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ABSTRACT

Destruction and fatalities from recent tornado outbreaks in North America have raised considerable

concerns regarding their climatic and geographic variability. However, regional characterization of tornado

activity in relation to large-scale climatic processes remains highly uncertain. Here, a novel Bayesian hier-

archical framework is developed for elucidating the spatiotemporal variability of the factors underlying

tornado occurrence in North America. It is demonstrated that regional variability of tornado activity can be

characterized using a hierarchical parameterization of convective available potential energy, storm relative

helicity, and vertical wind shear quantities. It is shown that the spatial variability of tornado occurrence during

thewarm summer season can be explained by convective available potential energy and storm relative helicity

alone, while vertical wind shear is clearly better at capturing the spatial variability of the cool season tornado

activity. The results suggest that the Bayesian hierarchical modeling approach is effective for understanding

the regional tornadic environment and in forming the basis for establishing tornado prognostic tools in North

America.

1. Introduction

Tornadoes are one of nature’s most hazardous phe-

nomena, capable of causing significant destruction and

numerous injuries and fatalities. InApril 2011, theUnited

States experienced 758 tornadoes that resulted in 363

deaths (Doswell et al. 2012). In May 2011, one enhanced

Fujita scale category 5 (EF5) (Edwards et al. 2013) tor-

nado caused the single deadliest tornadic event in history,
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with 158 deaths in Joplin, Missouri (Doswell et al. 2012).

Over that year, tornadoes in the United States caused a

total of over $28 billion in property damages (Doswell

et al. 2012). Canada has also experienced significant los-

ses caused by tornado activity, though to a lesser degree

than the United States. For example, on 31 May 1985, a

U.S.–Canadian tornado outbreak spawned over 40

events, with 14 in Ontario, including 2 with Fujita scale

category 4 (F4) intensity (Fujita 1971). The latter out-

break resulted in 12 deaths in Ontario and destroyed

hundreds of buildings with an estimated cost of over

$200 million (Witten 1985). On June 2007, Canada

experienced its first F5 tornado in southern Manitoba

(McCarthy et al. 2008). Significant tornadic events

have continued to occur in Canada in recent years (e.g.,

17 tornadoes on 2 August 2006; 19 tornadoes on

20 August 2009; and an F3 tornado in Goderich, On-

tario, on 21 August 2011) (Cheng et al. 2013). These

events have brought the study of tornado activity to the

forefront of climatological research, raising questions

regarding the relative influence of large-scale climatic

signals, the importance of changes in global radiative

forcing, and the need to delineate the role of the un-

derlying atmospheric processes at the appropriate

spatiotemporal scale (Trapp et al. 2007; Diffenbaugh

et al. 2013; Tippett et al. 2014).

Addressing these questions can be quite challenging

because our understanding of the complex set of pro-

cesses leading to tornadogenesis is arguably incom-

plete. Numerical weather prediction and global climate

models resolve large-scale atmospheric conditions,

which are then incorporated in severe weather fore-

casting tools to predict the occurrence of a regional

tornadic event from hours to days (outbreak) in ad-

vance. Interestingly, most of the predictive attempts in

the literature aimed at associating parameters that

characterize the nearly immediate (hourly) atmospheric

conditions with the occurrence of tornadic events

(Brooks et al. 1994; Rasmussen and Blanchard 1998;

Thompson et al. 2003). One of the important insights

gained by subdaily observations of tornadic supercells is

that supercell tornadogenesis is favored in environments

characterized by distinctly higher levels of relative hu-

midity and wind shear (Rasmussen and Blanchard 1998;

Brooks et al. 2003; Craven et al. 2004). Other studies

further suggested tornadogenesis as a ‘‘Goldilocks’’

problem requiring an optimal balance of storm-generated

baroclinic vorticity, typically enhanced by cold outflows

that strengthen the mesocyclones but weakened by low-

level moisture that offsets the large negative buoyancy

(Markowski et al. 2003; Markowski and Richardson

2009, 2014). Nonetheless, despite the improvements in

tornado forecasting obtained through subdaily study

resolutions, regional-scale tornado activity might not be

predicted exclusively by the most immediate factors of

tornadogenesis. Instead, larger-scale climate patterns

may affect the sequence of atmospheric processes that

ultimately determine the spatiotemporal development

of tornadic storms (Cook and Schaefer 2008; Barrett and

Gensini 2013).

