone and
Spencer Creeks) and urban land use (Redhill and Indian
Creeks; see Figures 1 and 2; Ontario Ministry of Natural
Resources, 2005, 2008). The soils of the Harbour basin
Hydrol. Process. 28, 1260–1283 (2014)



Figure 1. Map of the Hamilton Harbour watershed, western end of Lake Ontario, Ontario, Canada
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are mainly loams (25%), sandy loams (28%) and silty
loams (20%), whereas organic soils, silty clay loams and
clay loams together make up about 10% of the basin
soils, with most of the remainder composed of rocky
outcroppings and ravines. Soils are spread relatively
evenly between the four Natural Resources Conservation
Service’s soil hydrologic runoff groups – groups A and B,
those least likely to generate runoff, have 23% coverage,
respectively, group C has 29% coverage and group D, the
group most likely to generate runoff, has 24% coverage
(Ontario Ministry of Agriculture and Food, 2005).
The slopes of the Harbour basin are mild, with the
exception of the Niagara Escarpment. The average slope
of the entire basin is 4.4%, and ignoring all slopes greater
than 30% the average is 3.8% (Ontario Ministry of
Natural Resources, 2005).

SPARROW model

The SPARROW model has been extensively described
elsewhere (Alexander et al., 2002; McMahon et al., 2003;
Qian et al., 2005; Schwarz et al., 2006), so only a basic
introduction is given here. SPARROW consists of a two-
level hierarchical spatial structure. Watersheds are first
divided into subwatersheds, each of which drains to a water
quality monitoring station. Each subwatershed is then
disaggregated into reach catchments drained by a particular
stream segment. In this paper, the mean annual load of total
phosphorus is the response variable of SPARROW,whereas
Copyright © 2012 John Wiley & Sons, Ltd.
watershed attributes aggregated to the reach catchments are
used as predictor variables.
The SPARROW model can be expressed as

mi ¼ Ln
XN
n¼1

XJi
j¼1

bnSn; je
�aZjð ÞHS

i;jH
R
i; j

( )
ei (1)

where the subscripts i and j refer to subwatersheds and
reach catchments, respectively; mi refers to the (log-
transformed) mean annual total phosphorus load measured
at station i in metric tons per year; n, N refers to the source
index, where N is the total number of sources (diffuse and
point sources) and n is an index for each source; Ji refers to
the number of reaches in subwatershed i; bn refers to the
estimated source coefficient for source n; Sn,j refers to the
quantity of source n in reach j, where bnSn has units metric
tons per year; a refers to the vector of land to water delivery
coefficients; Zj is a vector of the land-surface characteristics
associated with drainage to reach j;HS

i;j refers to the fraction
of nutrient mass originating in reach j remaining at station
i as a function of first-order loss processes in streams; HR

i;j
refers to the fraction of nutrient mass originating in reach j
remaining at station i as a function of first-order loss
processes in lakes and reservoirs; and ei refers to a random
multiplicative error term assumed to be independently and
identically distributed across all subwatersheds.
Nutrient loss processes in streams (e.g., loss to sediments

and biota) are modelled with a first-order loss function:
Hydrol. Process. 28, 1260–1283 (2014)
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Figure 2. Land cover classification (upper left), hydrologic runoff groups (upper right) and measured total phosphorus loads derived from the E2 dataset
(lower left) in the Hamilton Harbour watershed
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HS
i; j ¼ exp �ksLi; j

� �
(2)

where ks refers to the first-order loss coefficient for streams
(km�1) and Li,j refers to the stream length in kilometres
between reach i and station j. To aid the reader’s
interpretation, a ks value of 0.04 indicates that total
phosphorus is removed from streams at a rate of about 4%
per kilometre.
First-order loss processes operating in lakes and reser-

voirs are limited to loss to sediment, which is expressed as

HR
i; j ¼

Y
l

exp �kr q
�1
l

� �
(3)

where l refers to any lakes or reservoirs between reach i
and station j, kr refers to the first-order loss coefficient or
settling velocity (m year�1), ql refers to the aerial hydraulic
loading of the lake/reservoir (m year�1). Table I presents
all the calibrated parameters (and other stochastic nodes) of
the model.

Data sets

Spatial data sets. We provide an extensive description of
the spatial datasets used as inputs to the SPARROWmodel
in the Electronic Supplementary Material (ESM) and a brief
overview here. We used a 10-m digital elevation model to
Copyright © 2012 John Wiley & Sons, Ltd.
delineate the subwatersheds. Our calibration dataset had
24 subwatersheds. Their areas ranged from 0.3 to 75.8 km2,
with a mean of 17.9 km2 and an interquartile range of
25.7–6.8 = 18.9 km2. There are a total of 175 reach
catchments, and each reach catchment discharges into a
confluence, reservoir, or water quality monitoring station.
Reach catchment areas ranged from 0.02 to 19.3 km2,
with a mean of 2.5 km2 and an interquartile range of
3.5–0.9 = 2.6 km2. Each reach is drained by a single
stream. The mean stream length is 2.4 km with an
interquartile range of 3.2–1.2 = 2.0 km. Only one stream
class is included in the model. Four reservoirs were used
during the parameter estimation of the SPARROWmodel
(Figure 1). Nonpoint nutrient sources included in the
model were agricultural land and urban land, together
representing 80% of the basin area. A single waste water
treatment plant, the Waterdown plant, drained into one of
the streams. The mean loading for this plant between 1996
and 2007 was 0.3 tons of total phosphorus per year, with
an interquartile range of 0.4–0.2 = 0.2 tons per year. We
assumed that the delivery of total phosphorus to streams is
primarily controlled by soil runoff potential, parameter-
ized as a function of the soil hydrologic runoff group.
Following McMahon et al. (2003), we calculated an area-
weighted average of soil hydrologic runoff group for each
reach catchment.We assigned values of 1 through 4 to soil
Hydrol. Process. 28, 1260–1283 (2014)



Table I. Stochastic nodes of the different SPARROW model configurations examined

Parameter Description Units

a Land to water delivery coefficient
b1 Export coefficient for urban land Metric tons P km�2 year�1

b2 Export coefficient for agricultural land Metric tons P km�2 year�1

kr Reservoir settling velocity m year�1

ks Stream attenuation coefficient km�1

sθ1θ2 Covariance between two of the parameters a, b1, b2 Ln(tons P km�2 year�1) or
Ln(tons P km�2 year�1)2

s Model error standard deviation Ln(tons P year�1)
t Model error standard deviation specific to CAR and STSP Ln(tons P year�1)
c Model error standard deviation specific to CAR Ln(tons P year�1)

SPARROW, SPAtially Referenced Regressions On Watershed attributes; STSP, state space; CAR, continuous autoregressive.
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groups A, the most well-drained group, through D, the
most poorly drained group. We then took the reciprocal of
the reach-level average so that lower numbers indicate
higher nutrient delivery rates. Figure 2 contains maps of
land use and soil runoff groups.

Total phosphorus loads. There are many approaches to
calculating annual constituent loads when using noncontin-
uous concentration records. However, relatively few
methods exist for noncontemporaneous records of concen-
tration and flow.Moatar andMeybeck (2005) compared the
accuracy and precision of a number of different approaches
to calculate annual phosphorus loads and recommended the
use of the product of means of sampled concentrations and
annual discharge, similar to the approach adopted herein.
Our study builds upon Moatar and Meybeck’s (2005)
findings, and the natural logarithm of the mean annual load
is expressed as follows:

Ln Loadið Þ ¼ Ln Flowið Þ þ Ln Concið Þ (4)

where the subscript i refers to a subwatershed, Ln(Flowi) is
estimated from a discharge-area regression presented in
the ESM, and Ln(Conci) represents the mean of the natural
log-transformed in-stream total phosphorus concentrations
measured by the Ontario Ministry of the Environment’s
Provincial Water Quality Monitoring Network (Ontario
Ministry of the Environment, 2010). This programmeasures
stream water quality during coordinated field trips with
monthly or bi-weekly frequency. Only concentration
measurements after the year 1987 at stations that drained
at least 5.25 km2 were used for load estimation, and thus, we
developed two loading datasets: The first loading dataset
(Error 1 or E1) was based on mean annual loads derived
fromEquation (4) at all 24 stations. Themean loading across
all 24 subwatersheds of the E1 dataset is 1.62 tons per year,
with an interquartile range of 1.88–0.77= 1.11 tons per year.
This method of calculating annual loads may result in
an underestimation of annual loads, as it implicitly assumes
that flow and concentration are independent (Preston et al.,
1989). In this particular study, the introduced bias is fairly
minimal as the correlation coefficients between contempor-
aneous measurements of flow and concentration ranged
from �0.06 to 0.36, with a mean of 0.1.
Copyright © 2012 John Wiley & Sons, Ltd.
The second loading dataset (Error 2 or E2) computes the
mean annual loadwith Equation (4) at the 18 stations, which
lack contemporaneous data, and also uses a rating curve to
estimate the mean annual load at the six water quality
monitoring stations where contemporaneous data are
available. All rating curve calculations were carried out
with the United States Geological Survey LOADEST
program (Runkel et al., 2004). All available contemporan-
eous measurements of concentration and flow were used to
parameterize a linear regression between log-transformed
daily flow and log-transformed daily loading:

Ln Loadð Þ ¼ a0 þ a1Ln Qð Þ (5)

where a0 and a1 are regression coefficients, and Ln(Q)
refers to trend-corrected stream flow. Estimated daily
loading values were then averaged and aggregated to a
yearly timescale to yield mean annual loading. The mean
loading across all 24 subwatersheds of the E2 dataset is
1.61 tons per year, with an interquartile range of
1.88–0.77 = 1.11 tons per year. Thus, the summary statistics
of the two datasets were almost identical, the low correlation
between concentration and flow suggests limited bias of
the E1 estimates, whereas their comparison also suggests
reasonable correspondence, i.e., Ln(Load)Eq.5 = 1.07
Ln(Load)Eq.4 + 0.54 (r2 = 0.92, n=6). We have included a
table in the ESM detailing various attributes and summary
statistics of the calibration dataset (Table ESM-1).

