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Uncertainty Analysis by Bayesian Inference
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Abstract The scientific methodology of mathematical models and their credibility

to form the basis of public policy decisions have been frequently challenged. The

development of novel methods for rigorously assessing the uncertainty underlying

model predictions is one of the priorities of the modeling community. Striving for

novel uncertainty analysis tools, we present the Bayesian calibration of process-

based models as a methodological advancement that warrants consideration in

ecosystem analysis and biogeochemical research. This modeling framework com-

bines the advantageous features of both process-based and statistical approaches;

that is, mechanistic understanding that remains within the bounds of data-based

parameter estimation. The incorporation of mechanisms improves the confidence in

predictions made for a variety of conditions, whereas the statistical methods

provide an empirical basis for parameter value selection and allow for realistic

estimates of predictive uncertainty. Other advantages of the Bayesian approach

include the ability to sequentially update beliefs as new knowledge is available, the

rigorous assessment of the expected consequences of different management

actions, the optimization of the sampling design of monitoring programs, and the

consistency with the scientific process of progressive learning and the policy

practice of adaptive management. We illustrate some of the anticipated benefits

from the Bayesian calibration framework, well suited for stakeholders and policy

makers when making environmental management decisions, using the Hamilton

Harbour and the Bay of Quinte—two eutrophic systems in Ontario, Canada—as

case studies.

11.1 Does Uncertainty Really Matter?

In the context of environmental management, the central objectives of policy

analysis and decision-making are to identify the important drivers of ecological

degradation, to pinpoint the sources of controversy, and to help anticipate the

unexpected. The explicit consideration of uncertainty enables one to think more
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carefully about these matters, to elucidate the relative role of different causal

factors, and to delineate contingency plans (Dawes 1988). Environmental problems

have a way of resurfacing themselves and are rarely (if ever) solved completely.

Nonetheless, even if some facets may change overtime, the core problems often

remain the same. Thus, having a framework that rigorously evaluates the underly-

ing uncertainty makes it much easier to distinguish between valid assumptions and

erroneous actions and, thus, maximize the efficiency of adaptive management

strategies (Morgan et al. 1992).

The concepts of “uncertainty” and “risk” are understood in a variety of different

ways by scientists, stakeholders, policy makers, and the public in ecology/environ-

mental science. Uncertainty is a generic term comprising many concepts

(Pappenberger and Beven 2006). No direct measurement of an empirical quantity

can be absolutely exact and, therefore, uncertainty arises from random error in

direct measurements. In addition, biases are often introduced through the measuring

apparatus and/or experimental protocols. This experimental procedure typically

reflects the systematic error associated with the difference between the true value

of the quantity of interest and the value to which the mean of the measurements

converges as more measurements are taken. Another source of uncertainty lies in

the subjective judgments used to overcome knowledge gaps and lack of empirical

measurements related to the major ecological mechanisms and/or variables under-

lying the environmental problem at hand. Inherent randomness is often perceived

as a distinctly different type of uncertainty in that it is in principle irreducible.

Nonetheless, this indeterminacy is not considered a matter of principle in environ-

mental science, but rather the product of our incomplete knowledge of the world. It

is argued that once we shed light on unknown causal variables and important

ecological processes, we should be able to reduce the apparent uncertainty. In

cases of environmental policy analysis, where there is no clear empirical evidence

and scientific support in favor of a certain management option, significant uncer-

tainty arises from potential disagreements among decision makers and stake-

holders, reflecting their different perspectives and conscious (or unconscious)

biases. Perhaps, the most familiar source of uncertainty is the variability that

environmental quantities demonstrate over time and space. While these quantities

can be effectively described by frequency distributions, what we typically fail to

acknowledge and effectively communicate is the degree of confidence about the

parameters (mean, median, standard deviation or various percentiles) of these

distributions given the available information in a certain location or time period.

Along the same line of thinking, all mathematical models are simplistic repre-

sentations of natural ecosystems and, therefore, their application in an environmen-

tal policy analysis context introduces the so-called approximation uncertainty
(Arhonditsis et al. 2007). This uncertainty stems from the assumptions made and

imperfect knowledge used to determine model structure and inputs (Beck 1987;

Reichert and Omlin 1997). Model input error mainly stems from the uncertainty

underlying the values of model parameters, initial conditions, and forcing functions

as well as the realization that all models are drastic simplifications of reality

that approximate the actual processes, i.e., essentially, all parameters are effective
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(e.g., spatially and temporally averaged) values unlikely to be represented by fixed

constants (Arhonditsis et al. 2006). Model structure error arises from (1) the

selection of the appropriate state variables (model endpoints) to reproduce ecosys-

tem functioning, given the environment management problem at hand; (2) the

selection of the suitable equations among a variety of mathematical formulations

for describing the ecosystem processes, e.g., linear, quadratic, sigmoidal, and

hyperbolic functional forms to reproduce fish predation on zooplankton (Edwards

and Yool 2000); and (3) the fact that our models are based on relationships which

are derived individually in controlled laboratory environments but may not collec-

tively yield an accurate picture of the natural ecosystem dynamics (Arhonditsis

et al. 2006).

The general premise for constructing mathematical models is to mirror the

complexity of natural systems and account for all the ecological processes that

can potentially become important in future hypothesized ecosystem states, and thus

increase our predictive ability. Nonetheless, by striving for increased model com-

plexity, and thereby (implicitly or explicitly) embracing a reductionist description

of natural system dynamics, we accentuate the disparity between what we want to

tease out from a mathematical model and what can realistically be observed given

the available technology, staffing, and resources to study the natural system. In

doing so, it often becomes impossible to impose quantitative (or even qualitative)

constraints on what should be considered “acceptable” model performance (Beven

2006). This problem profoundly undermines the very basic application of mathe-

matical models as inverse analysis tools, i.e., any information on the levels and the

variability of the state (or dependent) variables is used through the model calibra-

tion exercise to infer the most likely values of independent variables (model

parameters) typically representing ecological rates and functional properties of

the abiotic environment and/or the biotic communities. Instead, what modelers

encounter is a situation in which several distinct choices of model inputs lead to

the same model output, i.e., many sets of parameters fit the data about equally well.

This non-uniqueness of the model solutions is known in the modeling literature as

equifinality (Beven 1993). In recognition of the uncertainty and equifinality prob-

lems, it is suggested that the model calibration practice should change from seeking

a single “optimal” value for each model parameter, to seeking a distribution of

parameter sets that all meet a pre-defined fitting criterion (Stow et al. 2007;

Arhonditsis et al. 2007). These acceptable parameter sets may then provide the

basis for estimating prediction error associated with the model parameters.

Model uncertainty analysis is an attempt to formulate the joint probability

distribution of model inputs and then update our knowledge about this distribution

after the consideration of the calibration dataset. In this regard, Bayesian inference

represents a suitable means to combine existing information (prior) with current

observations (likelihood) for projecting the future. Several recent studies illustrate

how Bayesian inference techniques can be used to quantify the information that

data contain about model inputs, to offer insights into the covariance structure

among parameter estimates, and to obtain predictions along with uncertainty

bounds for model outputs (Bayarri et al. 2007; Arhonditsis et al. 2007, 2008a, b).
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Specifically, Bayesian calibration schemes have been introduced with simple math-

ematical models and statistical formulations that explicitly accommodate measure-

ment error, parameter uncertainty, and model structure error. Nonetheless, the

emergence of the holistic management paradigm has increased the demand for

even more complex biogeochemical models with considerably greater uncertainty

(Zhang and Arhonditsis 2008; Ramin et al. 2011; Reichert and Schuwirth 2012). In

particular, there is increasing pressure for the development of integrated water

quality models that effectively connect the watershed with downstream biogeo-

chemical processes. This need stems from the emerging management questions

related to contemporary climate and land use changes that should be connected with

the receiving water bodies (Rode et al. 2010). In this context, significant progress

has been made in regards to the computational demands and error propagation

control through complex model structures (Dietzel and Reichert 2012; Kim et al.

2014).

In this chapter, we present two case studies that illustrate how the assessment of

uncertainty can assist in developing integrated environmental modeling systems,

overcoming the conceptual or scale misalignment between processes of interest and

supporting information, and exploiting disparate sources of data that differ with

regards to their quality and resolution. The two systems are the Hamilton Harbour

and Bay of Quinte, Ontario, Canada. There is a great deal of modeling work that has

been done toward establishing realistic eutrophication goals and impartially eval-

uating the likelihood of delisting the two systems as Areas of Concerns (AOCs).

Existing watershed, eutrophication, and food web models shed light on different

facets of the ecosystem functioning. Here, we address several critical questions that

have emerged from these models: To what extent do the models coalesce with

respect to their assumptions and inference drawn? What are the major sources of

uncertainty that will ultimately determine the attainment of the existing delisting

goals? Our aim is to highlight the major lessons learned about the watershed

dynamics, the eutrophication phenomena, and the broader implications for food

web integrity. We also place special emphasis on the knowledge gaps of our current

understanding of the two systems. Our thesis is that the uncertainty stemming from

several “ecological unknowns” can offer critical planning information to determine

the optimal management actions in the two areas.