Founded upon the idea that large-scale climate vari-

ability cascades down and shapes the prevailing condi-

tions of tornadic environments, atmospheric parameters

in longer time scales can conceivably be used as proxies

of tornado activity. Counter to the modeling practices in

other fields (e.g., limnology), studies have only recently

adopted a coarser resolution by examining the capacity

of atmospheric parameters expressed on monthly or

seasonal time scales to explain the spatial distribution

and seasonal cycle of tornado activity (Tippett et al. 2012,

2014; Cheng et al. 2015). In subdaily time scales, attempts

to delineate the conditions preceding tornadic events

have recognized that tornadic environments (the atmo-

spheric parameters) may vary both regionally and sea-

sonally (Hagemeyer and Schmocker 1991; Hanstrum

et al. 2002; Monteverdi et al. 2003; Brooks 2009; Grams

et al. 2012; Thompson et al. 2012). Importantly, the lifting

mechanisms (Doswell et al. 1996), one of the key ele-

ments to producing the convective initiation processes,

are not explicitly considered and unlikely to be extracted

by current reanalysis datasets (Brooks 2009). Further,

Brooks (2009, 546–547) argued the following:

Although it seems reasonable to believe that the physics
of the atmosphere does not change from location to
location, the fact that some important ingredients are
not measured by soundings may limit the global appli-
cability. Also, there is no reason to believe that all of the
conditions that could be supportive of a particular kind
of thunderstorm are necessarily sampled in the United
States. It is conceptually plausible that the atmosphere
may be capable of producing tornadoes, for instance,
from a variety of environmental conditions but that
some subset of those conditions do not occur often
enough in the United States to be sampled with great
frequency.

Moreover, tornadoes in different regions may tend to

originate and evolve from very different spatiotemporal

atmospheric trajectories [e.g., supercellular storms, quasi-

linear convective systems (QLCS), and ‘‘landspout’’

tornadogenesis (Lemon and Doswell 1979; Klemp and

Rotunno 1983; Wakimoto and Wilson 1989; Lee and

Wilhelmson 1997; Trapp and Weisman 2003; Trapp

et al. 2005; Atkins and St. Laurent 2009)] and so would

have different relative tornadic environments (Grams

et al. 2012; Smith et al. 2012; Thompson et al. 2012).

Even the same type of tornadic storms under the same
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convective type shows substantial spatial variability

(Thompson et al. 2014).

Although the relationship between atmospheric pa-

rameters and tornado occurrence in different time scales

has partly been documented (Tippett et al. 2012, 2014;

Cheng et al. 2015), the geographic variability of their

relationship with tornado occurrences has yet to be

factored in predictive frameworks. In this regard, it may

be advantageous to consider a flexible hierarchical

strategy that relaxes the assumption of a globally com-

mon parameterization in order to accommodate the

region-specific tornado formation mechanisms during

different periods of the year. Furthermore, because our

knowledge of the tornado climatology is hampered by

our monitoring capacity, the observational error should

be explicitly considered so that the interplay between

atmospheric processes and tornado activity is not ob-

fuscated by nonmeteorological factors. The latter source

of uncertainty is highly relevant to the monitoring

practices of large regions for which complete tornado

observations could never be practically gathered. In this

study, we use a Bayesian hierarchical framework to

depict the causal linkages between the annual or sea-

sonal tornado occurrence and relevant atmospheric

predictors that characterize most tornadic environments

over the contiguous United States and Canada. Specif-

ically, convective available potential energy (CAPE), a

quantity of vertically integrated buoyant energy avail-

able to the storm, proportional to storm updraft

strength, and 0–3-km storm-relative environmental

helicity (SREH), a quantity of the streamwise vorticity

within the inflow environment of a storm, therefore the

potential strength of the updraft rotation (Davies-Jones

et al. 1990); magnitude of the wind vector difference

between the surface and 6 km (SHR0-6), a quantity of

the deep-layer vertical wind shear that promotes

storm-scale rotation about a vertical axis and enhances

storm organization, intensity, and longevity (Klemp

1987); and vertical wind shear from surface

to tropopause (SHR0-T), a quantity that considers

change in wind speed with height from the surface to

the tropopause, are considered. Under a hierarchical

configuration, the problem of tornado prediction is

dissected into levels (hierarchies) that explicitly ac-

count for the role of regional variability (Gelman and

Hill 2006; Cheng et al. 2013, 2015). The two over-

arching features of the proposed framework, the

explicit consideration of observation error and the re-

laxation of the constant characterization of atmo-

spheric environment on tornado activity over the

spatial domain modeled, could improve our ability to

tease out the significant drivers in time and space and

ultimately our predictive capacity.

2. Methods

a. Tornado data

Canadian tornado data covering the period 1980–2009

were obtained from the updated Environment and

Climate Change Canada national tornado database (Sills

et al. 2012; Cheng et al. 2013), whereas the U.S. tornado

data for the same period were obtained from the NOAA

Storm Prediction Center (Schaefer and Edwards 1999).