Data quality submodel. There are two approaches for
representing measurement error in models. The classical
approach assumes that the observed values of a variable, Yi,
are drawn from a probability distribution with an expected
value, Loadi, the ‘true’ value of the variable being sampled
(Carroll et al., 2006). The classical approach is appropriate
when the error stems from deficiencies in sampling or
measurement and has been recently used to model the
uncertainty of point rainfall estimates (Balin et al., 2010).
The Berkson model takes the opposite approach, in that the
true value is assumed to be drawn from a distribution with
expected value equal to the observed datum. The Berkson
approach is appropriate when the uncertainty is assumed to
stem from a lack of commensurability between what has
been measured and what the variable one is interested in,
Hydrol. Process. 28, 1260–1283 (2014)
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and has been applied to estimate mean aerial rainfall
from point measurements (Kavetski et al., 2006a,b; Ajami
et al., 2007). The key difference between the two strategies
resides in whether the observed values vary about the
true ones (classical) or the true values vary about the
observed ones (Berkson). We assumed that the uncertainty
in load estimates stems from a combination of sampling and
analytic errors rather than a lack of commensurability, so
we opted for the classical representation of measurement
error for annual loads.
Our data quality submodel postulates that the log-

transformed loadings are random variables drawn from
normal distributions with mean values equal to the
previously described estimates and variances representing
the associated error and/or temporal variability at each site.
Although this assumption does somewhat confound
temporal variability at a site with the uncertainty of the
mean load, we decided to take the most conservative
(largest) estimate of the uncertainty in light of the low
quality of the load estimates. To estimate the variances for
the Error 1 dataset,we use the following equation fromWare
and Lad (2003):

d2i ¼ VarLn Concið Þ þ VarLn Flowið Þ þ 2CovLn Concð ÞLn Flowð Þ
(6)

where di
2 refers to the variance of the measured nutrient

loading, Cov refers to covariance, Conc refers to total
phosphorus concentration and i refers to a subwatershed.
VarLn Concið Þ was estimated as the variance of the log-
transformed concentration measurements at each water
quality monitoring station. VarLn Flowið Þ was estimated by
assuming a constant coefficient of variation (CV) for mean
annual log-transformed flow equal to 0.023, i.e., the largest
CV of the nine subwatersheds used to parameterize the
discharge-area model. CovLn(Conc)Ln(Flow) was estimated at
each of the six stations with contemporaneous data
using the log-transformed daily values of concentration
and flow. The maximum of the six values (0.16) was
used. The mean variance of the loadings in E1 dataset is
1.34 (Ln(tons year�1))2, with an interquartile range of
1.62–0.8 = 0.82 (Ln(tons year�1))2. In assessing the
variability of log normally distributed data, Limpert et al.
(2001) emphasized the importance of characterizing
lognormal distributions with the use of multiplicative
standard deviations and lognormal coefficients of variability.
Expressed as percentages, our multiplicative standard
deviations ranged from 130% to 380% with a median of
180%, indicating substantial uncertainty. Our coefficients
of variability ranged from 0.96 to 3.3 with a median of 1.37
for the E1 dataset.
Variance estimates for the E2 dataset differed at the

six stations where contemporaneous measurements were
available. In keeping with our normality assumption,
the width of the 95% confidence intervals of the log-
transformed mean annual loading estimates, derived from
the LOADEST program, was set equal to four standard
deviations. Note that the loads estimated with the rating
curve do not confound temporal variability with uncertainty
at all, as it is the predictive interval of the mean predicted
Copyright © 2012 John Wiley & Sons, Ltd.
load which is used to derive the uncertainty estimates.
Therefore, the Error 2 dataset places a much greater
emphasis on the well-studied sites and achieves a
reasonable balance between making use of all the
information available and the need to emphasize the most
reliable information. The mean variance of the loadings in
Error 2 is 1.16 (Ln(tons year�1))2, with an interquartile range
of 1.62–0.63= 0.99 (Ln(tons year�1))2. To evaluate the
impact of the data error in our analysis, we considered a
third ‘reference’ statistical formulation founded upon the
assumption that the Error 2 dataset represents error-free
loading estimates (No Error or E0). In terms of multiplica-
tive standard deviations and coefficients of variability, the
six well-studied stations ranged from 17% to 106% with a
median of 22%, and their coefficients of variability ranged
from 0.13 to 0.86 with a median of 0.20. Overall, the
E2 dataset has multiplicative standard deviations ranging
from 17% to 380% with a median of 176%. Table II
summarizes the loading datasets used in this paper, whereas
the ESM contains a table that describes the calibration data
and their uncertainty in detail (Table ESM-1).
Bayesian parameter estimation

Bayesian inference was used as a means for estimating
model parameters because of its ability to include prior
information in the modelling exercise and to explicitly
handle model structural and parametric uncertainty (Gelman
et al., 2004). Bayesian inference treats each parameter θ as a
random variable and uses the likelihood function to express
the relative plausibility of obtaining different values of this
parameter when particular data have been observed:

p θjdatað Þ ¼ p θð ÞL datajθð ÞZ
θ

p θð ÞL data θj Þdθð
(7)

where p(θ) represents our prior statements regarding
the probability distribution that more objectively depicts
the existing knowledge on the θ values, L(data|θ)
corresponds to the likelihood of observing the data given
the different θ values and p(θ|data) is the posterior
probability that expresses our updated beliefs on the θ
values after the existing data from the system are considered.
The denominator in Equation (7) is the expected value of
the likelihood function and acts as a scaling constant that
normalizes the integral of the area under the posterior
probability distribution. Sequences of realizations from the
model posterior distributions were obtained using Markov
chain Monte Carlo (MCMC) simulations. Specifically, we
used the general normal proposal Metropolis algorithm as
implemented in theWinBUGS software (Lunn et al., 2000);
this algorithm is based on a symmetric normal proposal
distribution, whose standard deviation is adjusted over the
first 4000 iterations such as the acceptance rate ranges
between 20% and 40%. We collected between 50,000 and
60,000 samples from three chains for each model
configuration. The first 10,000 samples were discarded,
and posterior statistics were calculated using a thin of 10,
Hydrol. Process. 28, 1260–1283 (2014)



Table II. Measurement error associated with the total phosphorus loading data: Yi refers to the log-transformed measured load, mi refers
to the output of the SPARROW model, Loadi is a latent variable that represents the ‘true’ loading values when accounting for the

measurement error di, and s represents the model error

Notation Load estimation Error sources
Model

likelihood*
Total
error**

Error 1 (E1) Loads derived by multiplying
average log flow by average
log concentration.

Uncertainty in loads is the sum of the
variances of the log concentrations and
log flows plus two times their
covariance.

Yi ~N(Loadi, di
2) Si = s

2 + di
2

Loadi ~N(mi, s
2)

Error 2 (E2) Loads derived by rating curve
methods where available and
by multiplying average log flow
by average log concentration
elsewhere.

Uncertainty in loads is the variance
derived from the 95% confidence
interval of mean annual loading where
available. Otherwise, the uncertainty is
estimates as for error 1.

Yi ~N(Loadi, di
2) Si = s

2 + di
2

Loadi ~N(mi, s
2)

No Error (E0) Loads derived by rating curve
methods where available and by
multiplying average log flow by
average log concentration elsewhere.

Uncertainty in loads is ignored. Yi ~N(mi, s
2) S= s2

*The full mathematical notation of the models is provided in Equations (8)–(10).
**The correction factors t2 and t2 +c2are added with the STSP and CAR models, respectively.
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which yielded a sample size of at least 4000 for all themodel
configurations considered.

Data quality submodel. Mathematically, the classical
measurement error model consists of three components:
(i) the (log-transformed) measurements Yi, (ii) the (log-
transformed) true values Loadi, (iii) and the measurement
error di

2. These variables are included in a hierarchical
framework, in which the first level defines the relation
between the observed and the true loading values:

YieN Loadi; di
2� �

(8)

Note that because we use log-transformed data, this
statement postulates multiplicative measurement error.
For this exercise, the values of di

2 are prespecified and
are not part of the model calibration process. The second
level of the hierarchy introduces a model for the ‘true’ log-
transformed loads:

LoadieN mi; s
2

� �
: (9)

Because the term mi refers to the SPARROW model
prediction, this framework essentially postulates that the
model is an unbiased estimator of the ‘true’ annual loads
with structural (or process) error drawn from a normal
distribution with variance s2. The likelihood of the
loading estimate i is then the product of the likelihood of
the two levels of our hierarchical configurations:

p YijLoadið Þ � p Loadijmið Þ ¼
1ffiffiffiffiffiffi
2p

p
di

exp � Yi � Loadið Þ2
2di

2

 !
�

1ffiffiffiffiffiffi
2p

p
s
exp � Loadi � mið Þ2

2s2

 !
:

(10)

To summarize, our calibration framework considers both
the discrepancies between the measured and ‘true’ loading
data as well as between the ‘true’ and modelled loading. To
Copyright © 2012 John Wiley & Sons, Ltd.
do so, we must estimate the ‘true’ loading as part of the
model calibration. This adds an additional number of i
stochastic nodes, thereby substantially increasing the
complexity of the calibration exercise but realistically
accommodating the measurement errors as well as the
model process error.

Statistical formulations. In this study, we examined five
statistical formulations comprising different combinations
of model likelihood and prior parameter specification. The
first three formulations were founded upon the MCMC
model of Qian et al. (2005), which was merely a
probabilistic expression of Equation (1), i.e., the log nutrient
loading follows a normal distribution with a mean defined
by the model and a constant model error variance. Contrary
to the common practice in SPARROWmodelling (Schwarz
et al., 2006), our analysis uses the predicted (and not the
observed) upstream loads to support predictions at down-
stream sites. Being equivalent to having the observed
nutrient loading data on both sides of the nonlinear
regression model, the conventional practice represents a
conceptual deficiency of the SPARROW model and
undermines its application for forecasting purposes. To
address this problem, we introduce the data quality
submodel as a means of separating the observation from
the process error. By doing so, model-estimated nutrient
loads are used as inputs to downstream subwatershedswhile
accounting for the uncertainty of the observed loads.
The notation of this approach is as follows:

YieN Loadi; di
2� �

LoadieN m
0
ið Þ; s2

� �
m

0
ið Þ ¼ Ln

XN
n¼1

XJi
j¼1

bnSn; je
�aZjð ÞHS

i; jH
R
i; j

 !
1=s2egamma 0:001; 0:001ð Þ

(11)

where Yi refers to the log-transformed measured load at
site i, m0(i) refers to the corresponding corrected
Hydrol. Process. 28, 1260–1283 (2014)
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SPARROW output, Loadi is a latent variable representing
the ‘true’ loading values when we account for the
prespecified measurement error di, s represents the model
(or process) error and gamma(0.001, 0.001) is the gamma
distribution with shape and scale parameters of 0.001,
representing a ‘noninformative’ or vague prior assigned to
the process error precision (1/s2). When we explicitly
consider the data error, it is interesting to note the structural
similarities between the state space (STSP) SPARROW of
Qian et al. (2005) and our MCMC statistical characteriza-
tions. The main difference is that although the earlier work
postulated a uniform precision of the log-transformed
loading data throughout the watershed and then assigned
a diffuse gamma prior, our analysis allots a great deal of
effort to obtain informative site-specific observation error
characterizations.
The normal distribution provided the basis for the

likelihood function, which was then combined with three
sets of priors for the first five parameters in Table I. Our first
MCMC formulation, also denoted as MCMC-1 model,
assumes conditional independence among the SPARROW
parameters. The second statistical formulation, called
MCMC-2, has one trivariate lognormal prior distribution
for a, b1 and b2, in which the inverse of the covariance
matrix (or the precision matrix) was assumed to follow a
Wishart (R, r) distribution. To represent some prior
knowledge on the parameters, we chose five degrees of
freedom for this distribution (r= 5), which is greater
than the rank of the matrix (=3). The scale matrix R, an
assessment of the order of magnitude of the covariance
matrix, contains diagonal elements equal to the prior
variances assigned to the three parameters with the
MCMC-1 formulation, whereas the off-diagonal elements
were set equal to zero. Loosely speaking, MCMC-2
approximately has the same starting point with MCMC-1
but does allow for covariance estimation among the three
parameters as part of the updating process. The third
statistical formulation, called MCMC-3, uses a trivariate
lognormal distribution for a, b1and b2 with a fully specified
covariance matrix. On the basis of the patterns of Qian
et al. (2005), we assumed correlation coefficients between
a, b1 and b2 uniformly distributed within the 0.7–0.9 range.
The variances of a, b1 and b2 are the same as in the previous
two formulations.
Qian et al. (2005) presented two statistical formula-

tions, called STSP and continuous autoregressive (CAR),
designed to accommodate the spatial autocorrelation of
model residuals, as revealed by the original SPARROW
application to the Neuse River Estuary watershed
(McMahon et al., 2003). Although effective, both
approaches entail more complexity, with STSP and
CAR including one and two additional parameters,
respectively. We seek to evaluate whether a system less
intensively monitored than the Neuse River Estuary can
support the more complex formulations of CAR and
STSP, especially when we add an extra level of
complexity by considering the data quality submodel
(or site-specific observation error correction). The nota-
tion of the STSP approach is as follows:
Copyright © 2012 John Wiley & Sons, Ltd.
YieN Loadi; di
2� �

LoadieN mi; s2ð Þ
mieN m

00
ið Þ; t2

� �
m

0 0
ið Þ ¼ Ln

XN
n¼1

XJi
j¼1

bnSn; je
�aZjð ÞHS

i; jH
R
i; j

 !
1=s2; 1=t2egamma 0:001; 0:001ð Þ

(12)

Drawing parallels with the work by Qian et al. (2005),
our STSP formulation considers the global process
(structural) error s, the prespecified site-specific observation
error di and the additional term t that aims to correct for
the residual structural and observation error that is not
accounted for by the previous two error terms. The m00(i) term
implies this additional correction of the total phosphorus
loading entering the subwatershed i from upstream. In doing
so, our intent is to address the adequacy of the first-order
serial correlation postulated by the original study by Qian
et al. (2005); that is, the serial correlation is addressed by a
first-order model and what is left is mostly white noise. The
addition of one more layer into the hierarchical model
structure could raise issues of numerical instability, but our
contention is that the extent of the instability problem is
predominantly driven by the observation error assigned. In
particular, the magnitude of the data precision determines
the degree of confidence on the estimate of the ‘true’ load,
which in turn represents the anchoring point along with the
model structure for the estimation of the s and t error term
and correction factor.
Building upon the STSP approach, the CAR model

implements an additional spatial correction of the process
error in two dimensions, whereby the random effect vi
for all subwatersheds is a correction factor modelled by a
multivariate normal distribution with mean 0 and an
unknown covariance matrix (Besag and Kooperberg,
1995). This correction accounts for possible inadequacies
of the model structure, which result in spatially clustered
model residuals, e.g., the use of a single export coefficient for
all the agricultural land uses clearly overestimates the
intensity of the agricultural practices in certain (neighbouring)
subwatersheds and underestimates them in others (Qian et al.,
2005). Thus, the CAR formulation is as follows:

YieN Loadi; di
2� �

LoadieN mi; s2ð Þ
mi ¼ li þ vi

lieNðm00
ið Þ; t2Þ

vijv�ieNðni�;ci
2Þ

ni� ¼ 1
ni

X
n�i and ci ¼ c=ni

1=s2; 1=t2; 1=c2egamma 0:001; 0:001ð Þ

(13)

where�i denotes all the adjacent subwatersheds of i andc2 is
the conditional variance of the vi terms, and its prior density
was based on a conjugate inverse-gamma (0.001, 0.001)
distribution. Equation (13) implies that the conditional mean
of ni to be the mean of the adjacent subwatershed random
Hydrol. Process. 28, 1260–1283 (2014)
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effects and the conditional variance of vi to be c
2 divided by

the number of adjacent subwatersheds (ni). The conditional
distribution of each term vi is determined by the neighbouring
regions in the network. We here note that the vi terms do not
enter into the model likelihood function but simply act as
additional parameters (Besag and Kooperberg, 1995).
Table III summarizes all the model formulations examined
in this study.

Prior specification. Wherever possible, we opted for
informative, log normally distributed priors. The latter
selection was part ly due to the SPARROW
parameterization of Qian et al. (2005), using total
nitrogen loads from three large river basins in eastern
North Carolina, which presented evidence that these
parameters tend to be positively skewed (see their
Figure 7). The median and standard deviation values
assigned herein are provided in Table IV. In particular,
we had no information regarding the dependence of the
total phosphorus delivery to streams on runoff potential,
so a was assigned a relatively flat prior. The values of the
b coefficients represented literature-based estimates of
total phosphorus export (Beaulac and Reckhow, 1982;
Harmel et al., 2008). The upper limit found in both
databases was specified as the 70th percentile of our
distributions; thus, the corresponding priors were rela-
tively wide, thereby allowing more of the information
contained in the posterior distributions to come directly
from the data. The distribution for kr was drawn from a
work by Cheng et al. (2010). We based the prior
distribution for ks, the stream attenuation coefficient,
loosely on values from previous models; that is, we
Table III. Bayesian configurations of the SPAtially Referenc

Model notation

MCMC-1 All prior parameters are indepe
MCMC-2 Priors for a and b parameters a

Assumes prior independence bu
updating process. Model residu

MCMC-3 Priors for a and b parameters a
structure is fully specified. Mod

CAR Conditional autoregressive mod
in two dimensions. All prior pa

STSP State space modelling of residu
All prior parameters are indepe

MCMC, Markov Chain Monte Carlo; CAR, continuous autoregressive; STS

Table IV. Properties of the prior

Parameter Median Standard dev

a 1.0 22025
b1 0.1 3.51
b2 0.07 1.25
kr 12.84 4.76
ks 0.04 0.17

All parameters are log normally distributed.

Copyright © 2012 John Wiley & Sons, Ltd.
assigned a median of 0.04 along with a large standard
deviation (McMahon et al., 2003; Alexander et al., 2004).
To illustrate the importance of our informative priors in
arriving at a reasonable model parameterization in our
data-limited situation, we updated two versions of
simplest Bayesian SPARROW formulation with unin-
formative (flat) priors (normal distributions centered at
zero with variance equal to 10,000). The first approach is
identical to the MCMC configuration of Qian et al. (2005)
and uses measured upstream loads as point inputs to
downstream subwatersheds (Schwarz et al., 2006). The
second version uses modelled upstream loads as down-
stream inputs but does account for the loading data
uncertainty with the E2 dataset.

Model assessment. We assessed the relative model
performance using the Bayes factor. Originally intended to
quantify the support for a scientific theory given a set of data,
the Bayes factor can be used for any pairwise model
comparison (Kass and Raftery, 1995). When we compare
two alternativemodels, theBayes factor is the posterior odds
of one model over the other (assuming the prior probability
on either model is 0.5). If MA and MB denote the two
alternative models, the Bayes factor is as follows:

BAB ¼ p Yð jMAÞ
p Yð jMBÞ (14)

For model comparison purposes, the model likelihood
(p(Y|Mk); k= 1, 2) is obtained by integrating over the
parameter space:
ed Regressions On Watershed attributes model examined

Description

ndent. Model residuals are not correlated.
re based on a trivariate joint distribution.
t allows for covariance estimation as part of the
als are not correlated.
re based on a trivariate joint distribution. The covariance
el residuals are not correlated.
elling of residuals. Model residuals are correlated in space
rameters are independent.
als. Model residuals are correlated serially along a river network.
ndent.

P, state space.

distributions for each parameter

iation Source

Beaulac and Reckhow (1982)
Harmel et al. (2008)
Cheng et al. (2010) and reference therein
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p Y jMkð Þ ¼
Z
θ

p Y jMk; θkð Þp θk Mkj Þdθkð (15)

where θk is the parameter vector under model Mk and
p(θk|Mk) is the prior density of θk. Using the MCMC
method, we can estimate p(Y|Mk) from posterior samples
of θk. Letting θk

(i) be samples from the posterior density,
the estimated p(Y|Mk) is

p YjMkð Þ ¼ 1
m

Xm
i¼1

p YjMk; θk
ið Þ

� ��1
( )�1

(16)

the harmonic mean of the likelihood values (Kass and
Raftery, 1995). Although the value of this approximation
converges to the value that would be obtained using
analytic means, this convergence is unstable, as low
outliers exert considerable influence on the value of the
posterior odds (Kass and Raftery, 1995). To ensure that
our results are not unduly influenced by outliers, we
omitted the 20 samples of lowest likelihood from all odds
calculations, corresponding to <0.5% of all the samples
collected. We also note that the model performance was
examined only within, and not among, data error
specifications.
To illustrative importance of informative priors in

situations with limited information, we evaluated the two
models with flat priors together with the simplest formula-
tion with informative priors (MCMC-1 E2, Equation (11))
using a set of frequentist and Bayesian metrics. The
frequentist metrics were the root mean squared error
(RMSE), calculated as follows:
dθi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

p θið Þ log 2p θið Þ
p θið Þ þ p θijYð Þ þ p θijYð Þ log 2p θijYð Þ

p θið Þ þ p θijYð Þ
� �

dθ

s
(20)
RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

Yi � m`ið Þ2
n

s
(17)

and the weighted root mean squared error (WRMSE),
calculated as follows:

WRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

wi � Yi � mið Þ2
q

wi ¼ liX
i

li

li ¼ 1

d2i

(18)

i.e., the individual squared residuals were weighted by the
precision (inverse of the variance) of the measured data. We
also evaluated the models with two Bayesian metrics. The
first was the posterior mean deviance, defined as the residual
information in data Y conditional on a parameter vector θ
and is calculated as �2 log{p(Y|θ)} or �2 log{likelihood}.
Copyright © 2012 John Wiley & Sons, Ltd.
The second is the deviance information criterion (DIC), a
Bayesian measure of parsimony, which rewards for model
fit but penalizes model complexity (Spiegelhalter et al.,
2002). The DIC is defined as follows:

DIC ¼ D θð Þ� þ pD (19)

whereD θð Þ� refers to the posterior mean deviance and pD is a
measure of the effective number of model parameters. The
effective number of parameters is calculated as the posterior
mean deviance of the model (D θð Þ� ) minus the estimate of
the model deviance calculated when using the posterior
means of the parameters (D �θð Þ), which corresponds to the
trace of the product of Fisher’s information and the posterior
covariance. A smaller DIC value indicates a more
parsimonious and hence ‘better’ model.
Following Hong et al. (2005), we also evaluated the

degree of updating between prior to posterior parameter
distributions using three different criteria. First, we
computed the difference between the most likely values of
the prior and posterior distributions (referred to as median
shift). We selected the median as the most likely value
because it is less influenced by outliers than the mean,
whereas the mode may not be representative of the majority
of the posterior in cases of limited data availability, when
identifiability issues are likely to arise. Second, we
computed the difference in the width of the 95% credible
intervals of the prior and posterior distributions (referred to
as width shift). This comparison assesses the change in
parameter uncertainty. Third, we evaluated the change in the
shape of the distribution from prior to posterior using the
delta index (Endres and Schindelin, 2003). The delta index
measures the distance between two probability distributions:
where p(θi) and p(θi|Y) represent the marginal prior and
posterior distributions of parameter θi, respectively. This
metric is equal to zero if there is no difference between the
two distributions and equal to

ffiffiffiffiffiffiffiffiffiffiffiffi
2 log2

p
if there is no overlap

between the two distributions. All delta index values are
presented as percentages of this maximum value.