11.2 Hamilton Harbour

11.2.1 Introduction

Located at the western end of Lake Ontario, Hamilton Harbour is a large 2150 ha

embayment surrounded by a watershed of approximately 500 km2 (HH RAP 2003).

The harbour has a roughly triangular shape with a length of 8 km along its main axis

and a maximum width of 6 km along its eastern shoreline. It has a maximum depth
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of 23 m, an average depth of 13 m, a surface area of 21.5 km2, and a volume of

2.8 � 108 m3. The harbour exchanges water with western Lake Ontario via the

Burlington Ship Canal, which is a man-made canal, 836 m long, 89 m wide and

9.5 m deep. The residence time of the harbour is significantly reduced by these

exchange flows, which have a large influence on water quality and hypolimnetic

dissolved oxygen concentrations (Yerubandi et al. 2016). The majority of the loads

of inorganic nutrients and organic matter entering Hamilton Harbour originate from

the Woodward and Skyway wastewater treatment plants (WWTPs), combined

sewer overflows (CSOs), and ArcelorMittal Dofasco and Stelco steel mills

(Hiriart-Baer et al. 2009). Other significant loads are delivered by three main

tributaries that feed into the Harbour: Grindstone Creek, Red Hill Creek, and

Spencer Creek, which reaches the harbour through a 250 ha shallow area of both

marsh and open water called Cootes Paradise (HH RAP 2003). While the Redhill

Creek watershed is ~80% urbanized, much of Grindstone and Spencer Creeks

remain undeveloped as less than 20% of their watershed areas has been developed

(HH RAP 2003). As a consequence of the excessive loading of nutrients and other

pollutants, the harbour experiences serious water quality problems, such as algal

blooms, low water transparency, predominance of toxic cyanobacteria, and low

hypolimnetic oxygen concentrations often beginning in early summer.

Hamilton Harbour has long been considered one of the most degraded sites in the

Great Lakes, and was listed as one of the 43 Areas of Concern (AOCs)1 in the

mid-1980s by the Water Quality Board of the International Joint Commission (Hall

and O’Connor 2016). Since then, the Hamilton Harbour Remedial Action Plan

(RAP) has assembled a variety of government, private sector, and community

participants to decide on actions to restore the harbour environment. To this end,

the RAP identified a number of beneficial use impairments2 (BUIs), including the

beneficial use Eutrophication or Undesirable Algae (HH RAP 2003). The founda-

tion of the remedial measures and setting of water quality goals for the restoration

of the harbour was based on the premise that reducing ambient phosphorus con-

centrations could control the chlorophyll a concentrations and water clarity. Using a

framework that involved data analysis, expert judgment, and modeling along with

consideration of what was deemed desirable and achievable for the harbour (Hall

et al. 2006), critical thresholds for the TP concentration were set at 17 μg L�1,

chlorophyll a concentration at 10 μg L�1, Secchi disc depth at 3.0 m, whilethe

1Great Lakes Areas of Concern are designated geographic areas within the Great Lakes Basin that

show severe environmental degradation.
2An impairment of beneficial uses means a change in the chemical, physical or biological integrity

of the Great Lakes system sufficient to cause any of the following: Restrictions on Fish and

Wildlife Consumption; Tainting of Fish and Wildlife Flavor; Degraded Fish and Wildlife

Populations; Fish Tumors or Other Deformities; Bird or Animal Deformities or Reproductive

Problems; Degradation of Benthos; Restrictions on Dredging Activities; Eutrophication or Unde-

sirable Algae; Restrictions on Drinking Water Consumption or Taste and Odor Problems; Beach

Closings; Degradation of Aesthetics; Added Costs to Agriculture or Industry; Degradation of

Phytoplankton and Zooplankton Populations; Loss of Fish and Wildlife Habitat.
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maximum allowable exogenous TP loadings in the harbour were set at 142 kg day�1

(Charlton 2001). Reductions of external TP loading into the harbour led to water

quality improvement and resurgence of aquatic macrophytes, but the system still

receives substantial loads of phosphorus, ammonia, and suspended solids from the

WWTPs, as well as from non-point loading sources and, therefore, only moderate

improvements in TP, chlorophyll a and total ammonia concentrations have been

observed since the mid-1990s (Hiriart-Baer et al. 2009, 2016).

Environmental modeling has been an indispensable tool of the Hamilton Har-

bour restoration efforts and a variety of data-oriented and process-based models are

in place to determine realistic water quality goals. However, none of the existing

modeling efforts in the Hamilton Harbour had rigorously assessed the effects of the

uncertainty underlying model predictions (parametric and structural error,

misspecified boundary conditions) on the projected system responses, nor have

models to address percentile-based standards been used (Zhang and Arhonditsis

2008). Given the substantial social and economic implications of management

decisions, it is important to implement modeling practices accommodating the

type of probabilistic standards that seem to be more appropriate for complex

environmental systems, such as the Hamilton Harbour (Ramin et al. 2011). In the

following sections, we review the modeling efforts conducted to date in order to

quantitatively assess the uncertainty in implementing management actions, and to

highlight the applicability of percentile-based standards for setting water quality

targets in the Hamilton Harbour and its watershed.

11.2.2 Eutrophication Modeling to Elucidate the Role
of Lower Food Web

A series of process-based eutrophication models were built to depict the interplay

among the different ecological mechanisms underlying the eutrophication prob-

lems, and to guide a water quality criteria-setting process that explicitly acknowl-

edges the likelihood of standards violations in Hamilton Harbour (Gudimov et al.

2010, 2011; Ramin et al. 2011, 2012). As a starting point, Ramin et al. (2011)

developed an ecological model that considered the interactions among eight state

variables: nitrate, ammonium, phosphate, generic phytoplankton, cyanobacteria,

zooplankton, organic nitrogen, and organic phosphorus. The model was based

on a two-compartment vertical segmentation representing the epilimnion and

hypolimnion of the harbour. The planktonic food web model was subsequently

calibrated with Bayesian inference techniques founded upon a statistical formula-

tion that explicitly accommodated measurement error, parameter uncertainty, and

model structure imperfection. Concurrently with the Ramin et al. (2011) study,

Gudimov et al. (2010) conducted a second (independent) modeling exercise with an

upgraded model structure that utilized a three-compartment vertical segmentation

representing the epilimnion, metalimnion, and hypolimnion, included three
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phytoplankton functional groups to more realistically depict the continuum

between diatom and cyanobacteria-dominated communities, and two zooplankton

functional groups to account for the role of herbivorous and omnivorous zooplank-

ton in the system. With these approaches, both Ramin et al. (2011) and Gudimov

et al. (2010) provided a good representation of the seasonal variability of the

prevailing water quality conditions and accurately reproduced the major cause-

effect relationships underlying the harbour dynamics. Using the upgraded model

structure, Gudimov et al. (2011) revisited several of the critical assumptions made

in the previous two studies, and further explored the general uncertainty involved in

their assumptions of ecosystem functioning. Building from these models, Ramin

et al. (2012) used Bayesian averaging techniques to synthesize the forecasts from

models of differing complexity to examine the robustness of earlier predictions

regarding the harbour’s response to nutrient loading scenarios (see Chap. 16).

These models collectively addressed two critical questions regarding the present

status and future response of the Hamilton Harbour system: Is it possible to meet the

eutrophication delisting goals of the AOC, if the RAP’s proposed nutrient loading

reduction targets are actually implemented? How frequently would these water

quality goals be violated? The adoption of a water quality criterion that permits a

pre-specified level of violations in space and time offers a more realistic assessment

of the anticipated water quality conditions as it accommodates both natural vari-

ability and sampling error. Overall, similar projections were achieved by Ramin

et al. (2011) and by Gudimov et al. (2010), projecting that the 17 μg TP L�1 target

would likely be met if the RAP phosphorus-loading target of 142 kg day�1 were

achieved. However, by using a more representative summer epilimnetic TP dataset

to calibrate the eutrophication model, Gudimov et al. (2011) demonstrated that the

latter water quality target was too stringent, and most likely unattainable

(Fig. 11.1). As corroborated by Ramin et al. (2012), a more pragmatic goal of

20 μg TP L�1 would permit an acceptable frequency level of violations, e.g.,<10%

of the weekly samples during the stratified period (Fig. 11.1).

In contrast to the TP criterion, and depending on the assumptions made about the

strength of the top-down control, as well as the importance of the internal nutrient

sources (e.g., phosphorus release from the sediments, nutrient mineralization),

Ramin et al. (2011) and Gudimov et al. (2010) provided evidence that the mean

chlorophyll a target was achievable, although their projections had >50% proba-

bility of exceeding the 10 μg L�1 threshold level, even under the most drastic

external nutrient loading reduction scenarios. In a follow-up study, Gudimov et al.