The annual number of tornadoes in Canada does not

demonstrate any systematic long-term patterns, but an

increase in tornado observations is noted in the United

States.We computed a gridded climatology (30-yr total) of

annual and seasonal tornado observations by counting the

number of reported tornadoes for the entire period, for the

warm (March–August) and cool periods (September–

February), and for each calendar season (March–May,

June–August, September–November, and December–

February) using their starting location in a geodesic

50 km 3 50 km grid. Working with annual or seasonal

average tornado climatology minimizes the likelihood

of a spurious association between tornado records char-

acterized by nonmeteorological temporal trends and

physical drivers (Tippett et al. 2012, 2014; Cheng

et al. 2013, 2015). This process was done separately for all

tornado intensities (F0–F5) (Cheng et al. 2013, 2015).

b. Atmospheric and population data

The climatological and atmospheric variables used as

predictors in the model were obtained from the North

American Regional Reanalysis (NARR; Mesinger et al.

2006) and their annual and seasonal averaged values

from 1980 to 2009 were calculated for our modeling

framework (Fig. 1). NARR data were provided on a

32-km Lambert conformal grid and were subsequently

interpolated to match our model grid configuration.

CAPE, a widely used measure to quantify the subdaily

atmospheric instability contributing to tornadic events, is

chosen as the main predictor representing updraft

strength (McCaul 1991; Hagemeyer and Schmocker

1991; Brooks et al. 1994, 2003; Rasmussen andBlanchard

1998; Hanstrum et al. 2002; Monteverdi et al. 2003;

Thompson et al. 2003, 2012, 2014; Davies 2006; Trapp

et al. 2007; Brooks 2009; Smith et al. 2012; Tippett et al.

2012, 2014; Edwards et al. 2012; Grams et al. 2012;

Diffenbaugh et al. 2013; Cheng et al. 2015). Second, as

vertical wind shear is known to be critical to storm or-

ganization, intensity, and possibly tornadogenesis, and

different wind shear variables may be more intricately

linked with different types of tornadoes, we explore in

detail three shear-related parameters to elucidate their

relative importance: SREH, SHR0-6, and SHR0-T.
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As previously mentioned, the temporal trends of

tornado records can be influenced by nonmeteorological

factors. Specifically, nonmeteorological factors such as

inconsistent reporting, verification and classification

practices, public awareness, topographic factors influ-

encing visibility, and the willingness to report tornadic

events can profoundly influence the credibility of exist-

ing reports (Changnon 1982; Schaefer and Galway 1982;

FIG. 1. Spatial distribution of the explanatory variables during the (left) annual, (center) warm, and (right) cool season of (top)–

(bottom) CAPE (m2 s22), a measure of instability through the depth of the atmosphere that is related to updraft strength in thunder-

storms; SREH (m2 s22), a measure of the potential for cyclonic updraft rotation in right-moving supercells, calculated for the lowest 3-km

layers above ground level; SHR0-6 (m s22), a measure of wind shear from the surface through the midtroposphere (strong vertical shear

removes precipitation from updrafts and induces vertical perturbation pressure gradients, so thunderstorms tend to become more or-

ganized and persistent); and SHR0-T (s21), a measure of the upper-level wind speed normalized by the surface wind speed and is

a measure of the upper-level jet strength–inducing shear and vertical motion, often associated with severe weather.
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Tecson et al. 1983; Grazulis and Abbey 1983; King 1997;

Ray et al. 2003). Of all the nonmeteorological factors

investigated (e.g., obstruction of sight due to density of

trees and hills, absence of roads, and buildings), pop-

ulation density is documented as the key non-

meteorological factor in determining the observation

bias of tornadoes and nontornadic severe thunderstorms

in many North American studies (Anderson et al. 2007;

Ray et al. 2003; King 1997; Etkin and Leduc 1994; Paruk

and Blackwell 1994; Snider 1977; Tecson et al. 1983;

Schaefer and Galway 1982). Since population-sampling

bias creeps into tornado reports and may cause spu-

rious geographical variability (Doswell and Burgess

1988), we adopted the correction method in Cheng et al.

(2013, 2015), which used population density data to

quantify the observation error.

c. Hierarchical Bayes approach

TheBayesian hierarchical approach is used to relax the

assumption of globally common model parameters and

therefore obtain parameter values that can effectively

accommodate regional variability. Under the hierarchical

configuration, the problem of parameter estimation

across the study area is viewed as a hierarchy. At the

lower level, spatial heterogeneity is accommodated by

introducing region-specific parameter distributions—that

is, depending on the significance of potential sources of

variability (e.g., predominant convective storm mode,

climatic regime, geographical location, and orographic

patterns). Model parameters can be drawn from one of

those regional populations. In the upper level, the mo-

ments of the regional population parameter distributions

are specified probabilistically in terms of global pop-

ulation parameters or hyperparameters (Gelman andHill

2006). The observed data are used to estimate the region-

specific model parameters and the hyperparameters.