Post-hoc numerical experiments. We performed a post-
hoc numerical experiment to help guide future sampling
efforts in this relatively understudied watershed. Water-
shed monitoring is costly, and so it is desirable to estimate
the benefits of collecting additional information on the
model parameter identification and predictive uncertainty
of subwatershed loads. Our intent was to evaluate the
effect of both intensity of monitoring in space (i.e.
number of stations) as well as intensity of monitoring at
the individual sites (i.e. number of samples taken per site).
First, we simulated a high precision dataset, which would
exist if all the subwatersheds had a CV of their annual
nutrient loading exports equal to that of the watershed
Hydrol. Process. 28, 1260–1283 (2014)
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with the highest value among the six well-studied sites.
As previously described, our dataset consists of six
stations with contemporaneous measurements of flow
and concentrations, which allowed the estimation of the
mean annual load with the use of a rating curve. The
error associated with the load calculation at the six
stations was very similar but certainly significantly
lower than the error characterizing the loading estimates
at the rest of the sparsely studied 18 monitoring sites. In
this regard, our numerical experiment examines how
much we can learn from a SPARROW model para-
meterized from a dataset that comprises 24 (and not six)
well-studied stations. That is, how much does the model
uncertainty decline if we obtain rating curve loading
estimates in every single site of the watershed and if
we are able to characterize the loading with a precision
(at least) equal to the lowest precision of the current
well-studied sites? We used the latent variable Loadi
resulting from the E2 scenario and the MCMC-1 model
as our best estimate of the actual load, calculated the
lognormal CV of the six well-studied sites and used the
maximum CV to characterize the error associated with
the rest 18 sparsely studied sites. We also used the Loadi
data with the uncertainties of the E2 case as a reference
dataset that reflects the precision of our current
estimates. This exercise postulates that our estimates of
Loadi are correct; yet, we note that even if these
estimates are misleading, we will still gain a sense of
how sensitive the model results are to data uncertainty.
Our second experiment selected 12 of the original
24 stations and performed the same experiment
with these 12 stations. We chose to omit most of the
stations along the main stem of Grindstone Creek and
instead concentrate on the headwater stations. We
also consolidated two urban creek stations into one
(Indian Creek). The ESM contains two tables
(Tables ESM-2 and ESM-3) and two figures
(Figures ESM-1 and ESM-2) detailing the current and
higher precisions of the datasets used for this experiment
as well as the locations of the 24 and 12 sites.
Table V. Markov Chain Monte Carlo (MCMC) estimates of th
where measured upstream loads are used to fit the model, aga

informative prior

Parameters Conventional SPARROW N

Mean Standard deviation Mean

a 6.53 3.37 8.63
b1 2.95 3.69 6.76
b2 10.83 13.16 16.22
kr 17.27 19.57 17.37
ks 0.19 0.07 0.17
s 0.75 0.14 0.65
Deviance 56.59 5.48 52.57
DIC 46.74 64.06
RMSE 0.67 0.68
WRMSE 1.03 0.83

SPARROW, SPAtially Referenced Regressions On Watershed attributes;
WRMSE, weighted root mean squared error.

Copyright © 2012 John Wiley & Sons, Ltd.
RESULTS

Effect of informative priors

Our results suggest that a reasonable model
parameterization in our data-limited watershed can only
be obtained by the consideration of informative prior
parameter distributions (Table V). Parameter posteriors
resulting from noninformative priors were very poorly
identified, whereas the mean values of the export
coefficients were unrealistic and exceeded plausible rates
of total phosphorus application for intensive agriculture.
Although highly uncertain, we also note that the use of
noninformative priors assigned a lower export rate to urban
land (b1) than to agricultural land (b2). Interestingly, the
SPARROW model with informative priors resulted in a
reversal of the relative magnitudes of the export coeffi-
cients as well as a distinct reduction of the significance of
soil runoff potential in modulating total phosphorus export.
When flat priors were used, the consideration of the
modelled (instead of the observed) upstream nutrient
inputs resulted in an increase of the delivery and export
coefficients as well as a decrease of the model structural
error (s), deviance, and WRMSE, no change in the RMSE
and an increase of the DIC. The decrease of the WRMSE
indicates that including the data quality submodel can
minimize the impact of uncertain data, whereas the DIC
increase reflects that the estimation of the ‘true’ loading
(Loadi) increases the complexity of the modelling exercise.
It is also interesting to note that the inclusion of informative
priors reduces the value of nearly all metrics of fit relative
to the versions combined with flat priors.

Predicted total phosphorus loads

We first examined the correspondence between the
predicted mean loads and the associated uncertainty for all
combinations of data error characterizations and statistical
formulations. The most likely values of predicted loads
were highly correlated across statistical formulations
within error configurations and slightly less correlated
across error configurations. Correlations ranged from
e stochastic nodes of the conventional SPARROW approach,
inst our MCMC-1 E2 formulation with noninformative and
s, respectively

oninformative priors Informative priors

Standard deviation Mean Standard deviation

4.09 0.46 0.76
7.28 0.19 0.14
15.96 0.10 0.09
19.69 13.03 4.25
0.12 0.05 0.04
0.19 0.40 0.14
5.05 47.19 4.25

55.07
0.60
0.51

DIC, deviance information criterion; RMSE, root mean squared error;
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0.84 to 1.0, with a mean correlation coefficient of 0.96
(Table ESM-4). All correlations less than 0.90 pertained to
either the CAR or STSP formulations using the error-free
scenario. Similar to the most likely values, the standard
deviations of the model predictions were highly correlated
within and across data error specifications (Table ESM-5).
The main exceptions were the standard deviations of the
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Figure 3. Measured versus modelled total phosphorus load (Ln(tons/year)) fo
data error characterizations (middle row), and MCMC-3

Copyright © 2012 John Wiley & Sons, Ltd.
loads from the CAR and STSP models parameterized with
the E0 approach, showing little relationship with the
standard deviations of other model runs.
Plots of modelled against measured total phosphorus

loads showed reasonable correspondence with the 1 : 1
line, with r2 values ranging from 0.53 to 0.79 and slopes
ranging from 0.68 to 0.83 (Figure 3). Stations with lower
1:1 Line
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r STSP and CAR models parameterized with the E2 (top row) and the E0
formulation calibrated with the E2 approach (bottom)
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loading values tended to exhibit poorer model fit because
of the greater uncertainties associated with the prepon-
derance of sporadic water quality monitoring in the
headwaters of Grindstone and Indian Creeks. Notably,
the tight fit to the 1 : 1 line achieved by the STSP and
CAR models when ignoring data uncertainty suggests that
they produce better results when decoupled from the data
quality submodels. That is, the STSP and CAR formula-
tions with the explicit consideration of a prespecified site-
specific data error term (di) underperform relative to their
counterparts that use the unconstrained global observation
error term alone to capture the corresponding uncertainty.
Spatial patterns of modelled total phosphorus

loads corresponded reasonably well to spatial patterns
Hamilton Harbour

Total Phosphorus Loading (ln tons/yr)
-1.47 - -0.61

-0.61 - 0.06

0.06 - 0.74

0.74 - 1.41

1.41 - 2.08

0 10
Kilometers

Figure 4. Measured total phosphorus loads (upper left) and associated uncerta
and posterior uncertainties (lower right). Both measurements and model outp

characterization and MCMC-3

Copyright © 2012 John Wiley & Sons, Ltd.
of measured loads (Figure 4). Areas of disagreement
tended to coincide with areas of high measurement error.
The magnitudes of model residuals displayed serial
correlation, with high residuals being clustered in the
headwaters of Grindstone and Indian Creeks (Figure 5).
Yet, as the lower right panel of Figure 5 shows, this
trend closely follows the spatial patterns of the data
uncertainty. Interestingly, the residuals of the CAR and
STSP statistical formulations demonstrate the same
spatial structure with the residuals of the MCMC-3
formulation, a finding that is on par with the previous
assertion that the predictive capacity of the CAR and
STSP models is compromised when combined with the
data quality submodel.
Hamilton Harbour

Standard Deviations (ln tons/yr)

< 0.28

0.28 - 0.44

0.44 - 0.59

0.59 - 0.75

0.75 - 0.9

0.9 - 1.06

1.056 - 1.21

1.21 - 1.57

inties (upper right) against the modelled total phosphorus loads (lower left)
uts are expressed in logarithmic scale and correspond to the E2 data error
configuration, respectively
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Figure 5. Model residuals for three models calibrated with the E2 data error characterization vis-à-vis the corresponding data error
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Posterior parameter distributions

Table VI presents the mean and the standard deviation
values for the parameter posteriors derived from the E1
case. The export coefficients of total phosphorus from
urban (b1) and agricultural (b2) land uses are comparable
and range between 0.13 and 0.17 tons P km�2 year�1.
Values of ks indicate that between 5% and 7% of total
phosphorus is attenuated per kilometre of stream length,
which is a significantly lower estimate than what has
been reported from previous SPARROW applications
(Alexander et al., 2002). Generally, we found serious
identification problems when basing the parameter
estimation of the five statistical formulations on the E1
dataset; especially with regard to the parameters a, b1 and
b2. The problem was alleviated with the use of a trivariate
lognormal distribution for the three parameters, i.e.,
MCMC-2 and MCMC-3 models. The same formulations
provided somewhat lower values of ks and distinctly
Copyright © 2012 John Wiley & Sons, Ltd.
higher a values relative to the rest of the models
examined. In particular, the MCMC-2 model resulted in
a quite high but fairly well-determined posterior estimate
for the a coefficient.
Similar inferences can be drawn from the parameter

posteriors obtained after the model update with the E2
approach (Table VII). Notably, aside from the CAR and
STSP formulations, the process error s is significantly
higher than the corresponding values derived from the E1
scenario. Apparently, the lower measurement error
assigned to the total phosphorus loadings of six stations
constrains the search for the corresponding ‘true’ loading
values, thereby exacerbating the influence of potentially
erroneous observed loading estimates during the model
updating. Notably, b1 (urban export) is now higher than
b2 (agricultural export). Similar to the posteriors obtained
from the E1 characterization, the MCMC-2 and MCMC-3
models produce higher values of a and lower values of ks
Hydrol. Process. 28, 1260–1283 (2014)



Table VI. Markov Chain Monte Carlo (MCMC) estimates of the SPAtially Referenced Regressions On Watershed attributes model
stochastic nodes using the E1 approach

Parameters MCMC-1 MCMC-2 MCMC-3 CAR STSP

Mean
Standard
deviation Mean

Standard
deviation Mean

Standard
deviation Mean

Standard
deviation Mean

Standard
deviation

a 0.54 0.87 1.69 0.72 0.87 1.10 0.48 0.68 0.40 0.67
b1 0.14 0.11 0.15 0.11 0.13 0.11 0.16 0.14 0.14 0.11
b2 0.14 0.14 0.17 0.19 0.13 0.17 0.13 0.12 0.13 0.09
sab1 0.05 5.73 4.01 1.36
sab2 0.20 3.74 4.02 1.38
sb1b2 0.10 2.41 1.89 0.49
kr 13.17 4.50 12.99 4.40 12.95 4.40 13.16 4.51 13.15 4.43
ks 0.07 0.05 0.05 0.04 0.05 0.04 0.07 0.05 0.07 0.05
s 0.16 0.14 0.17 0.15 0.16 0.14 0.18 0.15 0.17 0.15
t 0.19 0.17 0.18 0.15
c 0.18 0.15

CAR, continuous autoregressive; STSP, state space.