(2011) revisited the ecological parameterization of the previous two models in

order to test whether the chlorophyll a criterion could be achieved with a lower

frequency of violations. With this analysis, two critical “ecological unknowns”

were identified to influence the model’s capacity to assess compliance with the

chlorophyll a criterion; namely, the importance of the epilimnetic nutrient regen-

eration mediated by the microbial food web, and the likelihood of a structural shift

in the lower food web towards a zooplankton community dominated by large-sized

and fast-growing herbivores (e.g., Daphnia) (Gudimov et al. 2011). Given these

uncertainties, Ramin et al. (2012) emphasized that the criteria setting process
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Fig. 11.1 Chlorophyll a predictive distributions for different levels of TP concentrations under (a)
the present and (b) the Hamilton Harbour RAP loading targets (see text). Panel (c) illustrates the

222 G. Arhonditsis et al.



should allow for a realistic percentage of violations of the target, such that

exceedances of <10–15% of the weekly samples collected during the stratified

period should still be considered as compliance, in order to explicitly accommodate

the natural variability or inherent unpredictability of the system response.

In the same context, the uncertain role of planktivory and sediment diagenesis in

the system emerged as two additional important ecological mechanisms for achiev-

ing the water quality targets in Hamilton Harbour. Gudimov et al. (2010) provided

evidence that the anticipated structural shifts of the zooplankton community could

determine the restoration rate, as well as the stability of the new trophic state in the

harbour. Larger zooplankton taxa are particularly efficient in suppressing the

standing phytoplankton biomass, but are also preferentially consumed by fish,

and therefore the level of planktivory may shape the response rate to the nutrient

loading reductions (Gudimov et al. 2010). Further, Gudimov et al. (2011) demon-

strated that the epilimnetic TP concentrations were highly sensitive to the internal

phosphorus loading assumptions, as a nearly two-fold increase of the sediment

fluxes dramatically increased the number of violations of the TP delisting target.

Thus, the internal nutrient loading from the sediments may be an important

regulatory factor of the harbour.

The accuracy of the predictions made by the eutrophication model is conditional

upon the credibility of the nutrient loading estimates to the harbour, which were

highly uncertain and inadequately accounted for the contribution of non-point

sources, episodic meteorological events (e.g., spring thaw, intense summer storms),

and short-term variability at the local WWTPs (Gudimov et al. 2010, 2011). These

uncertainties could potentially influence the exceedance frequency and the confi-

dence of compliance with the water quality standards, particularly during the

summer-stratified period (Gudimov et al. 2010). Given the pivotal role played by

ambient phosphorus in the ecology of this system, there is a clear need to improve

the tributary loading estimates in the area.

11.2.3 Nutrient Export Modeling for the Hamilton Harbour
Watershed

The identification of the major nutrient source areas in the Hamilton Harbour

watershed is of great management interest, as subwatersheds characterized by

both high total delivery and high delivery per area are priority areas for manage-

ment intervention. However, considerable knowledge gaps exist regarding the

⁄�

Fig. 11.1 (continued) predictive distributions of chlorophyll a and epilimnetic TP concentrations

examined to accommodate the inter- and intra-annual variability. Vertical dashed lines indicate the
water quality targets of 10 μg�L�1 chl a and 20 μg�L�1 epilimnetic TP [Reproduced from Gudimov

et al. (2011)]
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complex interplay among hydrological factors, geological features, land uses, and

spatial patterns of the built environment that modulates the attenuation rates of

nutrient and contaminants. Following the development of the eutrophication

models, Wellen et al. (2012, 2014a, b, c) employed two different watershed models

to advance our understanding of how urban sites cycle nutrients and contaminants,

so planning decisions that least impact Hamilton Harbour can be better informed.

Wellen et al. (2012, 2014a) implemented Bayesian inference techniques to

parameterize the SPARROW (SPAtially Referenced Regressions On Watershed

attributes) non-linear regression model in the Hamilton Harbour watershed. SPAR-

ROW is a spatially distributed, hybrid empirical/process-based model that esti-

mates the relation between in-stream measurements of nutrient fluxes and the

sources and sinks of nutrients within watersheds over annual timescales (McMahon

et al. 2003). Source processes are described with export coefficients that predict TP

mobilization, while the sink processes are represented by delivery factors,

predicting how landscape attributes modulate the delivery of mobilized TP to

streams, and attenuation coefficients, predicting the amount of the delivered TP

remaining in transit per length of stream or per reservoir. With the SPARROW

strategy, a two-level hierarchical structure is implemented, where watersheds are

first divided into subwatersheds that each drain to a water-quality monitoring

station, then each subwatershed is further divided into reach catchments draining

to a particular stream segment (Schwarz et al. 2006).

Using data from Ontario’s Provincial Water Quality Monitoring Network

(PWQMN), Wellen et al. (2012, 2014a) offered the first estimates of export

coefficients and delivery rates from the different subcatchments and generated

testable hypotheses regarding the nutrient export “hot spots” in the studied water-

shed. The derived total phosphorus export estimates suggest that urban land uses

may export more phosphorus per area than agricultural lands. This finding was

somewhat contrary to the popular notion that the rates of nutrient export from urban

lands are lower than those of agricultural lands due to lower nutrient subsidies.

Wellen et al. (2014a) was able to show that subwatersheds which are both large and

in close proximity to Hamilton Harbour have the highest nutrient delivery values

per area, as the attenuation of their loads en route to the system is very low and the

urban developments are more concentrated along the shore (Fig. 11.2).

The same modeling work has demonstrated that stream attenuation coefficients

are quite variable in time (Fig. 11.3). The mechanisms that modulate the variability

of nutrient attenuation across stream size are fairly well established in the literature.

They generally refer to the tighter coupling of smaller streams with their stream-

beds, whereby biological and chemical removal processes in the sediments have

greater access to nutrients in the water column (Alexander et al. 2004). The longer

hydraulic residence time of smaller streams allows these processes to operate for

longer times. Recent work suggests that stream stage explains the inter-annual

variation of nutrient attenuation at a particular site over time, implying that the

coupling between streambed and water column changes from year to year (Basu

et al. 2011). Consistent with these findings, Wellen et al. (2012) showed that the

inter-annual variability of the average discharge, a function of stream stage, can
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explain more than half of the variability of stream attenuation estimates from the

SPARROW model in higher-order streams.

An interesting implication of the Hamilton Harbour’s SPARROW modeling is

that the year-to-year variability of the contribution of phosphorus source areas may

be strongly affected by the capacity of stream reaches to attenuate nutrient loads

(Fig. 11.4). Empirical studies of nutrient uptake in rivers indicate significant

variability of nutrient attenuation rates at annual timescales for phosphorus

(Doyle et al. 2003) and nitrogen (Claessens et al. 2009). Donner et al. (2004)

found that nutrient attenuation rates varied nearly two-fold between wet and dry

years in the Mississippi River, with wet years exhibiting lower attenuation. Basu

et al. (2011) also showed an inverse relationship between stream stage and nutrient

attenuation that was consistently manifested across spatial and temporal scales.

This finding implies that fluctuations in stage (and discharge) may indeed affect the

spatial location of significant nutrient source areas at various scales. While previous

research has documented the variability of in-stream attenuation at annual time-

scales, the Hamilton Harbour modeling work allowed estimating how this variabil-

ity impacts basin-scale nutrient source areas.

Wellen et al. (2014a) applied the SPARROW model to evaluate the potential

improvement of parameter estimates (and the decrease of predictive uncertainty) if

the precision of the currently available nutrient loading estimates in Hamilton

Harbour is increased. Parameter identification was overwhelmingly improved

with an increase in the spatial intensity of sampling stations, while an increase in

the credibility of the measured nutrient loads significantly reduced the uncertainty

of the model predictions, even when the number of stations monitored was halved

(Wellen et al. 2014a). When a higher quality dataset was used to parameterize the

model, the subwatersheds that displayed the greatest contraction in their 95%

Percent Percent/Area
0.02 − 1.4 0.01 − 0.09

0.09 − 0.18
0.18 − 0.26
0.26 − 0.34
0.34 − 0.43
1.15

1.4 − 2.8
2.8 − 4.2
4.2 − 5.6
5.6 − 7.0
55.3

0 10

Hamilton Harbour Hamilton HarbourKilometers

0 10

Kilometers

Fig. 11.2 Estimated contribution of each subwatershed to the total phosphorus loading in

Hamilton Harbour. The map on the left expresses the load of each subwatershed as a percentage

of the total phosphorus load, including the combined sewer overflows and taking into account

attenuation en route to Hamilton Harbour. The map on the right normalizes the percentage

contribution by the corresponding subwatershed areas [Reproduced from Wellen et al. (2014a)]
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Fig. 11.3 (Upper panels) Scatterplots of yearly total phosphorus stream attenuation rates

(ks1 refers to attenuation in first- and second-order streams, ks2 to attenuation in third- and
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⁄�

Fig. 11.3 (continued) higher-order streams) against annual average streamflow. (Bottom panels)
Time series plots of the two attenuation coefficients over a 22-year study period (1988–2009).