Thus, the hierarchical model dissects the problem into

levels and allows regional parameter differences to ac-

commodate the spatial variability over the North Amer-

ican model domain.

The present study proposes that the patterns of the local

model error with spatially constant parameter specifica-

tion can be used to delineate local populations (homo-

geneous regions) that may provide the foundation of

hierarchical frameworks. Specifically, Cheng et al. (2015)

introduced a model configuration in which gridcell-

specific conditional autoregression (CAR) terms, drawn

from a multivariate normal specification, were used to

capture the residual variability unaccounted for by the

globally common characterization of the explanatory

processes considered. Thus, the gridcell-specific CAR

values represent the model residuals stemming from a

variety of factors, such as spatiotemporal variability of the

physical mechanisms leading to tornado formation (e.g.,

supercell, quasi-linear convective systems, or landspout-

type tornadoes); mismatch between the scale at which the

actual processes occur and the resolution studied; local

climatic and/or geographic processes that are not cap-

tured by the explanatory or predictor variables in the

model, influencing the convection initiation process; and

regional and/or seasonal climate regimes that may violate

the assumption of a spatial homogeneous parameteriza-

tion. For example, orographically influenced thunder-

storms and/or convective processes influenced by sea- or

lake-breeze convergence can shape the realization of

CAPE and the convective mode of tornadic thunder-

storms (Sills et al. 2004), thereby introducing spatial het-

erogeneity to the nature of the causal relationships

between tornadogenesis and various predictors.

The introduction of CAR though is specifically for-

mulated based on the grid configuration and temporal

resolution, and thus any changes in the monitoring

network or the time scale of the study will make the

CAR estimates not useful for forecasting purposes.

Because of this constraint, our approach limits its usage

to the delineation of the spatial homogeneous regions

considered under the hierarchical structure. In this

study, seven CAR spatial distributions were extracted,

based on the following temporal resolutions: annual,

warm period (March–August), cool period (September–

February), spring (March–May), summer (June–August),

autumn (September–November), and winter (December–

February).We subsequently selected critical percentiles of

the populations of the gridcell-specific CAR terms to

identify three homogeneous regions for the annual, warm,

spring, and summer periods and two regions for the cool,

fall, and winter periods.

In our empirical tornado occurrencemodel (Cheng et al.

2013, 2015), we compartmentalize the problem of predict-

ing tornadoobservations into a series of conditionalmodels

that simultaneously consider (i) the nonmeteorological

factors affecting the fidelity of tornado counts in our dataset

(observation error model), (ii) the meteorological com-

ponent causally linked with the tornado formation and

evolution (explanatory model), and (iii) the uncertainty

in parameter values (parameter model).

1) OBSERVATION ERROR MODEL

Our model postulates that the population density is

the primary factor that determines the accuracy of tor-

nado observations in our dataset. In particular, we as-

sume that there is a threshold population density above

which all tornadoes are expected to be observed,

whereas below this threshold level the probability of

tornado detection is proportional to the population

density (King 1997; Anderson et al. 2007). We specify a
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binomial model in which the observed tornado counts

Tobsij, for each grid cell i and region j, are conditioned

upon the actual (but unobserved) tornado occurrences

Tlatentij and the probability of detection pij(b):

Tobs
ij
jTlatent

ij
, l

ij
, p

ij
(b);Binomial [Tlatent

ij
,p

ij
(b)].

The probability of detection pij(b) represents the like-

lihood of observing a tornado and is associated with the

population density popdij by the following exponential

expression:

p
ij
(b)5 exp[2b/exp(popd

ij
)] ,

whereb is the population effect parameter, and exp(popdij)

is the exponential transformation of the original population

density data. The actual occurrence of tornadoes Tlatentij
in the model domain is specified as a Poisson process,

conditional on the average or expected tornado occur-

rence rate per grid cell lij, provided by the explanatory

model

Tlatent
ij
j l

ij
;Poisson(l

ij
) .

2) EXPLANATORY MODEL

The explanatory model expresses the logarithm of the

expected tornado rate lij in a given grid cell i and region j

as a linear function of a number of explanatory variables x:

log(l
ij
)5a

j0
1a

j1
x
ij1
1a

j2
x
ij2
1⋯1a

jk
x
ijk
,

where xijk is the value of the explanatory variable k (i.e.,

CAPE, SREH, SHR0-6, or SHR0-T) in grid cell i and

region j, and ajk are regression coefficients correspond-

ing to the kth predictor variable. For each period, we

experimented with different combinations of the wind-

related explanatory variables (SREH, SHR0-6, and

SHR0-T) with CAPE.