Table VII. Markov Chain Monte Carlo (MCMC) estimates of the SPAtially Referenced Regressions On Watershed attributes model
stochastic nodes using the E2 approach

Parameters MCMC-1 MCMC-2 MCMC-3 CAR STSP

Mean
Standard
deviation Mean

Standard
deviation Mean

Standard
deviation Mean

Standard
deviation Mean

Standard
deviation

a 0.46 0.77 1.63 0.65 0.75 0.85 0.60 0.99 0.45 0.74
b1 0.19 0.14 0.20 0.13 0.16 0.11 0.24 0.30 0.20 0.15
b2 0.10 0.10 0.13 0.10 0.10 0.08 0.12 0.17 0.10 0.09
sab1 0.06 7.10 4.02 1.34
sab2 0.14 8.89 4.00 1.34
sb1b2 0.06 4.71 1.88 0.49
kr 12.99 4.30 12.81 4.20 12.89 4.20 13.16 4.40 13.00 4.33
ks 0.05 0.04 0.03 0.03 0.04 0.03 0.05 0.04 0.05 0.04
s 0.40 0.14 0.41 0.14 0.40 0.14 0.20 0.16 0.39 0.15
t 0.16 0.14 0.18 0.16
c 0.43 0.25

CAR, continuous autoregressive; STSP, state space.

Table VIII. Markov Chain Monte Carlo (MCMC) estimates of the
SPAtially Referenced Regressions On Watershed attributes model
stochastic nodes when ignoring the measurement error associated

with the loading data

Parameters CAR STSP

Mean
Standard
deviation Mean

Standard
deviation

a 0.37 0.54 0.39 0.62
b1 0.23 0.13 0.22 0.10
b2 0.17 0.10 0.19 0.11
kr 12.51 4.28 12.39 3.99
ks 0.10 0.05 0.11 0.04
s 0.47 0.20 0.58 0.10
t 0.20 0.16 0.18 0.14
c 0.41 0.38

CAR, continuous autoregressive; STSP, state space.
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relative to the rest of the formulations. Parameter
identification was generally improved with the E2
approach, and this pattern was particularly evident with
the MCMC-2 model.
Table VIII presents the parameter posteriors resulting

from model calibration using the simpler E0 approach
for the STSP and CAR formulations. As expected, the
parameter standard deviations are generally lower than
those obtained when we include the data quality submodel
because of the greater amount of leverage exerted by the
actual loading data on the corresponding posteriors. The
model error variances (s2) are also higher than the posterior
values obtained by the E2 characterization. Because of
the absence of the intermediate latent variable Loadi, the
mismatch between model predictions and measured data is
entirely accounted for by the process error.We also note that
the posterior means of b1, b2 and ks are about the same or
slightly higher than those obtained with the E1 and E2
data error specifications. Interestingly, as the uncertainty of
the calibration data decreases, the STSP model error term
and correction factor (s and t) become much better
Copyright © 2012 John Wiley & Sons, Ltd.
distinguished from one another. This supports our conten-
tion that any instability introduced by the addition of the data
Hydrol. Process. 28, 1260–1283 (2014)
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quality submodel to the STSP configuration is mitigated
through a higher degree of confidence in the data.

Evaluation of model performance and updating

Table IX presents the Bayes factor comparisons for all
data error characterizations and statistical formulations.
Each value represents the comparison of themodel indicated
in the column heading to the model shown in the rows.
Following Kass and Raftery’s (1995) interpretation, values
between 1 and 3 are not worth more than a bare mention,
values between 3 and 20 suggest positive evidence in favour
of the model in the column heading, values between 20 and
150 show strong support and values greater than 150 show
very strong support. Note that we only compare Bayes
factors within each error configuration, as different error
configurations have different assumptions inherent in their
likelihood functions, and so their posterior odds are not
directly comparable.
The consideration of the two data quality submodels

did not result in strong support for any of theMCMCmodels
but did provide overwhelming support in favour of all the
MCMC models relative to CAR or STSP when the data
quality submodel is included. STSP also had positive or
strong support over CAR. Further, the MCMC-1 model
slightly underperforms the two models that explicitly
consider the covariance among a, b1 and b2. Interpreting
these results, we infer that the single most important action
for improving model performance in watersheds of limited
information is the incorporation of an error term to
accommodate the uncertainty associated with the existing
datasets. Once this condition is met, the second interesting
finding is that simpler statistical formulations can be
more favourably supported by the data, even if the spatial
correlation of the model residuals is not explicitly accounted
for. In this regard, our results differ somewhat from those
reported by Qian et al. (2005), in that neither the STSP nor
the conditional autoregressive model compare well with the
simpler MCMC model when we include the data quality
Table IX. Bayes factor comparisons for all simulations

MCMC-1 MCMC-2 MCMC-3 CAR STSP

Error 1
MCMC-1 1.00 2.04 1.61 0.00 0.10
MCMC-2 0.49 1.00 0.79 0.00 0.05
MCMC-3 0.62 1.27 1.00 0.00 0.06
CAR 90265 184358 145374 1.00 1139.70
STSP 9.68 19.77 15.59 0.00 1.00

Error 2
MCMC-1 1.00 0.65 1.01 0.01 0.21
MCMC-2 1.54 1.00 1.56 0.01 0.32
MCMC-3 0.99 0.64 1.00 0.01 0.20
CAR 17290 11252 17511 1.00 35.62
STSP 4.85 3.16 4.92 0.03 1.00

No Error
CAR 1.00 0.87
STSP 1.15 1.00

The Bayes factors are comparing models on top over models to the left.
MCMC, Markov chain Monte Carlo; CAR, continuous autoregressive;
STSP, state space.

Copyright © 2012 John Wiley & Sons, Ltd.
submodel. Interestingly, when we omit the latter submodel,
our analysis still does not provide strong support for the
conditional autoregressive model relative to the findings of
Qian et al. (2005) (see their Table 4). The study area is fairly
small compared with other SPARROW applications, and
thus, systematic spatial changes in topography, land cover
and other model inputs are less profound. As a result, a
model with common coefficients for all subwatersheds may
be adequate. In other SPARROW applications, spatial
patterns (e.g., agriculture intensity increases in the Neuse
River watershed from west to east) in input variables often
make a model with constant coefficients for all regions
inadequate (McMahon et al., 2003; Alexander et al., 2004;
Qian et al., 2005). This probably explains why our CAR
SPARROW application does not overwhelmingly outper-
form the other statistical models relative to what has been
reported in earlier studies.
Comparison of the priors with the posterior parameter

distributions on the basis of the median shifts, width
shifts and delta index is presented in Table X. Both the
median shifts and the (nearly consistent) reduction in the
width of the 95% credible intervals suggest substantial
contribution of the dataset used during the model-updating
process. The values of the three indices tended to increase as
the uncertainty of the loading data decreased, reflecting
greater leverage of the data on the posterior parameter
distributions. The parameters a, b1 and b2 showed the largest
median shifts, width shifts, and delta index values. By
contrast, the parameters kr and ks occasionally showed large
shifts, but generally their prior and posterior distributionswere
not drastically different. Finally, the significant reduction of
the width of the credible intervals resulting from the MCMC-
2 configuration (trivariate lognormal distribution for a, b1 and
b2 with covariance matrix subject to updating) reiterate its
efficiency to provide well-determined parameters, as demon-
strated by a significant change of the posteriors in relation to
the priors with regard to their central tendency and shape.
Identification of source areas and value of
additional monitoring

The location of the major nutrient source areas is of great
management interest in Hamilton Harbour. Priority sub-
watersheds for management intervention are those char-
acterized by both a high total delivery of total phosphorus
and a high delivery per area. For this modelling exercise, we
used the posterior parameters from the MCMC-1 formula-
tion on the basis of the E2 characterization in conjunction
with combined sewer overflow (CSO – Hamilton Harbour
Remedial Action Plan Technical Team, 2010) estimates
to assess the total nonpoint source total phosphorus load
to Hamilton Harbour. We found that the total load was
38.6� 6.7 tons of total phosphorus per year; 20.4� 1.25
tons of which originated from CSO events, leaving
18.2� 6.6 tons per year delivered by the local streams to
the Harbour. The reported uncertainties are in units of
one standard deviation and account for calibration data
uncertainty, parametric uncertainty and model error (s). It is
interesting to note that even with loading data characterized
Hydrol. Process. 28, 1260–1283 (2014)
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Figure 7. Average width of the posterior 95% credible intervals of reach
delivery to the subsequent downstream station for each combination of
statistical formulation and error treatment. Note that units are not

expressed in the logarithmic scale
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by uncertainties ranging from 17% to nearly 400%, it is
possible to arrive at basin-wide predictions with a precision
of about 36%. This is most likely because the well-studied
sites tend to be on larger streams – about 66% of the basin
area is drained bywell-studied sites. In Figure 6a, we present
the percentage of the total load of total phosphorus delivered
to Hamilton Harbour originating from each subwatershed.
The subwatersheds that are both large and close to Hamilton
Harbour have the highest delivery values. Figure 6b shows
the percentage of the total load of total phosphorus delivered
to Hamilton Harbour normalized by the area of each
subwatershed. The subwatersheds close to Hamilton
Harbour have the highest delivery values per area, as the
attenuation of their loads en route to the system is very low
and the urban developments aremore concentrated along the
Harbour’s shore.
To prioritize site-specific management interventions, it

is desirable to estimate reach-level contributions. We
estimate the precision with which a SPARROW model
calculates reach-level contributions as the average width
of the 95% credible intervals of all reach catchment loads
to the closest monitoring station. Figure 7 shows how the
uncertainties in reach-level contributions vary across
statistical formulations and data error specifications. The
E2 data error characterization does not consistently
improve the precision of reach-level predictions relative
to the E1 approach. On the other hand, the omission of the
data quality submodel did result in more (but possibly
misleadingly) precise predictions. It is also interesting to
note that the explicit consideration of the a, b1 and b2
covariance resulted in more precise predictions relative to
the model that assumes conditional independence
(MCMC-1). The CAR and STSP formulations resulted
in the most uncertain reach-level predictions, although we
highlight their fairly similar average widths when updated
with the ‘error-free’ approach and those derived from the
MCMC-2 and MCMC-3 models when coupled with the
data quality submodel.
Percent
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1.4 - 2.8