Dashed black lines indicate upper and lower limits of the 95% credible intervals (In Bayesian

statistics, a credible interval is an interval in the domain of a posterior probability distribution

used for interval estimation. Credible intervals are analogous to confidence intervals in frequentist

statistics, but differ on a philosophical basis; Bayesian intervals treat their bounds as fixed and the

estimated parameter as a random variable, whereas frequentist confidence intervals treat their

bounds as random variables and the parameter as a fixed value.); solid black lines indicate the

medians of the posterior distributions of the two coefficients. Grey lines depict the attenuation rate
values typically reported in the literature [Reproduced from Wellen et al. (2012)]

Hamilton Harbour

Third and higher order streams

0.03 − 0.16

0 10

Kilometers

0.16 − 0.32

0.32 − 0.47

0.47 − 0.63

0.63 − 0.79

0.79 − 0.95

0.95 − 1.10

1.10 − 1.26

Percent Delivered Yield

Fig. 11.4 Spatio-temporal variability of total phosphorus delivered yield at the watershed (top
panels) and reach (bottom panels) scales. (Left panels) The percent contribution of total load into

the Hamilton Harbour per square kilometer for 2006, the year with the lowest value of ks2. (Right
panels) The percent contribution of total load to the Harbour per square kilometer for 1999, the

year with the highest value of ks2 [Reproduced from Wellen et al. (2012)]
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credible intervals were the headwater streams as well as locations closest to the

harbour characterized by high delivery rates and urban land uses (Fig. 11.5). Using

the uncertainty patterns provided by the SPARROW model predictions, Wellen

et al. (2014a) proposed that additional water-quality data-collection efforts in the

watershed should be focused on “hot spots” sites characterized by: (1) a mid-range

likelihood of impairment (i.e. the probability of exceeding a threshold level lying

within the 25–75% range); (2) model predictions of unacceptably high variance;

(3) locations where data uncertainty drives the model residuals; and/or (4) locations

where modeled loads showed the greatest reduction in the width of their 95%

credible intervals when higher quality dataset are obtained.

Even though the SPARROW modeling exercise has gained considerable

insights, the annual resolution of the latter model, along with the fact that the

PWQMN program collects monthly samples primarily during baseflow conditions,

impedes the accurate characterization of TP dynamics during high flow conditions.

In particular, examination of the daily flows of Redhill and Grindstone Creeks

supports the idea of a single threshold separating two states of response of the two

Creeks to precipitation (Wellen et al. 2014b). Figure 11.6 shows scatterplots of

log10 transformed daily flows and averages of the previous 2 or 3 days of precip-

itation along with the fitted piecewise regressions. These periods were chosen to

implicitly include the effect of antecedent moisture. The data used are from the

period 1988–2009, representing the months from May through November. Redhill

Creek’s threshold was estimated at a 2-day average of 7.7 mm, and would be

reached by one day with 15.2 mm of precipitation or 2 days of 7.7

mm. Grindstone Creek’s threshold was estimated to be a 3-day average of 5.0

mm. It was hypothesized that the watershed response to precipitation occurs in

distinct states, such that precipitation depth above these thresholds triggers an

Fig. 11.5 Value of information of additional monitoring in the Hamilton Harbour watershed.

Maps show the difference between the width of the 95% credible intervals of the posterior loading

estimates derived from the high and the current precision scenarios for sampling with all 24 stations

originally used to calibrate the SPARROWmodel (right) and sampling with a subset of 12 stations

(left) [Reproduced from Wellen et al. (2014a)]
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extreme state, which is characterized by a qualitatively different response of the

watershed to precipitation.

To solidify this working hypothesis, Long et al. (2014, 2015) collected 87 24-h

level-weighted composite samples from a variety of catchment states (rain, snow-

melt, baseflow) from all four major tributaries to Hamilton Harbour between July

2010 and May 2012. The key findings from this research were as follows: (1) daily

TP loads varied by three orders of magnitude between wet and dry conditions, with

storm events and spring freshets driving peak daily loads in urban and agricultural

watersheds, respectively; (2) areal TP loads were significantly higher from the

urban relative to the agricultural watersheds; and (3) the characterization of TP

concentrations during high flow conditions was essential in establishing accurate

concentration versus flow relationships and subsequently nutrient load estimates.

The brief but intense events that occurred less than 10% of the time were found to

be responsible for 50–90% of TP loads delivered from local tributaries.

Capitalizing upon this high-resolution dataset, a SWAT model was used to

simulate the water cycle and sediment export in the area (Wellen et al. 2014b, c).

Surface runoff is the primary pathway through which many pollutants (including

phosphorus) enter waterways, and so identifying sources of surface runoff can aid

in locating possible pollutant source areas (McDowell and Srinivasan 2009). In

Fig. 11.7, estimates of surface runoff generation are presented for the different land

uses in Redhill and Grindstone Creeks across three formulations (i.e., different

statistical configurations of the Bayesian calibration framework; see Wellen et al.

2014b). Runoff generated during the entire year was distinguished from runoff
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Fig. 11.6 Piecewise regression graphs relating the 2- or 3-day average precipitation to the daily

streamflow measured from 1988 to 2009. Only data from the months May–November are plotted.

Statistics below graphs show the means and, in parentheses, standard deviations of the parameters

of the regressions [Reproduced from Wellen et al. (2014b)]
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generated during the growing season (May–September), as this is the period when

the receiving water body is most sensitive to eutrophication. In both Creeks, urban

land use generated the greatest depth of runoff; 245–262 mm for Redhill Creek and

202–240 mm for Grindstone Creek. For Redhill Creek, this compares to

51–183 mm for crops, 26–76 mm for forest, 34–149 mm for pasture, and

34–106 mm for urban green space. For Grindstone Creek, the urban runoff estimate

compares to 11–45 mm for crops, 3–16 mm for forest, and 3–21 mm for pasture.

During the growing season, this disparity became more acute, particularly in

Grindstone Creek. Between May and September, runoff generation in Redhill

Creek ranged from 8–51 mm for crops, 4–16 mm for forest, 6–37 mm for pasture,

and 6–29 mm for urban green space. For Grindstone Creek, this compares to 1 mm

for crops, <1 mm for forest, and <1 mm for pasture. Urban areas effectively

by-pass catchment storage, as nearly all the precipitation falling on them becomes

surface runoff and reaches the stream in less than one day, leaving little time for

evapotranspiration. While the importance of urban areas as a surface runoff source

increased slightly during the growing season in Redhill Creek, the model surpris-

ingly predicts that almost no surface runoff reaches the stream from any of the

pervious surfaces in Grindstone Creek from May to September. While it is likely

that the contribution of runoff for Grindstone Creek is somewhat underestimated,
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by different land uses. Formulations 1–3 correspond to different statistical configurations of the

Bayesian calibration framework as presented inWellen et al. (2014b). The error bars indicate 95%
credible intervals of the predictions
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there seem to be important differences in soil type and/or vegetation cover between

the two catchments which may be responsible for generating the markedly different

amounts of runoff during the growing season.

Despite the small aerial coverage of the agricultural areas in Redhill Creek (5%)

and the urban areas in Grindstone Creek (9%), these areas were responsible for

a disproportionate amount of overland sediment export to streams (Fig. 11.8).

Cropland was estimated to contribute between 20% and 30% of Redhill Creek’s
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total sediment export to streams (720–3299 tons), while urban areas were estimated

to contribute between 17% and 36% of Grindstone Creek’s total sediment export

(410–1830 tons). During the growing season, urban residential areas are the main

sources of sediment export to both streams, comprising 70–99% of all sediment

exported to streams in Redhill Creek (217–1143 tons) and 60–81% of all estimated

sediment exported to Grindstone Creek (74–214 tons).

During the calibration of the sediment routing submodel, reliable data were not

available on stream bankwidth and depth. In order to draw reliable inferences on the

sediment yield and streambed sediment storage status for Redhill and Grindstone

Creeks at the sub-basin scale, Wellen et al. (2014c) used the entire predictive range

of sediment storage for each subbasin (bed storage ¼ upstream sediment in þ
erosional sediment in � downstream sediment out) (Fig. 11.9). It was assumed that

if the 95% credible interval of the bed storage distribution was non-overlapping

Fig. 11.9 Estimated sediment yield and bed erosion status for Redhill and Grindstone Creeks

[Reproduced from Wellen et al. (2014c)]

232 G. Arhonditsis et al.



with zero, reliable statements could be made about whether the reach was gaining

or losing sediment during the period 2010–2012. If the bed storage was positive, the

reach was categorized as very likely aggrading, while if the bed storage was

negative, the reach was categorized as very likely degrading. If there was overlap

with zero, the reach was categorized as likely aggrading or degrading, depending on

which side of zero the median of the distribution laid. Some reaches categorized

as balanced, as their credible intervals of absolute bed storage were less than

1 ton per year. The headwater areas of both Creeks were classified as balanced,

while all the reaches losing sediment from their bed are located along the

main channel. The final downstream reach was characterized as gaining sediment

in both Creeks, reflecting the wider streams and gentler slopes. Notably, the

sub-basin characterized as having the highest class of sediment yield in Redhill

Creek’s southern end was in balance, indicating that the substantial agricultural

sediment mass estimated to be added to the streams in that reach was largely

propagated downstream. In Grindstone Creek, there are few reaches that are

storing sediment. In particular, the reaches containing most of the urban area

towards the mouth of the basin are either at balance or likely degrading, implying

that much of the urban sediment added to Grindstone Creek is exported

downstream.