3) PARAMETER MODEL

In a Bayesian context, model parameters are treated

as random variables rather than fixed quantities. As

such, prior distributions can be formulated to depict

our knowledge of the relative plausibility of their

values before the consideration of the observed data

(Gelman et al. 2004). In this study, though, we opted

for ‘‘noninformative’’ or ‘‘flat’’ priors reflecting no

prior knowledge of the model parameters. In particu-

lar, the prior distributions for the population effect

parameter b, the region-specific parameters aj0,. . .,k, tj
2,

and the hyperparameters mk and sk
2 were specified as

follows:

b;N(0, 10 000),

a
jk
;N(a

k
, t2j ),

a
k
;N(m

k
,s2

k),

m
k
;N(0, 10 000),

t2j ; IG(0:001,0:001), and

s2
k ; IG(0:001,0:001),

where N and IG denote the normal and inverse gamma

distributions, respectively. Sequences of realizations from

the posterior distribution of the seven models were ob-

tained using Markov chain Monte Carlo (MCMC) simu-

lations (Lunn et al. 2000). Convergence of the MCMC

chains was checked using the Brooks–Gelman–Rubin

(BGR) scale-reduction factor (Brooks and Gelman 1998).

The BGR factor is the ratio of between-chain variability to

within-chain variability. The chains have converged when

the upper limits of the BGR factor are close to one. This

process is undertaken independently for each month or

season to assess the intra-annual variability of the models.

We also conducted two additional exercises related to

the predictive and structural confirmation of the present

modeling framework. The first skill assessment test was

based on splitting the 30-yr dataset into two subsets;

namely, the calibration (1980–94) and predictive valida-

tion (1995–2009) datasets. The former one was used to

obtain parameter estimates through Bayesian updating,

and the derived model predictive posteriors were then

tested independently against the latter dataset. The second

skill assessment test aimed to examine the robustness of

the inference drawn by the binomial–Poissonmodel, given

that the analyzed tornado data have many zeros. The al-

ternative statistical formulation was the zero-inflated

Poisson model, based on a zero-inflated probability dis-

tribution that allows for frequent zero-valued observations

(Lambert 1992). This model is a statistical description of a

random event, containing excess zero-count data per unit

of time or space or within a fixed interval of a relevant

covariate. The model dissects the studied event (tornado

occurrence) into two components that correspond to two

zero-generating processes. The first process reflects the

sampling and/or observation error and is governed by a

binary distribution that generates structural zeros, while

the second mechanism represents the tornado occurrence

rate and is governed by a Poisson distribution that gener-

ates counts, some of which may be zero. The two model

components can be described as follows:

Tobs
ij
j l

ij
, p

ij
(b, popd

ij
)

;

8><
>:
Poisson(l

ij
) , with probability p

ij
(b, popd

ij
)

0, with probability 12 p
ij
(b, popd

ij
)
.

1904 JOURNAL OF CL IMATE VOLUME 29



In a similar manner, Tobsij denotes the observed tornado

counts in grid cell i and region j; pij represents the likelihood

to observe a tornado in grid cell i and region j of our model

domain, which again is modeled as an exponential function

of the corresponding population density data popdij;b is the

population effect parameter; and lij is the average or ex-

pected tornado occurrence rate per grid cell i and region j,

which is similarly expressed as a log-linear function of the

standardized values of atmospheric predictors in grid cell i,

using region-specific parameters derived byour hierarchical

configuration. Similar to the binomial–Poisson model, we

opted for noninformative (or flat) prior distributions, re-

flecting no prior knowledge of the model parameters.

3. Results

a. Delineating hierarchical structures

CAR profiles were used to recreate the spatial residual

variability in North America when using atmospheric

predictor variables averaged over the following seven

time scales: annual (12-month averages), warm and cool

periods, and spring, summer, autumn, and winter sea-

sons. Predictors included in the models are surrogates of

the processes most relevant to tornado activity, as de-

rived by both subdaily and longer time-averaged mod-

eling experiments (Brooks et al. 2003; Edwards et al.

2012; Tippett et al. 2012; Cheng et al. 2015)—namely,

CAPE, SREH, SHR0-6, and SHR0-T. The relative

performances of seven combinations of the predictor

variables (different permutations of SREH, SHR0-6,

and SHR0-T paired with CAPE) were then evaluated

for each time period. Residual (CAR) variability of the

annual (CAPE–SREH), warm (CAPE–SREH), and

cool periods (CAPE–SHR0-6–SHR0-T) models are

shown in the left panels of Fig. 2. Spatial distributions of the

CAR terms for the four calendar-based seasons are also

shown in Fig. S1A of the supplemental information.