2.8 - 4.2
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5.6 - 7.0
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Figure 6. Estimated contribution of each subwatershed to the total phospho
load of each subwatershed as a percentage of the total phosphorus load, inc
en route to Hamilton Harbour. The map on the right (b) normalizes the per

the deliver

Copyright © 2012 John Wiley & Sons, Ltd.
Finally, our post-hoc numerical experiment yielded
some interesting suggestions regarding the expansion of
water quality monitoring programs supporting SPAR-
ROW models. We first evaluated the degree of updating
achieved by the scenarios of different data quantity and
quality relative to the prior parameter distributions
(Figure 8). The high precision dataset with 24 stations
substantially increases the delta index values for b1, b2
and ks, although there is little improvement in the widths
of the 95% credible intervals of the parameter posterior
distributions. Likewise, there were relatively minor
differences between the prior and posterior medians
derived by the two cases, with ks and b2 being the only
notable exceptions. With only 12 stations, the improve-
ment in parameter updating of all three metrics was lesser
relative to the version of the model with all 24 stations.
Further insights were gained by comparing the actual
posterior statistics of the four datasets (Table XI). In
particular, the high precision dataset reduced the standard
deviations for all parameters, whereas only a and ks
exhibit noteworthy changes in their most likely values.
Percent/Area
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rus loading in Hamilton Harbour. The map on the left (a) expresses the
luding the combined sewer overflows and taking into account attenuation
centage contribution by the corresponding subwatershed areas, presenting
ed yield
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Figure 8. Value of information of additional monitoring in the Hamilton Harbour watershed. Black bars indicate current precision, whereas grey bars indicate
the higher precision scenario. Left column represents samplingwith all 24 stations. Right column represents samplingwith a subset of 12 stations. Rows from top
to bottom represent (a) the change in thewidth of the 95%credible interval of the informative prior and posterior parameter distributions; (b) the value of the delta

index; and (c) the percentage difference between the median values of the prior and posterior parameter distributions

Table XI. Comparison of posterior parameter distributions for simulated data with the current and high precision

Current precision, 24 stations High precision, 24 stations Current precision, 12 stations High precision, 12 stations

Median Standard deviation Median Standard deviation Median Standard deviation Median Standard deviation

a 0.14 0.76 0.13 0.50 0.16 0.87 0.17 0.86
b1 0.17 0.12 0.16 0.08 0.17 0.14 0.17 0.12
b2 0.05 0.06 0.05 0.03 0.05 0.08 0.05 0.06
kr 12.54 4.25 12.32 4.13 12.59 4.45 12.63 4.39
ks 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.03
s 0.27 0.13 0.23 0.10 0.31 0.17 0.28 0.15
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The latter result was not reflected in the prior-posterior
comparison because the a and ks priors were relatively
unconstrained. When the scenario with 24 stations to that
with only 12 is compared, it is clear that a greater number
Copyright © 2012 John Wiley & Sons, Ltd.
of points in space overwhelmingly improve parameter
identification. Figure 9 presents the difference between
the widths of the 95% credible intervals of the modelled
log-transformed subwatershed loadings for the current
Hydrol. Process. 28, 1260–1283 (2014)
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Figure 9. Value of information of additional monitoring in the Hamilton Harbour watershed. Maps show the difference between the width of the 95%
credible intervals of the posterior loading estimates derived from the high and the current precision scenarios for (a) sampling with all 24 stations (right)

and (b) sampling with a subset of 12 stations (left)
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and high precision scenarios. Our analysis shows that
an increase in the credibility of the measured loads
significantly reduces the uncertainty of model predictions,
evenwhen the number of stations is halved. The ‘12-station’
scenario did, however, moderate the benefits of the
increased credibility of the observed loading data in some
subwatersheds. The subwatersheds that likely to have
the greatest reduction of 95% credible interval width under
the ‘24-station’ scenario are the same sites previously
characterized by high absolute and areal load relative to the
total nonpoint total phosphorus load entering the system.
DISCUSSION

Accounting for data uncertainty

The uncertainty in watershed modelling typically stems
from errors associated with the measurements of input and
response data, the parametric uncertainty, and the
structural (or process) error arising from the inherent
inability of a given modelling construct to reproduce the
mechanisms involved in runoff generation or in biogeo-
chemistry (Rode et al., 2010). Although most of the
existing efforts in the literature delve into the analysis of
parameter uncertainty (Beven and Freer, 2001), there is an
increasing trend towards explicitly addressing the impact
of other sources (e.g., Engeland and Gottschalk, 2002;
Wagener and Gupta, 2005; Huard and Mailhot, 2006;
Kuczera et al., 2006; Ajami et al., 2007; Liu and Gupta,
2007). In this study, one of our objectives involved the
calculation of the mean annual loads and subsequently the
characterization of the associated error in a watershed
where limited information exists. Our Bayesian framework
accounts for the data uncertainty using the classical
measurement error model, i.e., the observed loading depends
on a ‘true’ unknown value, which in turn is a random draw
from a probability distribution determined by the predictive
statements of the model and the associated process error
(Carroll et al., 2006).
Copyright © 2012 John Wiley & Sons, Ltd.
Measuring mean annual total phosphorus loads is not a
trivial task, and so the data used to guide the parameter
estimation of SPARROW models are typically estimates
surrounded by substantial uncertainty (Cohn et al., 1989,
1992; Alexander et al., 2002, 2004; Moatar and Meybeck,
2005). Our database was likely characterized by a
higher degree of uncertainty than those typically used to
calibrate watershed models. However, given the lack of
consideration of the calibration data uncertainty in the
typical SPARROW practice, it is difficult to quantify the
relative quality of our dataset. In their assessment of
various annual load estimation techniques, Moatar and
Meybeck (2005) report precisions (in terms of standard
deviations) of between 10% and 20% for annual total
phosphorus loads, depending on the method of load
calculation. Of the six well-studied sites, four were within
this range, whereas two (Redhill Creek) were substan-
tially higher (around 100%). All of the sparsely studied
sites were substantially higher than this level (between
150% and 400%). Yet, even with information of such
quality, we were able to arrive at estimates of basin-wide
nonpoint source loads with a precision of about 36%. We
selected a conservative method to calculate the measure-
ment error that disallowed the disaggregation of temporal
variability from the uncertainty of the mean loads. This is
defensible in a static model, such as SPARROW, where
the uncertainty in model outputs can only implicitly
depict the temporal variability of the system. Moatar and
Meybeck (2005) found that the method employed here
(our Equation (4)) resulted in the highest precision and
lowest error among the methods tested with respect to
total phosphorus. It is possible though that in other areas,
particularly basins smaller than their case study of
roughly 30,000 km2, different methods would result in
more accurate or precise estimates of annual loads. Future
work could compare the results obtained herein with
those obtained when using less conservative methods of
estimating the uncertainty of the noncontemporaneous
load estimates. For instance, the uncertainty of the
Hydrol. Process. 28, 1260–1283 (2014)
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noncontemporaneous load estimates could be based on
the standard errors of the sampled concentrations instead
of their variances. Alternatively, daily flow estimates at
ungauged sites could also be estimated using information
from gauged sites and additional load and uncertainty
calculation methods may then be employed (Preston
et al., 1989; Moatar and Meybeck, 2005).
An interesting lesson learned from the consideration of

data uncertainty was that it tends to inflate the uncertainty
surrounding the parameter posteriors as well as the width
of the predictive intervals, which in turn are a depiction of
the total uncertainty of the modelling exercise, i.e.,
parametric, structural and data uncertainty. This increase
of parametric and predictive uncertainty was a result of
increasing the complexity of the modelling exercise with
the data quality submodel – as we detailed in Bayesian
Parameter Estimation (Methodology Section), the data
quality submodel adds a number of parameters equal to
the number of calibration data points in the model. We
also note the somewhat counterintuitive increase of the
process error when assigning lower measurement error to
the total phosphorus loadings of six fairly well-monitored
sites. Although this result may partly stem from the
inefficient search for the corresponding ‘true’ loading
values due to the stricter constraints imposed by the lower
observation error, it may also highlight the likelihood of
having several erroneous mean loading estimates in the
current dataset used.
Evaluation of statistical formulations

The selection of the appropriate statistical formulation
to describe the modelling problem at hand is always a
critical decision and can significantly affect the posterior
parameter distributions, model predictive capacity and
error structure (Arhonditsis et al., 2008a,b). In particular,
earlier work by Qian et al. (2005) argued that the
conditional autoregressive and STSP models are effective
strategies to improve SPARROW applications because of
their ability to accommodate the spatial correlation of
model residuals as well as to minimize the propagation of
the observation error to downstream subwatersheds. Our
study shows that the predominance of the CAR and STSP
statistical formulations over the conventional approaches
holds true only when the data uncertainty is omitted.
When the CAR and STSP models are coupled with the
measurement error model, the substantial complexity
increase apparently becomes an impediment and tends to
over-inflate the predictive uncertainty. We also pinpoint
the better fit obtained by the STSP formulation without
the data quality submodel vis-à-vis all the formulations
that assume conditional independence of the model
residuals combined with the measurement error model
(e.g., see Figure 3). As both approaches are structurally
identical, the former model contains two unconstrained
global error term and correction factor (s and t) subject to
updating, whereas the latter ones considers the global
process error (s) and prespecified site-specific observa-
tion errors (d).
Copyright © 2012 John Wiley & Sons, Ltd.
The advantages of accounting for the interdependencies
among model parameters have been discussed in the
modelling literature (Bates et al., 2003; Qian et al., 2005;
Arhonditsis et al., 2008a,b). Yet, Hong et al. (2005) noted
that the existing knowledge regarding the correlations
among model parameters is usually insufficient to
probabilistically express any prior assumptions. Further,
the assumption of prior independence provides a type of
robustness in the analysis, in that it allows exploring
broader areas of the parameter space (Hong et al., 2005).
When data availability is a limiting factor though, the
representation of the prior parameter space by a wide
hypercube, postulated by the use of several conditionally
independent uniform priors, may not be adequate to elicit
meaningful predictive statements from our models.
Rather, we should use any prior knowledge from the
literature on the relative plausibility of different values of
the model parameters as well as their interdependencies,
which then can be included into the ‘prior–likelihood–
posterior’ update cycles and gradually converge towards
more realistic (site-specific) values (Arhonditsis et al.,
2007). After all, once informative data are collected from
the system, the specific assumptions used in constructing
the corresponding prior distributions for the different
parameters will not matter. In this study, we found that
the narrower hyperellipsoids implied by the MCMC-2
and MCMC-3 statistical formulations did improve
parameter identification and model predictions at both
the subwatershed and reach scale, although the advan-
tages were contingent upon the type of covariance
matrix specified as well as the quantification of the
uncertainties of the loading data. In particular, we found
that the more flexible structure of the MCMC-2 model
offers fairly well-identified posteriors for a, b1 and b2,
although the corresponding covariance estimates are
poorly determined (Tables VI-VIII). On the other hand,
the more rigid correlation pattern postulated by the
MCMC-3 model does not appear to substantially alleviate
the identification problem.
SPARROW application in watersheds of limited
information and value of additional monitoring