11.3 Bay of Quinte

11.3.1 Introduction

The Bay of Quinte, a Z-shaped embayment at the northern end of Lake Ontario, has

experienced a long history of eutrophication problems, characterized by frequent

and spatially extensive algal blooms, predominance of toxic cyanobacteria, domi-

nance (or invasion) of undesirable fish species, and destruction of wildlife habitats

(Arhonditsis et al. 2016, Shimoda et al. 2016). Because of these ecological degra-

dation problems, the Great Lakes Water Quality Agreement between the United

States and Canada established a number of objectives, guidelines, and initiatives to

restore and maintain physicochemical and biological integrity. The Bay of Quinte

was designated as one of the 43 Areas of Concern around the Great Lakes by the

International Joint Commission (IJC) in 1986, whereby the Canadian government

made a commitment to introduce a comprehensive action plan that primarily aimed

to control nutrient loading from municipal sewage treatment plants. Phosphorus

reduction in detergents along with upgrades at the WWTPs resulted in a dramatic

reduction (>95%) of the phosphorus discharges from the 1960s, 215 kg day�1, to

the 2000s, <10 kg day�1 (Kinstler and Morley 2011).

Despite the substantial improvement of the ambient water quality conditions,

high P concentrations and summer cyanobacteria blooms remain a central issue in

11 Uncertainty Analysis by Bayesian Inference 233



the bay (Watson et al. 2011). Invasions of zebra (Dreissena polymorpha) and

quagga (Dreissena bugensis) mussels have further complicated ecosystem structure

and functioning since the mid-1990s (Dermott and Bonnell 2011). In the post-

dreissenid era, total phosphorus concentrations demonstrate significant within-year

variability, characterized by relatively low spring and fall levels, 10–15 μg TP L�1,

and high summer concentrations, > 50 μg TP L�1 (Shimoda et al. 2016). This

ambient TP variability may also stem from the biological nutrient regeneration and

sediment diagenesis processes, reflecting the impact of the memory of the system

(Kim et al. 2013).

Existing empirical evidence suggests that the presence of dreissenids may have

led to structural changes that could ultimately be translated into an ecosystem

regime shift (deYoung et al. 2008). Namely, in the Bay of Quinte, increased light

penetration resulting from dreissenid filtration of suspended solids stimulated the

growth of submerged macrophytes that rapidly proliferated into deeper waters

(Leisti et al. 2012). Regarding the phytoplankton community, the dreissenid inva-

sion could cause shifts of the algal assemblage stemming directly from their feeding

selectivity or indirectly from an increase in water column transparency, although

the role of the feedback loop associated with their nutrient recycling activity could

not be ruled out (Arhonditsis et al. 2016). Specifically, the arrival of dreissenid

mussels coincided with both desirable (e.g., Aphanizomenon and Oscillatoria
decline) and undesirable (e.g., Microcystis increase) shifts in the phytoplankton

community composition (Shimoda et al. 2016). The increased frequency of harmful

algal blooms in the post-dreissenid period has profound ramifications for several

beneficial use impairments in the Bay of Quinte, such as Eutrophication or unde-
sirable algae, Restrictions on drinking water or taste and odor problems, and
Degradation of aesthetics.

Environmental modeling has been an indispensable tool of the Bay of Quinte

restoration efforts and a variety of data-oriented and process-based models have

been used for elucidating ecosystem dynamics and evaluating the likelihood of

delisting the system as an AOC. Quite recently, a network of models was developed

to connect the watershed processes with the dynamics of the Bay of Quinte (Zhang

et al. 2013; Arhonditsis et al. 2016; Kim et al. 2013, 2016, 2017). This integrated

watershed-receiving water body modeling framework has been used to evaluate

management scenarios that would lead to significant reduction of phosphorus

export from the Bay of Quinte watershed and to quantify the overall uncertainty

associated with the severity of the eutrophication phenomena in the area

(Fig. 11.10).
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Fig. 11.10 Conceptual diagram of the integrated phosphorus-modeling framework for the Bay of

Quinte. The spatial segmentation of the model for the receiving water body consists of the

following compartments: (U1) the segment that extends from the mouth of Trent River until the

city of Belleville; (U2) the segment that begins from the mouth of Moira River and comprises the

Big Bay, Muscote Bay, and North Point Bay; and (U3) the area influenced by the inflows of

Napanee River, extending until the outlet of Hay Bay. In the middle Bay, there are three segments

corresponding to the main stem (M1) and the two adjacent embayments: Hay Bay (M2), and Picton
Bay (M3). The lower segment of the Bay, representing the transitional area to Lake Ontario, was

separated into the epilimnetic (Le) and hypolimnetic (Lh) compartments. Numbers in parentheses
correspond to the average flushing rate of each segment [Reproduced from Arhonditsis et al.

(2016)]
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11.3.2 Modeling the Relationship Among Watershed
Physiography, Land Use Patterns, and Phosphorus
Loading

One of the emerging imperatives of eutrophication management is the advancement

of our understanding of the relationships among land use, agricultural activities,

hydrological processes, and water quality (Wellen et al. 2015). Prior to the water-

shed modeling exercise, Kim et al. (2016) implemented Self-Organizing Maps

(SOM) to gain insights into the physiographical features and land-use patterns in

the Bay of Quinte watershed, and to subsequently associate them with the phos-

phorus non-point source loading. In this application, eighteen classification vari-

ables were used, such as the landscape slope, saturated soil hydraulic conductivity,

soil bulk density, and areal fractions for different land use types (lakes, ponds,

alvars, bogs, coniferous swamps, deciduous swamps, fens, marshes, deciduous

forests, coniferous forests, cutovers, mining areas, urban lands, pastures, and

croplands) in 73 gauged and 137 ungauged subwatersheds. Thus, a total of 210 spa-

tial units were distributed on 2-dimensional hexagonal maps, and then clustered in

different groups according to their similarities.

Based on the spatial heterogeneity of these classification variables, SOM delin-

eated six spatial clusters in the Bay of Quinte watershed with fairly distinct land-use

patterns (Fig. 11.11). Coniferous and deciduous coverage along with pastures and

croplands dominate the landscape in cluster 1. Different types of wetlands, such as

fen (�10%), coniferous swamp (�8%), and alvar (�0.4%) have also their highest

areal fraction values in the same cluster. In cluster 2, the average landscape slope is

steep and the soil bulk density is high. The areal fractions of forests as well as

mining and logging sites are also high. In cluster 3, most of the subwatersheds are

located in the vicinity of the Bay of Quinte, where crops occupy �75% of the area.

Not surprisingly, the annual TP yield per area and average TP concentrations are the

highest (528 kg km�2 year�1 and 103 μg L�1) in these same regions. In cluster

4, soil hydraulic conductivity is significantly higher, deciduous swamp are more

abundant relative to the rest of the watershed, cropland coverage is the second

highest (�41%), and thus the net TP export is high. In cluster 5, urban land

represents �74% of the land-use coverage and net TP export and yield are the

second highest (3.72 tonnes year�1 and 209 kg km�2 year�1), which is further

accentuated by the increased point source loading (2.44 tonnes year�1). In cluster

6, pasture and cropland approximately correspond to 60% of the area, and these

subwatersheds are mainly located adjacent to the Bay of Quinte.

Nutrient loads, yields, and deliveries at landscape and regional scales were

estimated using the SPARROW model (Kim et al. 2017). The goodness-of-fit

between observed and predicted TP loading values from the SPARROW model

was excellent in the logarithmic scale (r2 > 0.95), although there were four sites

with errors greater than 10 tonnes year�1 when the SPARROW predictions were

back-transformed to the original scale. The posterior parameter values offered

insights into the patterns of phosphorus export and delivery in the Bay of Quinte
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Fig. 11.11 Map of Bay of Quinte watershed: (a) land use types, and (b) classification based on

artificial neural networks and associated phosphorus export per subwatershed [Reproduced from

Kim et al. (2016)]
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watershed. The main findings from the SPARROW modeling exercise were as

follows: (1) urban areas are characterized by a fairly high areal phosphorus export

with a mean estimate of 126 kg of TP per km2 on an annual basis; (2) the

contribution of phosphorus from agricultural land uses can vary considerably

among the various crop types (30–127 TP kg per km2), but is generally lower

than the impact of urban sites. Similar to the Hamilton Harbour, this finding

contradicts the popular notion that rates of nutrient export from urban lands are

below those of agricultural lands due to lower anthropogenic nutrient subsidies,

such as fertilizer implementation (Moore et al. 2004; Soldat et al. 2009). Nonethe-

less, other studies in the region of Southern Ontario have found urban total

phosphorus export rates to be comparable (or even higher) than agricultural total

phosphorus export rates (Winter and Duthie 2000); (3) the crop-specific export

coefficient values were on par with those typically reported in the literature (Harmel

et al. 2008); (4) the attenuation rate in low flow streams (3.7% of TP per kilometer)

appears to be distinctly greater than in those with high flow (1.1% of TP per

kilometer); and (5) fallow areas are responsible for approximately 70 kg of TP

per km2 on an annual basis.