Hierarchical regions were then delineated based on the

CAR term values in the different grid cells. The re-

gionalization of the annual, warm, and cool seasons is

shown in the right panels of Fig. 2, which are derived by

the CAR spatial distributions in the corresponding left

panels. For the models that include the peak tornado

seasons (spring and summer)—that is, annual, warm,

spring, and summer models—the entire domain is parti-

tioned into three regions. The first or ‘‘low’’ region con-

tains 50%of the areas or grid cells, where theCARvalues

were negative; the second or ‘‘intermediate’’ region

contains the next 30% of the grid cells with CAR values

within the 50th and 80th percentile; and the third or

‘‘high’’ region contains areas with the highest 20% of

CAR term values. Interestingly, the three groups were

characterized by distinctly different levels of tornado

occurrence (top andmiddle panels of Fig. 3 and Figs. S2A

and S3A in the supplemental information), suggesting

that the inclusion of the CAR term counterbalances the

tendency of the explanatorymodelwith spatially constant

parameterization to understate the actual frequency in

tornado-prone areas and to overpredict the number of

events in relatively low-risk regions. For the rest of the

models (cool, fall, and winter seasons), the grid cells with

the top 20% CAR values formed one ‘‘intermediate’’

region, while the rest of the domain was treated as a

second functionally homogeneous ‘‘low’’ group. The de-

lineation of only two regions with the latter models stems

from the fact that tornado occurrences are not as frequent

and widespread across North America during the cooler

seasons of the year (bottom panel of Fig. 3 and Figs. S4A

and S5A in the supplemental information).

In both annual and warm seasonal models, the low

region (blue) predominantly reflected northern Canada

and the eastern and western seaboard provinces. The

intermediate (light gray) region comprised areas to the

west of the U.S. Rockies, significant portions of the

Prairies to southern Ontario and southern Quebec, and

the Appalachian Mountain region. The high (gray) re-

gion grouped together small portions of the Prairies,

the Great Plains, the Midwest, the Ohio River valley,

and the northeastern U.S. seaboard (Figs. 4 and 5).

Most of the Gulf Coast states are included in this region

when using annual data but not with the warm season

model. In the cool season, the more active intermediate

(light gray) region generally lies south of Canada and

covers most of the southeastern U.S. states, the south-

ern Great Plains, and a small portion of the California

coast (Fig. 6).

b. Bayesian hierarchical modeling

The performance of the hierarchical models with

different permutations of the atmospheric variables was

evaluated with the Pearson correlation coefficient r and

root-mean-square error (RMSE) (Table 1 and Table

S1A in the supplemental information). The fit of most

models examined was fairly similar, with the main ex-

ception being the combination CAPE–SHR0-T, which

demonstrated the worst performance during the annual

and warm periods. The combination of CAPE and

SREH resulted in the best fit, followed closely by the

combination of CAPE, SREH, and SHR0-T. SREH

appears to be a more reliable predictor of the annual

and warm season tornado activity than SHR0-6 and/or

SHR0-T. In the cool period, the combination of CAPE,

SHR0-6, and SHR0-T provided the best fit, followed

closely by the combination of CAPE–SREH–SHR0-6–

SHR0-T. Our analysis provides evidence that SHR0-6
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is more reliable in predicting cool season tornadoes

than SREH and SHR0-T. Generally, the performance

of the cool season models is not as high as those for the

warm period or those developed to predict the annual

tornado activity. It is also interesting to note that the

top two performing models during the annual and

warm periods are among the weakest during the

cool period.

The models aiming to describe the spring tornado

activity generally outperformed those developed for the

rest of the calendar-based seasons. The best spring

model was built with all four predictor variables (Table

S1A), and the second (third) best model comprised

SREH and SHR0-6 (SHR0-T). Similar to the models

developed to describe the annual tornado activity (or

tornado occurrences during the warm season), our

FIG. 2. (left) Spatial distribution of the CAR term and (right) delineation of hierarchical regions for the (top)

annual, (middle) warm, and (bottom) cool seasons. The results of the annual or warm and cool periods are based on

the CAPE–SREH and CAPE–SHR0-6–SHR0-T models, respectively. In (left), the color scale from purple to gray

denotes the CAR values. In (right), the blue areas denote the first ‘‘low’’ region; the light gray areas denote the

second ‘‘intermediate’’ region; and the gray areas denote the third ‘‘high’’ region.
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analysis highlights the importance of SREH as a reliable

covariate. Notably, the inclusion of SHR0-6 and/or

SHR0-T (along with SREH) slightly improved the

model performance with the spring models. Similar in-

ferences could be drawn by the models examined to

depict tornado spatial variability during the summer

season (Table S1A), although the importance of SHR0-6

becomes more evident relative to what our models

suggest for the annual and warm season. The best model

of tornado occurrence during the autumn included all

four predictors, while the second and third best models

were identical to those developed for the spring season

(Table S1A). Unlike the spring models though, SHR0-6

is identified as a more important predictor variable,

given that the performances of the models that consid-

ered CAPE–SREH and CAPE–SHR0-6 are nearly

identical. Overall, our predictive capacity appears to be

better when using coarser (annual) resolution relative to

shorter time scales, while the warm season models out-

perform those developed for the cool period.