Our analysis presented a framework for applying the
SPARROW model in smaller, less intensively monitored
watersheds. In any modelling framework, the results can be
partly driven by the model structure selected. SPARROW’s
semi-distributed framework may be unable to properly
resolve ‘hotspot’ areas where the co-occurrence of a number
of favourable conditions results in disproportionately high
nutrient export. Using more complex models typically
requires more data, and this data may not be available for
watersheds with limited information. SPARROW requires
only basic information about land use, topography and
nutrient loadings, and so it represents a sensible strategy
when data availability is a limiting factor.
Model parameters are generally comparable to those

presented by previous SPARROW models, with the
exception of ks (stream attenuation), which is generally
Hydrol. Process. 28, 1260–1283 (2014)
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much higher than what we report here. This is likely due to
our use of only one stream class, which assumes uniform
attenuation across headwaters and large channels. Previous
work has found this parameter to be much higher in smaller
streams than larger ones, usually by an order of magnitude
(McMahon et al., 2003; Alexander et al., 2004). Alexander
et al. (2002) found the stream attenuation to be not
significantly different from zero for large streams. It is
possible that by representing small and large streams with
the same coefficient, we may underestimate the attenuation
in small and overestimate in large streams. Given the nature
of our dataset though, it was not deemed appropriate to
further inflate the uncertainty by explicitly estimating stream
attenuation in both small and large streams.
The estimates of total phosphorus export in the majority

of our modelling experiments suggest that urban land uses
may export total phosphorus on a per area basis comparable
to that of agricultural lands. This finding is somewhat
contrary to the popular notion that rates the nutrient export of
urban lands below that of agricultural lands due to lower
nutrient subsidies (Moore et al., 2004; Soldat and Petrovic,
2008; Soldat et al., 2009). On the basis of our literature
search, our prior parameter distributions assigned a slightly
higher median value of total phosphorus export to urban
lands than to agricultural lands, whereas the delta indices for
b1 and b2 also showed significant influence of the dataset
used on the corresponding posteriors. In particular, the six
most intensively studied sites contained both agricultural
and urban land covers, so it is unlikely that the higher b1
value stems from the higher precision assigned to those sites
during the model updating. It should also be noted that the
same result was found (b1≥b2) even when identical priors
were assigned to the two parameters. Further, other studies
in the region of Southern Ontario have found urban total
phosphorus export rates to be higher than agricultural total
phosphorus export rates (Winter and Duthie, 2000).
Although the water quality monitoring stations were
selected to be upstream from any CSO or wastewater
treatment plant effluent, there may be some connections of
the sewer system to the creeks, possibly in the form of illegal
connections between sanitary and storm sewers, leaky sewer
pipes, or unaccounted for CSO outfalls. A more refined
estimation of the export coefficients will likely require a
higher quality database.
Our analysis showed the benefits of obtaining more

precise estimates of total phosphorus loads within the basin,
which, however, may not be possible as the resources
to intensively monitor the entire watershed are not always
available (Zhang and Arhonditsis, 2008). Thus, we also
examined the tradeoff between increasing the spatial
intensity of sampling and improving the precision of the
load estimates and found that the parameter identification is
predominantly driven by the appropriate sampling intensity
in space. McMahon et al. (2003) introduced two criteria
(or measures of impairment uncertainty) for allocating
scarce monitoring resources and subsequently maximizing
the knowledge gained. Namely, it was proposed that the
additional water quality data-collection efforts should be
focused on ‘hot spots’, characterized by either midrange
Copyright © 2012 John Wiley & Sons, Ltd.
likelihood of impairment (e.g., the probability of exceeding
awater quality criterionwas lyingwithin the 25–75% range)
or by model predictions of unacceptably high variance
(McMahon et al., 2003). In this study, we propose two
additional criteria: targeting locations where data uncer-
tainty drives model residuals and locations where modelled
loads showed the greatest reduction in the width of their
95% credible intervals when the hypothetical high precision
dataset was used (Figure 9). In particular, we found that
the headwater streams of Grindstone and Indian Creeks are
subject to high model residuals and high load uncertainties.
We also identified which subwatersheds displayed
the greatest contraction in their 95% credible intervals when
a hypothetical high precision dataset was used to
parameterize the model. These subwatersheds include the
ones at the headwater streams mentioned previously as well
as those closest to the Harbour characterized by high
delivery rates and urban land uses. Additional monitoring
targeting the latter group of subwatersheds is underway and
will considerably improve our model parameterization and
load estimates.
We strongly concur with Pappenberger and Beven

(2006), who called for uncertainty analysis to be an integral
aspect of the environmental modelling practice. Empirical
models like SPARROW are a useful scientific tool for
avoiding the arbitrary selection of stringent (and often
unattainable) threshold values for environmental variables
(quality goals/standards) as a hedge against unknown
forecast errors or risky management decisions that could
result in themisallocation of the limited resources during the
costly implementation of alternative environmental man-
agement schemes. Yet, the ubiquitous and often substantial
uncertainty pervading any modelling exercise must be
reduced or at least explicitly acknowledged and commu-
nicated in a straightforward way that can be easily used by
decision makers/policy planners. In this study, the Bayesian
framework illustrated the potential improvements when data
uncertainty and spatial variability are accounted for as well
as the ramifications that the complexity of each statistical
problem description entails. On a final note, we believe that
models are a worthwhile scientific activity, even when the
limited knowledge from the system studied reduces their
predictive ability. Rather than asking questions from a
model that cannot be answered, we simply have to shift our
focus on tasks that can be accomplished. After all, the
development of a model is a dynamic process that is on par
with the policy practice of adaptive management or
‘learning while doing’. The initially uncertain model
parameterization/structure can be sequentially refined as
new knowledge is obtained from the system, and this
gradual model evolution can provide the basis for revised
(and improved) management actions.
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1. Spatial Data Sets 

1.1 Topography: The delineation of subwatersheds and reach catchments is done using a 

digital elevation model (DEM). A stream corrected 10 meter cell size DEM generated through 

the application of photogrammetric methods was used for this purpose. Water quality monitoring 

stations were used as the discharge point for subwatersheds. More information about these 

stations is given in Section 2.3.5. Our calibration dataset had 24 subwatersheds. Their areas 

ranged from 0.3 – 75.8 km
2
, with a mean of 17.9 km

2 
and an interquartile range of 25.7-6.8 = 

18.9 km
2
. The Water Survey of Canada maintains a series of stream gauging stations which were 

used to develop a discharge-area (DA) model for the basin (Viessman and Lewis, 2002; Water 

Survey of Canada, 2011)). Flows from years 1988 – 1990, 1992 – 2002 were used to estimate the 

mean total annual flows. These years were chosen because they contained a complete flow 

record for all stations. The DA model related the natural logarithm of mean total yearly flow 

(m
3
yr
-1
), Ln(Flow), to the subwatershed area (km

2
), Area, with the following equation: 

Ln(Flow) = 0.0125Area + 15.95 (r
2
 = 0.91, n = 9)                    (ESM-1) 

1.2 Streams, Lakes, and Reservoirs: Geographic Information System (GIS) layer files for 

streams, lakes, and reservoirs were obtained in two layers digitized from Natural Resource 

Canada’s National Topographic System of maps (Natural Resources Canada, 2011). The 

1:50,000 scale map series was used as the source of the dataset. The U.S. EPA River Reach File 

1, used by many previous SPARROW applications (McMahon et al., 2003; Alexander et al., 

2004), is digitized from source data with a scale of 1:500,000, a much coarser scale. We chose 

not to include all the stream segments in this SPARROW model to avoid a proliferation of 

miniscule reach catchments. We imposed a minimum reach catchment area of 10,000 ha as well 

as a minimum stream reach length of 750 m for consideration in the model. While the National 

Hydrographic Dataset of the United States (NHD) generally contains reaches greater than 1 mile 



(1600 m) in length, we opted for 750 m due to the finer scale of our study (United States 

Geological Survey, 2000). The final stream layer has a mean length of 2.4 km and an 

interquartile range of 3.2-1.2=2.0 km. There are a total of 175 reach catchments, and each reach 

catchment discharges into a confluence, reservoir, or water quality monitoring station. Reach 

catchment areas ranged from 0.02 – 19.3 km
2
, with a mean of 2.5 km

2
 and an interquartile range 

of 3.5-0.9=2.6 km
2
. We imposed two criteria that a reservoir had to fulfill in order to be included 

in the model. First, it had to have a minimum area of 4.05 ha, the threshold for inclusion in the 

NHD (United States Geological Survey, 2000). Second, it had to drain an area of at least 50,000 

ha. This was roughly the x-intercept of the discharge-area model, when developed with data 

expressed in the original scale, and represented its application domain. Aerial hydraulic loads 

were calculated as the ratio of the mean total yearly flow to the reservoir area. Four reservoirs 

were used during the parameter estimation of the SPARROW model (Figure 1).  

1.3 Nutrient Sources: Both point and non-point nutrient sources were included in the 

SPARROW model of Hamilton Harbour. Two point sources were considered, only one of which 

was used for model parameter estimation: (i) The Waterdown Waste Water Treatment Plant 

(WWTP), a small water treatment plant discharged into a tributary of Grindstone Creek during 

the study period, though it was taken offline in 2008. The mean loading for this plant between 

1996 and 2007 was 0.3 tons of phosphorus per year, with an interquartile range of 0.4-0.2=0.2 

tons per year (Hamilton Harbour Remedial Action Plan Technical Team, 2010). (ii) A second 

point source was the set of combined sewer overflows (CSOs) which result from Hamilton’s 

combined sewer system. While holding tanks at several CSOs have been constructed, overflows 

can still occur when the tank capacity is reached, and CSOs without holding tanks result in more 

frequent overflows. Some of these combined sewers overflow directly to Hamilton Harbour, 



while others flow into Cootes Paradise, a large wetland which drains directly into Hamilton 

Harbour. Phosphorus loads to Cootes Paradise from CSOs averaged 1.5 tons per year between 

1996 and 2007, with an interquartile range of 2.1-0.6=1.5 tons per year (Hamilton Harbour 

Remedial Action Plan Technical Team, 2010). Phosphorus loads from CSOs directly to 

Hamilton Harbour averaged 21.6 tons per year between 1996 and 2007, with an interquartile 

range of 25.4-16=9.4 tons per year (Hamilton Harbour Remedial Action Plan Technical Team, 

2010). While there is a CSO outfall upstream of the most downstream monitoring station of 

Redhill Creek, no information was available regarding the CSO loadings there, and so these 

loadings were accounted for implicitly by the model parameterization. The CSO loadings were 

used to estimate the total basin phosphorus load to Hamilton Harbour, but were not part of the 

model parameterization. 

The non-point sources of total phosphorus were limited to agricultural and urban land, which 

included urban green space. These two land cover types were chosen because together account 

for 80% of the current land use of the basin; they are most likely to change in extent in the near 

future; and they have been found to be by far the greatest sources of phosphorus to receiving 

waters at the landscape scale (Beaulac and Reckhow, 1982; Alexander et al., 2004). Land uses 

were derived from a supervised classification of satellite imagery from 2002; Southern Ontario 

Land Resource Information System (Ontario Ministry of Natural Resources, 2008). Total 

agricultural and urban areas were estimated for each reach using GIS overlay analysis.  