In the context of watershed management, the spatial distribution of net (instead

of the cumulative) TP loading that ultimately inflows into the receiving waterbody

was used to identify the most influential subwatersheds (Fig. 11.12). The percent-

age of net loading was mostly greater in the downstream catchment of the major

tributaries. By contrast, the relative contribution of the ungauged watersheds close

to the bay was significantly lower primarily due to their small areal extent

(Fig. 11.12a). On the other hand, the error associated with the estimates of the

relative contribution of the different subwatersheds was higher in the Trent River

basin (SE> 67%) than the rest of the tributaries. Interestingly, the Trent River’s
upper catchment also exhibited high variability in the percentage net TP loads

(Fig. 11.12b). The coefficient of variation (CV) values of the relative contributions

along with the net contributions normalized by the corresponding subwatershed

areas were also used to delineate the hot-spots in the Bay of Quinte watershed. The

highest CVs (>32%) were found in the upper catchment of Trent River

(Fig. 11.12c). Counter to the error estimates, however, the ungauged watershed

close to the bay was characterized by fairly high CVs (Fig. 11.12c). This trend was

more pronounced when the normalized percentage TP loads were considered

(Fig. 11.12d). Unlike the CV values, the normalized percentage TP loads were

low in the upper catchment of Trent River, but were distinctly higher in the lower

part of the watershed, especially near the bay (Fig. 11.12d). Overall, this strategy

pinpointed many locations close to the water body that may be responsible for

significant nutrient fluxes, due to their landscape attributes and soil characteristics

(Kim et al. 2017).

238 G. Arhonditsis et al.



F
ig
.
1
1.
12

P
er
ce
n
ta
g
e
co
n
tr
ib
u
ti
o
n
o
f
th
e
an
n
u
al

n
et

T
P
lo
ad
s
to

th
e
B
ay

o
f
Q
u
in
te
:
(a
)
av
er
ag
e
p
re
d
ic
ti
o
n
,
(b
)
st
an
d
ar
d
er
ro
r
(S
E
)
an
d
(c
)
co
ef
fi
ci
en
t
o
f

v
ar
ia
ti
o
n
o
f
th
e
co
rr
es
p
o
n
d
in
g
p
re
d
ic
ti
o
n
s,
an
d
(d
)
av
er
ag
e
p
re
d
ic
ti
o
n
n
o
rm

al
iz
ed

b
y
th
e
su
b
w
at
er
sh
ed

ar
ea
s
[R
ep
ro
d
u
ce
d
fr
o
m

K
im

et
al
.
(2
0
1
7
)]

11 Uncertainty Analysis by Bayesian Inference 239



11.3.3 Eutrophication Risk Assessment with Process-Based
Modeling and Determination of Water Quality
Criteria

The basis of the eutrophication risk assessment analysis was the mechanistic model

presented by Kim et al. (2013), which introduced several novel mathematical

formulations regarding the representation of macrophyte dynamics; the role of

dreissenids in the system; several processes related to the fate and transport of

phosphorus in the sediments along with the interplay between water column and

sediments, such as particulate sedimentation being dependent upon the standing

algal biomass, sediment resuspension, sorption/desorption in the sediment particles,

and organic matter decomposition. The model was then calibrated to match the

measured TP concentrations in the upper, middle, and lower segments of the Bay

during the 2002–2009 period (Kim et al. 2013; Arhonditsis et al. 2016). The model

demonstrated satisfactory ability to fit the monthly TP levels in the Bay of Quinte,

and was able to reproduce the end-of-summer increase of the ambient TP levels in

the upper segment, even in years (e.g., 2005) when the corresponding concentra-

tions were greater than 60 μg L�1. The model also faithfully depicted the spatial

gradients in the system, with distinctly higher TP levels in the upper segment

relative to those experienced in the middle/lower Bay (Kim et al. 2013).

The model was then used to draw inferences on the spatial variability of the

various external and internal TP flux rates in the Bay of Quinte (Fig. 11.13). The net

TP contributions (sources or sinks) represent the mass of phosphorus associated

with the various compartments (water column, sediments, macrophytes,

dreissenids) throughout the growing season (May–October) averaged over the

2002–2009 period. In the U1 segment, the phosphorus budget is predominantly

driven by the external sources (phosphorus loading: 159 kg day�1) and sinks

(outflows: 152 kg day�1). The sediments (resuspension and diffusion from the

sediments to water column minus particle settling) act as a net source of phosphorus

in this segment (57.9 kg day�1). Dreissenids subtract approximately 65.9 kg day�1

from the water column (particle filtration minus respiration) and subsequently

deposit 62.4 kg day�1 via their excretion and particle rejection. In a similar manner,

the U2 segment receives 206 kg day�1 from exogenous sources, including the

upstream inflows, and transports downstream 190 kg day�1. The net contribution

of the sediments accounted for 70.4 kg day�1, while dreissenids on average reduce

the ambient TP levels by 112 kg day�1. The main differences between the two

segments in the upper Bay are the TP fluxes related to macrophyte P intake from the

sediments and respiration that can reach the levels of 46.9 and 42.3 kg day�1

relative to the fluxes of 11.1 and 10.0 kg day�1 in the U1 segment. Likewise, the

macrophyte intake from the sediments minus the amount of P regenerated from the

decomposition of the dead plant tissues varies between 35 and 65 kg day�1 in

segments U3 andM1, while the subsequent release of their metabolic by-products is

approximately responsible for 19–26 kg day�1. The settling of particulate P dom-

inates over the resuspension and diffusion from the sediments to the water column
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with the corresponding net fluxes ranging between 25 and 35 kg day�1. In Hay Bay

(M2), the fluxes mediated by the macrophytes and dreissenids primarily modulate

the TP dynamics and the same pattern appears to hold true in Picton Bay (M3). In

the lower Bay of Quinte (Le and Lh), the model postulates a significant pathway

(>1100 kg P day�1) through which the inflowing water masses from Lake Ontario

well up from the hypolimnion to the epilimnion and are subsequently exported from

the system. In the same area, the internal biotic sources (macrophytes) similarly

represent an important vector of phosphorus transport.

In general, the Bay of Quinte modeling work highlights the internal recycling as

one of the key drivers of phosphorus dynamics. The flow from the Trent River is the

predominant driver of the dynamics in the upper segment until the main stem of the

middle area. However, the sediments in the same segment release a significant

amount of phosphorus and the corresponding fluxes are likely amplified by the

macrophyte and dreissenid activity. From a management standpoint, the presence

of a significant positive feedback loop in the upper Bay of Quinte suggests that the

anticipated benefits of additional reductions of the exogenous point and non-point

loading may not be realized within a reasonable time frame, i.e., 5–10 years (Kim

et al. 2013). Analysis of nutrient loading scenarios showed that the restoration pace

of the Bay could be slow, even if the riverine total phosphorus concentrations reach

levels significantly lower than their contemporary values, <25 μg TP L�1

(Fig. 11.14; see also Kim et al. 2013; Arhonditsis et al. 2016).

Bearing in mind that the TP targeted levels merely represent a “means to an end”

and not “the end itself”, the actual question that the stakeholders in the area ponder

is to what extent the anticipated benefits from a more efficient external phosphorus

loading control could also be capitalized as a significant decrease of the algal bloom

frequency? With respect to the total phytoplankton biovolume, Nicholls et al.

(2002) showed that it declined after the control of phosphorus in the 1970s, but

did not change significantly after the establishment of dreissenids in the system. As

previously mentioned, Nicholls and Carney (2011) showed that the arrival of

dreissenid mussels may be associated with positive (e.g., Aphanizomenon and

Anabaena decline) effects on the integrity of the Bay of Quinte ecosystem. How-

ever, the recent increase of the cyanophyte Microcystis has had significant impli-

cations for the aesthetics and other beneficial uses of the Bay of Quinte, through the

formation of “scums” on the water surface as well as the fact that some strains of

Microcystis are toxin producers. These structural shifts in the phytoplankton com-

munity composition could stem directly from the feeding selectivity of dreissenids

or indirectly from the improvements in the transparency of the water column

(Blukacz-Richards and Koops 2012), but the role of the feedback loop associated

with their nutrient recycling activity could conceivably be another important factor.