The mean and standard deviation values of the

parameter posteriors for the top three (from fourth best

to worst) models are shown in Tables 2–4 and Tables

S2A–S5A (Tables S6A–S12A) in the supplemental in-

formation and can be used to infer the relative impor-

tance of the corresponding predictors during the

different periods examined. Because of the standardi-

zation implemented prior to the analysis, the posterior

estimates of the intercepts reflect the expected tornado

occurrence rates when the predictor variables tend to

their mean values. According to our model predictions,

the average total number of tornadoes over the course of

the 30-yr period studied was 0.08 per grid cell in the low

region, which was associated with the lower CAR

values. Likewise, we can infer that the intermediate and

high regions were characterized by an average total

annual number of 2.75 and 15.03 tornadoes per grid cell,

respectively. With a similar interpretation, the corre-

sponding regional estimates for the warm period were

0.11, 2.14, and 11.13 tornadoes per grid cell. By contrast,

the two regions delineated for the cool period were

characterized by an average total number of tornadoes

of 0.06 and 0.77 per grid cell, respectively. Lending

credibility to the hierarchical strategy adopted, the sig-

nature of the parameters differs significantly among the

regions delineated and generally tends to be stronger in

the low region and lower in the intermediate/high re-

gion. CAPE exerts clear control over all three regions,

and it is generally more influential in the low and in-

termediate geographical regions, correspondingly asso-

ciated with the low and intermediate CAR values, than

in the high region. Comparing the influence of SREH,

SHR0-6, and SHR0-T among the different permutations

FIG. 3. Box plots of the tornado observations for the regions

considered under the hierarchical model configuration during the

(top) annual, (middle) warm, and (bottom) cool season. Region 1

corresponds to the ‘‘low’’ region; region 2 corresponds to the ‘‘in-

termediate’’ region; and region 3 corresponds to the ‘‘high’’ region.
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of predictors examined, we infer that the effects of

SREH are well identified and significant during the an-

nual and warm periods for all three regions, including

the spring and summer seasons, but not during the cool

period of the year. The temporal effects of SHR0-6 are

consistent and similar to SREH, but SHR0-6 shows

higher influence during the cool periods. The signature

of SHR0-T is generally stronger during the cool period,

and this result is consistent when using a globally com-

mon characterization of the tornadic processes (Cheng

et al. 2015).

Examination of the posterior patterns of the top three

annual and warm period models suggests that the addi-

tion of SHR0-T and/or SHR0-6 changes the strength of

the signature of SREH in the low and intermediate re-

gion. The relative strength of the causal association be-

tween tornado activity and SHR0-T or SHR0-6 is

generally higher than with SREH in the low and in-

termediate region. By contrast, SREH is generally more

influential and well identified in the high region, where

the Great Plains, the Prairies, and the Midwest are lo-

cated. This may reflect the predominance of strong,

discrete storms associated with SREH in these areas.

Discrete storms have persistent rotating updraft cores or

mesocyclones, which have a direct correlation with

strong SREH (Davies-Jones et al. 1990). Interestingly,

our analysis also suggests that no multicollinearity is-

sues arise when SREH, SHR0-T, and/or SHR0-6 are

FIG. 4. Delineation of the regions considered with the hierarchical models for predicting annual tornado occurrences. The blue areas

denote the low region; the light gray areas denote the intermediate region; and the gray areas denote the high region.

FIG. 5. As in Fig. 4, but for the warm season.
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combined in the summer seasonal models. The latter

result may suggest an independent control of the asso-

ciated atmospheric processes over the summer tornado

activity, which in turn generally lies in the east–west

direction from just east of the Rocky Mountains to the

northeastern United States.