1.4 Landscape Characteristics: Landscape characteristics can influence the delivery of 

phosphorus to stream edges. Poorly drained soils have been found to deliver greater amounts of 

phosphorus to streams than well drained areas, as poorly drained soils tend to have a high 

exchange capacity and overland flow/erosion and the installation of tile drainage systems is more 



common on poorly drained soils (Beaulac and Reckhow, 1982). Previous SPARROW 

estimations of total phosphorus have found significant delivery effects from soil permeability 

(Alexander et al., 2004), and therefore we assumed that the delivery of phosphorus to streams is 

primarily controlled by soil runoff potential, parameterized as a function of the soil hydrologic 

runoff group. Following McMahon et al. (2003), we calculated an area-weighted average of soil 

hydrologic runoff group for each reach catchment. We assigned values of 1 through 4 to soil 

groups A, the most well-drained group, through D, the most poorly drained group. We then took 

the reciprocal of the reach-level average so that lower numbers indicate higher nutrient delivery 

rates. The hydrologic runoff group was supplied by the Ontario Ministry of Agriculture and Food 

(Soils of Southern Ontario, 2005). 



Table ESM-1: Aspects of the dataset used.  

*Note that the variance of the logged concentrations at stations with only one concentration measurement were specified as 

2.0, more than twice the highest variance of the rest of the stations. 

Station  

number 

Creek 

Name 

Number of 

concentration 

measurement

s 

Mean total 

phosphorus 

concentration 

(mg/L) 

Concentra

-tion 

standard 

deviation* 

(mg/L) 

Drainage 

area (km
2
) Q (m

3
/s) 

Average 

Logged 

Load 

(tons/yr) 

Variance 

of logged 

load 

(tons/yr)
2
 

E2 

logged 

load 

(tons/yr) 

E2 

variance 

(tons/yr)
2
 

Multiplica

-tive 

standard 

deviation, 

% (E1)  

Multiplica

-tive 

standard 

deviation, 

% (E1) 

1 Redhill 75 0.10 0.08 25.53 0.249 -0.067 0.80 0.720 0.524 145 106 

2 Redhill 76 0.10 0.05 51.65 0.569 0.034 1.25 0.958 0.527 206 107 

3 Chedoke 117 0.25 0.11 27.80 0.277 0.998 0.66 
  

125  

4 Spencer 48 0.02 0.01 49.05 0.537 -1.288 0.67 -1.113 0.025 127 17 

5 Spencer 48 0.05 0.03 124.83 1.465 0.612 0.75 1.053 0.038 138 22 

6 Spencer 47 0.06 0.05 157.16 1.861 1.126 0.80 1.509 0.037 145 21 

7 Spencer 90 0.09 0.15 221.63 2.651 2.084 1.18 
  

196  

8 Borer's 101 0.11 0.17 19.34 0.173 -0.241 1.13 
  

190  

9 Grindstone 1 0.12 NA 11.10 0.073 0.153 2.46 
  

380  

10 Indian 1 0.08 NA 8.06 0.035 -0.342 2.46 
  

380  

11 Indian 1 0.11 NA 5.25 0.001 -0.007 2.46 
  

379  

12 Grindstone 5 0.06 0.04 22.49 0.212 -0.600 0.76 
  

140  

13 Grindstone 10 0.19 0.15 30.52 0.310 0.638 0.88 
  

156  

14 Grindstone 12 0.10 0.05 8.66 0.043 -0.171 0.75 
  

138  

15 Grindstone 5 0.17 0.17 43.63 0.471 0.627 1.12 
  

188  

16 Grindstone 1 0.04 NA 45.37 0.492 -0.517 2.47 
  

381  

17 Grindstone 6 0.09 0.08 65.59 0.740 0.306 1.03 
  

176  

18 Grindstone 5 0.17 0.21 12.94 0.095 0.082 1.35 
  

219  

19 Grindstone 1 0.03 NA 8.95 0.046 -1.135 2.46 
  

380  

20 Grindstone 96 0.10 0.28 76.08 0.868 0.245 1.09 
  

184  

21 Grindstone 1 0.03 NA 77.81 0.890 -0.335 2.47 
  

382  

22 Grindstone 19 0.14 0.10 78.06 0.893 0.873 1.04 
  

177  

23 Grindstone 154 0.09 0.14 86.86 1.000 0.515 1.04 1.083 0.028 177 18 

24 Grindstone 88 0.15 0.30 95.49 1.106 1.057 0.98 
  

169  



 

Table ESM-2: Data used for the Value of Information Experiment with 24 stations. Precisions are 

expressed as standard deviations on the log scale.

Station 

Number 

Posterior Mean Load 

(logged, tons/yr) 

Measurement Error Standard 

Deviation - Current Precision 

Measurement Error Standard 

Deviation - High Precision 

1 0.860 0.724 0.724 

2 1.298 0.726 0.725 

3 1.074 0.811 0.725 

4 -0.979 0.157 0.157 

5 1.030 0.196 0.196 

6 1.418 0.193 0.193 

7 1.811 1.086 0.725 

8 -0.302 1.065 0.725 

9 -0.803 1.568 0.725 

10 -0.186 1.568 0.725 

11 -0.734 1.568 0.725 

12 -0.499 0.874 0.725 

13 0.000 0.940 0.725 

14 -0.863 0.866 0.725 

15 0.295 1.057 0.725 

16 0.229 1.570 0.725 

17 0.500 1.015 0.725 

18 -1.243 1.160 0.725 

19 -0.931 1.568 0.725 

20 0.681 1.045 0.725 

21 0.717 1.573 0.725 

22 0.761 1.017 0.725 

23 1.049 0.168 0.168 

24 1.010 0.989 0.725 



Table ESM-3: Data used for the Value of Information Experiment with 12 stations. 

Precisions are expressed as standard deviations on the log scale. 

 

Station 

Number 

Posterior Mean Load 

(logged, tons/yr) 

Measurement Error Standard 

Deviation - Current Precision 

Measurement Error Standard 

Deviation - High Precision 

1 0.860 0.724 0.724 

2 1.298 0.726 0.725 

3 1.074 0.811 0.725 

4 -0.979 0.157 0.157 

5 1.030 0.196 0.196 

6 1.418 0.193 0.193 

7 1.811 1.086 0.725 

8 -0.302 1.065 0.725 

11 -0.734 1.568 0.725 

12 -0.499 0.874 0.725 

19 -0.931 1.568 0.725 

23 1.049 0.168 0.168 



 

Table ESM-4: Correlation matrix of predicted mean loads for all combinations of data error characterizations and statistical 

formulations. Values less than 0.90 are in bold and italics. 

 

MCMC-1 

E1 

MCMC-2 

E1 

MCMC-3 

E1 

CAR 

E1 

STSP 

E1 

MCMC-1 

E2 

MCMC-2 

E2 

MCMC-3 

E2 

CAR 

E2 

STSP 

E2 

CAR 

E0 

STSP 

E0 

MCMC-1 E1 1.00 1.00 1.00 1.00 1.00 0.98 0.98 0.99 0.97 0.98 0.86 0.88 

MCMC-2 E1 1.00 1.00 1.00 0.99 1.00 0.98 0.99 0.99 0.97 0.97 0.84 0.86 

MCMC-3 E1 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.99 0.97 0.98 0.85 0.87 

CAR E1 1.00 0.99 1.00 1.00 1.00 0.98 0.98 0.99 0.98 0.98 0.88 0.89 

STSP E1 1.00 1.00 1.00 1.00 1.00 0.98 0.98 0.99 0.97 0.98 0.86 0.88 

MCMC-1 E2 0.98 0.98 0.98 0.98 0.98 1.00 1.00 1.00 0.98 0.99 0.87 0.89 

MCMC-2 E2 0.98 0.99 0.99 0.98 0.98 1.00 1.00 1.00 0.98 0.99 0.85 0.87 

MCMC-3 E2 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 0.98 0.99 0.86 0.88 

CAR E2 0.97 0.97 0.97 0.98 0.97 0.98 0.98 0.98 1.00 1.00 0.91 0.92 

STSP E2 0.98 0.97 0.98 0.98 0.98 0.99 0.99 0.99 1.00 1.00 0.90 0.92 

CAR E0 0.86 0.84 0.85 0.88 0.86 0.87 0.85 0.86 0.91 0.90 1.00 1.00 

STSP E0 0.88 0.86 0.87 0.89 0.88 0.89 0.87 0.88 0.92 0.92 1.00 1.00 



Table ESM-5: Correlation matrix of standard deviations of predicted loads for all combinations of data error characterizations and 

statistical formulations. Values less than 0.75 are in bold and italics. 

 

MCMC-1 

E1 

MCMC-2 

E1 

MCMC-3 

E1 

CAR 

E1 

STSP 

E1 

MCMC-1 

E2 

MCMC-2 

E2 

MCMC-3 

E2 

CAR 

E2 

STSP 

E2 

CAR 

E0 

STSP 

E0 

MCMC-1 E1 1.00 0.98 0.99 0.92 0.98 0.97 0.97 0.97 0.82 0.84 -0.07 -0.11 

MCMC-2 E1 0.98 1.00 0.98 0.90 0.97 0.95 0.97 0.96 0.77 0.78 -0.10 -0.15 

MCMC-3 E1 0.99 0.98 1.00 0.91 0.98 0.98 0.97 0.98 0.82 0.83 -0.07 -0.11 

CAR E1 0.92 0.90 0.91 1.00 0.96 0.92 0.92 0.92 0.88 0.85 0.08 0.04 

STSP E1 0.98 0.97 0.98 0.96 1.00 0.95 0.96 0.96 0.87 0.87 0.00 -0.04 

MCMC-1 E2 0.97 0.95 0.98 0.92 0.95 1.00 0.99 1.00 0.86 0.86 -0.06 -0.11 

MCMC-2 E2 0.97 0.97 0.97 0.92 0.96 0.99 1.00 0.99 0.83 0.83 -0.08 -0.13 

MCMC-3 E2 0.97 0.96 0.98 0.92 0.96 1.00 0.99 1.00 0.85 0.85 -0.06 -0.12 

CAR E2 0.82 0.77 0.82 0.88 0.87 0.86 0.83 0.85 1.00 0.97 0.16 0.11 

STSP E2 0.84 0.78 0.83 0.85 0.87 0.86 0.83 0.85 0.97 1.00 0.20 0.15 

CAR E0 -0.07 -0.10 -0.07 0.08 0.00 -0.06 -0.08 -0.06 0.16 0.20 1.00 0.99 

STSP E0 -0.11 -0.15 -0.11 0.04 -0.04 -0.11 -0.13 -0.12 0.11 0.15 0.99 1.00 



Figure ESM-1: Locations of the Value of Information Experiment stations for the experiment with 24 stations. 



Figure ESM-2: Locations of the Value of Information Experiment stations for the experiment with 12 stations. 
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