According to the predictions of a non-linear quantile regression model (Shimoda

et al. 2016), the current average TP concentrations (30–40 μg L�1) represent the

area where the algal biovolume vs TP relationship is characterized by a steep slope

and thus any further improvements in the ambient nutrient levels are likely to

induce more favorable quantitative and qualitative changes in phytoplankton

(Fig. 11.15). Nonetheless, existing empirical evidence from the system is indicative
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Fig. 11.14 Simulated maximum TP concentrations during the growing season (May–October) in

the Bay of Quinte. Upper panels (a) refer to the predictions associated with the reference

environmental conditions; and lower panels (b) represent the predictions of a TP loading reduction

scenario (60% point sources, 20% non-point sources, and 50% urban storm water). The first eleven

years (2002–2012) were based on real meteorological and nutrient loading conditions, while the

final (12th) year was forced with a wide range of combinations of TP riverine concentrations and

flows that were generated from the mean (� error) predictions of the SPARROWmodel. The white
contour line corresponds to the proposed targeted level of 40 μg TP L�1. The flushing rates express

the frequency (number of times) of water renewal in the upper Bay during the growing season. The

black dotted line represents a threshold level of 20 μg L�1 for the flow-weighted TP concentration

in all the major tributaries in the upper Bay of Quinte [Reproduced from Arhonditsis et al. (2016)]
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of a weak correlation between chlorophyll a and cyanobacteria toxin concentrations

(Watson et al. 2011), suggesting that a complex interplay among physical, chem-

ical, and biological factors may drive the spatiotemporal abundance and composi-

tion patterns of the algal assemblages in the Bay of Quinte (Nicholls et al. 2002). In

a system like the Bay of Quinte, where both external and internal loading drives the

severity of eutrophication phenomena, there will inevitably be some uncertainty in

the overall eutrophication risk assessment.

There are several compelling reasons (knowledge gaps, natural variability,

complex interactions among a suite of ecological mechanisms) to avoid overly

confident statements about the future response of this impaired system, and thus the

most prudent strategy is to explicitly recognize an acceptable level of violations of

the delisting goals. Specifically, Kim et al. (2013) challenged the usefulness of the

historical delisting criterion of a seasonal average TP concentration lower than

30 μg L�1, as it is neither a reflection of the considerable intra-annual variability in

the upper Bay nor representative of the water quality conditions in near shore areas

of high public exposure (e.g., beaches). It would seem very unlikely that a single-

value water quality standard monitored in a few offshore sampling stations can

capture the entire range of dynamics in the system (e.g., the extremes seen in the

near shore sites) or the magnitude of the end-of-summer TP peaks. Kim et al. (2013)

instead advocated the pragmatic stance that the delisting objectives should revolve

around extreme (and not average) values of variables of management interest and

must explicitly accommodate all the sources of uncertainty (insufficient informa-

tion, lack of knowledge, and natural variability) by permitting a realistic frequency

of standard violations. Namely, the critical threshold level should be set at a value

Fig. 11.15 Quantile regression model for total phytoplankton biovolume against monthly average

TP concentration in the Bay of Quinte (Arhonditsis et al. 2016)
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of 40 μg TP L�1, which cannot be exceeded more than 10–15% in both time and

space. Under the assumption that the TP concentrations in the Bay of Quinte follow

a log-normal distribution and that TP values <15 μg L�1 are likely to occur only

10% of the time during the growing season, then 10–15% exceedances of the 40 μg
TP L�1 level are approximately equivalent to a targeted seasonal average of 25–28

μg TP L�1. Thus, the replacement of the historical paradigm (binary assessment)

with a probabilistic approach to water quality criteria does not intend to make the

delisting of AOCs easier, but rather to offer a more comprehensive method for

tracking the prevailing conditions in the Bay.

11.4 Concluding Remarks

We have demonstrated some of the benefits for environmental management when

identifying the uncertainties and knowledge gaps of the natural environment,

differentiating between predictable and unpredictable patterns, and critically eval-

uating model outputs. The presentation of the model outputs as a probabilistic

assessment of environmental conditions makes the model results more credible for

local decision makers and stakeholders. The often-misleading deterministic state-

ments are avoided and environmental goals are set by explicitly acknowledging an

inevitable risk of not achieving 100% compliance in time and space. The acceptable

level of violations is then subject to decisions that reflect different socioeconomic

values and environmental priorities.

The Bayesian (iterative) nature of the presented modeling networks is concep-

tually similar to the policy practice of adaptive management, i.e., an iterative

implementation strategy that is recommended to address the often-substantial

uncertainty associated with water quality model forecasts and avoid the implemen-

tation of inefficient and flawed management plans. The use of Bayesian inference

techniques is also consistent with the scientific process of progressive learning and

offers a natural mechanism for sequentially updating our knowledge on model

inputs and structure every time new data are collected from the system. Thus,

modeling tools can be iteratively updated to accommodate the significant year-to-

year variability associated with the external nutrient loading or the weather condi-

tions, thereby serving as a reliable long-term management tool for policy analysis.

Importantly, the probabilistic statements provided from the Bayesian calibration

can also indicate where the limited monitoring resources should be focused (Zhang

and Arhonditsis 2008). In particular, additional data collection efforts should target

hot spots, where the model predictive distribution indicates a high probability of

non-attaining water quality goals or, alternatively, an unacceptably high variance.

Thus, we can assess the value of information (value of additional monitoring;

“Where should additional data collection efforts be focused?”) and subsequently

optimize the sampling design for environmental monitoring. In other words, uncer-

tainty does matter and its quantification is not an excuse to avoid providing answers
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to pressing environmental problems, but rather a prudent strategy to improve the

rigor of model-based management of our natural resources!

Acknowledgements George Arhonditsis wishes to acknowledge the continuous support of his

work on model uncertainty analysis from the National Sciences and Engineering Research Council

of Canada (Discovery Grants). The Hamilton Harbour modeling project has received funding

support from the Ontario Ministry of the Environment (Canada-Ontario Grant Agreement

120808). The Bay of Quinte modeling project was undertaken with the financial support of the

Lower Trent Region Conservation Authority provided through the Bay of Quinte Remedial Action

Plan Restoration Council.

References

Alexander RB, Smith RA, Schwarz GE (2004) Estimates of diffuse phosphorus sources in surface

waters of the United States using a spatially referenced watershed model. Water Sci Technol

49:1–10

Arhonditsis GB, Adams-Van Harn BA, Nielsen L et al (2006) Evaluation of the current state of

mechanistic aquatic biogeochemical modeling: citation analysis and future perspectives.

Environ Sci Technol l40:6547–6554

Arhonditsis GB, Qian SS, Stow CA et al (2007) Eutrophication risk assessment using Bayesian

calibration of process-based models: application to a mesotrophic lake. Ecol Model

208:215–229

Arhonditsis GB, Papantou D, Zhang W et al (2008a) Bayesian calibration of mechanistic aquatic

biogeochemical models and benefits for environmental management. J Marine Syst 73:8–30

Arhonditsis GB, Perhar G, Zhang W et al (2008b) Addressing equifinality and uncertainty in

eutrophication models. Water Resour Res 44:W01420

Arhonditsis GB, Kim D-K, Shimoda Y et al (2016) Integration of best management practices in the

Bay of Quinte watershed with the phosphorus dynamics in the receiving water body: What do

the models predict? Aquat Ecosyst Health Manage 19:1–18

Basu NB, Rao PSC, Thompson SE et al (2011) Spatiotemporal averaging of in-stream solute

removal dynamics. Water Resour Res 47:W00J06

Bayarri MJ, Berger JO, Cafeo J et al (2007) Computer model validation with functional output.

Ann Stat 35:1874–1906

Beck ME (1987) Tectonic rotations on the leading edge of South America: the Bolivian orocline

revisited. Geology 15:806–808

Beven K (1993) Prophecy, reality and uncertainty in distributed hydrological modelling. Adv

Water Resour 16:41–51

Beven K (2006) A manifesto for the equifinality thesis. J Hydrol 320:18–36

Blukacz-Richards EA, Koops MA (2012) An integrated approach to identifying ecosystem

recovery targets: application to the Bay of Quinte. Aquat Ecosyst Health Manage 15:464–472

Charlton MN (2001) The Hamilton Harbour remedial action plan: eutrophication. Verh Internat

Verein Limnol 27:4069–4072

Claessens L, Tague CL, Band LE et al (2009) Hydro-ecological linkages in urbanizing watersheds:

an empirical assessment of in-stream nitrate loss and evidence of saturation kinetics. J Geophys

Res Biogeosci 114:G04016

Dawes RM (1988) Rational choice in an uncertain world. Harcourt Brace Jovanovich, San Diego

Dermott R, Bonnell R (2011) Benthic fauna in the Bay of Quinte. Bay of Quinte remedial action

plan: Monitoring Report #20, Kingston, ON, pp 51–71

deYoung B, Barange M, Beaugrand G et al (2008) Regime shifts in marine ecosystems: detection,

prediction and management. Trends Ecol Evol 23:402–409

246 G. Arhonditsis et al.



Dietzel A, Reichert P (2012) Calibration of computationally demanding and structurally uncertain

models with an application to a lake water quality model. Environ Modell Softw 38:129–146

Donner SD, Kucharik CJ, Oppenheimer M (2004) The influence of climate on in-stream removal

of nitrogen. Geophys Res Lett 31:L20509

Doyle MW, Stanley EH, Harbor JM (2003) Hydrogeomorphic controls on phosphorus retention in

streams. Water Resour Res 39:1147

Edwards AM, Yool A (2000) The role of higher predation in plankton population models. J

Plankton Res 22:1085–1112

Gudimov A, Stremilov S, Ramin M, Arhonditsis GB (2010) Eutrophication risk assessment in

Hamilton Harbour: system analysis and evaluation of nutrient loading scenarios. J Great Lakes

Res 36:520–539

Gudimov A, Ramin M, Labencki T et al (2011) Predicting the response of Hamilton Harbour to the

nutrient loading reductions: a modeling analysis of the “ecological unknowns”. J Great Lakes

Res 37:494–506

HH RAP (2003) Hamilton Harbour Remedial Action Plan, Report Stage 2 Update. Hamilton

Harbour Technical Team. Burlington, ON

Hall JD, O’Connor K, Ranieri J (2006) Progress toward delisting a Great Lakes Area of Concern:

the role of integrated research and monitoring in the Hamilton Harbour Remedial Action Plan.

