Key to ASCII notation
- '{}' = ∅ = "empty set"
- '(-' = ∈ = "element of"
- '(_' = ⊆ = "subset of" (not strict)
- 'u' = ∪ = "union"
- 'n' = ∩ = "intersection"
- '~L' =
L
= "complement of L"
- '-]' = ∃ = "there exists"
- '\-/' = ∀ = "for all"
- '/\' = ∧ = "and"
- '\/' = ∨ = "or"
- '->' = → = "implies"
- '<->' = ↔ = "if and only if (iff)"
- '!' = ¬ = "not", e.g.,
'a != b' = a ≠ b
= "a is not equal to b",
'w !(- L' = w ∉ L
= "w is not an element of L",
etc.
- '\sum' = ∑ = summation sign
- '\prod' = ∏ = product sign
- '\Sigma' = Σ = capital greek letter Sigma,
'\delta' = δ = lowercase greek letter delta,
etc.
- '|_x_|' = ⌊x⌋ = floor(x)
- '|^x^|' = ⌈x⌉ = ceiling(x)
- '_' indicates a subscript, e.g.,
'q_1' = q1
- '^' indicates a superscript, e.g.,
'n^2' = n2
- curly braces '{}' surround longer subscripts/superscripts,
e.g.,
'\sum_{0 <= i <= n} 2^{i/2}' =
∑0 ≤ i ≤ n
2i/2
Credit: This page is essentially copied from a (very) similar one by
Francois Pitt and Danny Heap.