Environ Monit Assess 113:227–243

Hall JD, O’Connor KM (2016) Hamilton Harbour remedial action plan process: connecting

science to management decisions. Aquat Ecosyst Health Manage 19:107–113

Harmel D, Qian S, Reckhow K, Casebolt P (2008) The MANAGE database: nutrient load and site

characteristic updates and runoff concentration data. J Environ Qual 37:2403–2406

Hiriart-Baer VP, Milne J, Charlton MN (2009) Water quality trends in Hamilton Harbour: two

decades of change in nutrients and chlorophyll a. J Great Lakes Res 35:293–301

Hiriart-Baer VP, Boyd D, Long T et al (2016) Hamilton Harbour over the last 25 years: insights

from a long-term comprehensive water quality monitoring program. Aquat Ecosyst Health

Manage 19:124–133

Kim D-K, Zhang W, Rao Y et al (2013) Improving the representation of internal nutrient recycling

with phosphorus mass balance models: a case study in the Bay of Quinte, Ontario, Canada.

Ecol Model 256:53–68

Kim D-K, Zhang W, Watson S, Arhonditsis GB (2014) A commentary on the modelling of the

causal linkages among nutrient loading, harmful algal blooms, and hypoxia patterns in Lake

Erie. J Great Lakes Res 40:117–129

Kim D-K, Kaluskar S, Mugalingam S, Arhonditsis GB (2016) Evaluating the relationships

between watershed physiography, land use patterns, and phosphorus loading in the Bay of

Quinte, Ontario, Canada. J Great Lakes Res 42:972–984

Kim D-K, Kaluskar S, Mugalingam S et al (2017) A Bayesian approach for estimating phosphorus

export and delivery rates with the SPAtially Referenced Regression On Watershed attributes

(SPARROW) model. Ecol Inform 37:77–91

Kinstler P, Morley A (2011) Point source phosphorus loadings 1965 to 2009. Bay of Quinte

remedial action plan: monitoring report #20. Kingston, ON, pp 15–17

Leisti KE, Doka SE, Minns CK (2012) Submerged aquatic vegetation in the Bay of Quinte:

Response to decreased phosphorous loading and Zebra Mussel invasion. Aquat Ecosyst Health

Manage 15:442–452

Long T, Wellen C, Arhonditsis G, Boyd D (2014) Evaluation of stormwater and snowmelt inputs,

land use and seasonality on nutrient dynamics in the watersheds of Hamilton Harbour, Ontario,

Canada. J Great Lakes Res 40:964–979

Long T, Wellen C, Arhonditsis G et al (2015) Estimation of tributary total phosphorus loads to

Hamilton Harbour, Ontario, Canada, using a series of regression equations. J Great Lakes Res

41:780–793

11 Uncertainty Analysis by Bayesian Inference 247



McDowell RW, Srinivasan MS (2009) Identifying critical source areas for water quality: 2. Val-

idating the approach for phosphorus and sediment losses in grazed headwater catchments. J

Hydrol 379:68–80

McMahon G, Alexander RB, Qian S (2003) Support of total maximum daily load programs using

spatially referenced regression models. J Water Res 129:315–329

Moore RB, Johnson CM, Robinson KW, Deacon JR (2004) Estimation of total nitrogen and

phosphorus in New England streams using spatially referenced regression models. US Depart-

ment of the Interior, US Geological Survey, New Hampshire, p 42

Morgan MG, Henrion M, Small M (1992) Uncertainty: a guide to dealing with uncertainty in

quantitative risk and policy analysis. Cambridge University Press, New York

Nicholls KH, Heintsch L, Carney E (2002) Univariate step-trend and multivariate assessments of

the apparent effects of P loading reductions and zebra mussels on the phytoplankton of the Bay

of Quinte, Lake Ontario. J Great Lakes Res 28:15–31

Nicholls KH, Carney EC (2011) The phytoplankton of the Bay of Quinte, 1972–2008: point-

source phosphorus loading control, dreissenid mussel establishment, and a proposed commu-

nity reference. Aquat Ecosyst Health Manage 14:33–43

Pappenberger F, Beven KJ (2006) Ignorance is bliss: or seven reasons not to use uncertainty

analysis. Water Resour Res 42:W05302

Ramin M, Stremilov S, Labencki T et al (2011) Integration of numerical modeling and Bayesian

analysis for setting water quality criteria in Hamilton Harbour, Ontario, Canada. Environ

Modell Softw 26:337–353

Ramin M, Labencki T, Boyd D et al (2012) A Bayesian systhesis of predictions from different

models for setting water quality criteria. Ecol Model 242:127–145

Reichert P, Omlin M (1997) On the usefulness of overparameterized ecological models. Ecol

Model 95:289–299

Reichert P, Schuwirth N (2012) Linking statistical description of bias to multi-objective model

calibration. Water Resour Res 48:W09543

Rode M, Arhonditsis G, Balin D (2010) New challenges in integrated water quality modelling.

Hydrol Process 24:3447–3461

Schwarz GE, Hoos AB, Alexander RB, Smith RA (2006) The SPARROW surface water-quality

model: theory, application and user documentation. U.S. Geological Survey Techniques and

Methods Report, Book 6, Chapter B3; USGShttps://pubs.usgs.gov/tm/2006/tm6b3/PDF/

tm6b3_part1a.pdf

Shimoda Y, Watson S, Palmer ME (2016) Delineation of the role of nutrient variability and

dreissenids (Mollusca, Bivalvia) on phytoplankton dynamics in the Bay of Quinte, Ontario,

Canada. Harmful Algae 55:121–136

Soldat DJ, Petrovic AM, Ketterings QM (2009) Effect of soil phosphorus levels on phosphorus

runoff concentrations from turfgrass. Water Air Soil Pollut 199:33–44

Stow CA, Reckhow KH, Qian SS (2007) Approaches to evaluate water quality model parameter

uncertainty for adaptive TMDL implementation. JAWRA 43:1499–1507

Watson SB, Borisko J, Lalor J (2011) Bay of Quinte harmful algal bloom programme phase I –

2009. Bay of Quinte remedial action plan: monitoring report #20. Kingston, ON, pp 27–50

Wellen C, Arhonditsis GB, Labencki T, Boyd D (2012) A Bayesian methodological framework or

accommodating interannual variability of nutrient loading with the SPARROW model. Water

Resour Res 48:W10505

Wellen C, Arhonditsis GB, Labencki T, Boyd D (2014a) Application of the SPARROW model in

watersheds with limited information: a Bayesian assessment of the model uncertainty and the

value of additional monitoring. Hydrol Process 28:1260–1283

Wellen C, Arhonditsis GB, Long T, Boyd D (2014b) Accommodating environmental thresholds

and extreme events in hydrological models: a Bayesian approach. J Great Lakes Res

40:102–116

248 G. Arhonditsis et al.

http://usgs.gov/tm/2006/tm6b3/PDF/tm6b3_part1a.pdf
http://usgs.gov/tm/2006/tm6b3/PDF/tm6b3_part1a.pdf


Wellen C, Arhonditsis GB, Long T, Boyd D (2014c) Quantifying the uncertainty of nonpoint

source attribution in distributed water quality models: a Bayesian assessment of SWAT’s
sediment export predictions. J Hydrol 519:3353–3368

Wellen C, Kamran-Disfani A-R, Arhonditsis GB (2015) Evaluation of the current state of

distributed watershed nutrient water quality modeling. Environ Sci Technol 49:3278–3290

Winter JG, Duthie HC (2000) Export coefficient modeling to assess phosphorus loading in an

urban watershed. JAWRA 36:1053–1061

Yerubandi RR, Boegman L, Bolkhari H, Hiriart-Baer V (2016) Physical processes affecting water

quality in Hamilton Harbour. Aquat Ecosyst Health Manage 19:114–123

Zhang W, Arhonditsis GB (2008) Predicting the frequency of water quality standard violations

using Bayesian calibration of eutrophication models. J Great Lakes Res 34:698–720

Zhang W, Kim D-K, Rao Y et al (2013) Can simple phosphorus mass balance models guide

management decision? A case study in the Bay of Quinte, Ontario, Canada. Ecol Model

257:66–79

11 Uncertainty Analysis by Bayesian Inference 249