The effects of SHR0-6 are distinct and well identified in

both regions during the cool season. While SHR0-6 is

more influential in the region associated with the low

CAR values, the opposite holds true for SHR0-T. The

strengthening of the SHR0-T signature in the intermdiate

region (southeastern United States) is on par with existing

evidence from the literature that the influence of the

subtropical jet to tornado activity is strongest in the winter

and can be a major factor for tornado formation and tor-

nado outbreaks under extratropical storms (Hagemeyer

and Schmocker 1991; Cook and Schaefer 2008). The ef-

fect of SREH is limited and generally confounded by the

SHR0-6 and SHR0-T effects, as the sign of SREH

changes depending on whether the latter predictors are

included. The effect of SREH on the autumn tornado

activity is mostly nonidentifiable in the low region (low or

intermediate CAR values) and has a negative influence

over the intermediate region (high CAR values). The

projected weak and/or negative signature of SREH likely

reflects the misalignment between the areas where the

higher values of storm-relative helicity occur (i.e., Great

Plains) and the region where the larger portion of torna-

does resides (i.e., southeastern seaboard states) (Tippett

et al. 2014; Cheng et al. 2015). Some of the tornado ac-

tivity in the latter region during the end-of-summer–early

autumn season is typically associated with tropical cy-

clones, and therefore the relative importance of the un-

derlying mechanisms is different (Edwards et al. 2012; see

their Fig. 4). Last, SHR0-6, and to a lesser extent SHR0-T,

are both important predictors of tornado activity during

the winter period. While both predictors exert more in-

fluence on the low region, SHR0-T tends to be more

strongly associated with the tornado occurrences in the

low region, which may be related to the aforementioned

FIG. 6. As in Fig. 4, but for the cool season.

TABLE 1. Performance of the annual, warm, and cool season models based on the RMSE (tornado counts 10 000 km22 yr21) and Pearson

correlation coefficient values between the observed number of tornadoes and the posterior mean predictions per grid cell.

Annual RMSE r Warm RMSE r Cool RMSE r

CAPE–SREH 0.566 0.886 CAPE–SREH 0.509 0.863 CAPE–SHR0-6–SHR0-T 0.225 0.799

CAPE–SREH–SHR0-T 0.572 0.887 CAPE–SREH–SHR0-T 0.519 0.857 CAPE–SREH–SHR0-6–

SHR0-T

0.226 0.798

CAPE–SREH–SHR0-6–

SHR0-T

0.601 0.871 CAPE–SREH–SHR0-6 0.523 0.854 CAPE–SHR0-6 0.236 0.778

CAPE–SREH–SHR0-6 0.611 0.866 CAPE–SREH–

SHR0-6–SHR0-T

0.527 0.852 CAPE–SREH–SHR0-6 0.256 0.745

CAPE–SHR0-6–SHR0-T 0.614 0.865 CAPE–SHR0-6 0.560 0.831 CAPE–SREH 0.268 0.701

CAPE–SHR0-6 0.627 0.858 CAPE–SHR0-6–SHR0-T 0.562 0.829 CAPE–SHR0-T 0.270 0.697

CAPE–SHR0-T 1.793 0.631 CAPE–SHR0-T 0.820 0.764 CAPE–SREH–SHR0-T 0.270 0.696

1 MARCH 2016 CHENG ET AL . 1909



strength of the subtropical jet. CAPE exerts clear influ-

ence over both regions but is generally more influential in

the low region than in the intermediate region.

The observed and predicted tornado occurrences

during the annual, warm, and cool periods are shown in

Fig. 7 left and center panels, respectively (see also the

same comparison in Fig. S6A of the supplemental in-

formation for the calendar-based seasonal models). It

should be noted that these posterior predictions are

based entirely on the hierarchical configuration of the

explanatory model and do not consider the adjustments

due to the potential observation bias introduced by the

population density. The spatial patterns of the observed

and predicted tornado occurrences are remarkably

similar for all three studied periods. The tornado pat-

terns for the annual and warm periods are very similar

northward from the northern Great Plains and southern

Ontario, indicating that tornadic events in those regions

are largely a warm season phenomenon. The right

panels of Fig. 7 illustrate the actual tornado occurrence

(Tlatent) after accounting for the likelihood of a pop-

ulation bias. It can be seen that tornado occurrences are

severely underestimated in areas of sparse population,

such as the Prairies and to a lesser extent the northern

Great Plains during the warm period. During the cool

season, tornado observations are most frequent in the

southeastern United States, followed by the Central

Plains and the Atlantic seaboard states. The hierarchical

configuration also remarkably captures areas with rela-

tively lower frequency of tornado occurrence, like

Idaho, Utah, Arizona, and the California coast region.

Seasonal variability characterized the posterior values

of the population effect parameter b (Tables 2–4 and

Tables S2A–S12A). The highest value was derived for

winter, the lowest value during the summer (i.e., a

higher population density is needed to observe torna-

does during the former period rather than the latter),

and the value when using annual resolution is closer to

the warm season’s values. Substituting b back into the

exponential function to identify the population density

TABLE 3. As in Table 2, but for the top three warm season models.

Warm-season model Region

a0 CAPE SREH SHR0-6 SHR0-T b

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

CAPE–SREH r1 22.14 0.10 0.55 0.05 0.28 0.08 — — — — — —

r2 0.76 0.02 0.51 0.01 0.23 0.01 — — — — — —

r3 2.41 0.01 0.30 0.05 0.19 0.01 — — — — — —

gbl 0.32 3.25 0.44 0.43 0.23 0.15 — — — — 2.12 0.05

CAPE–SREH–SHR0-T r1 22.43 0.14 0.56 0.03 0.09 0.07 — — 1.515 0.105 — —

r2 0.22 0.04 0.51 0.01 0.18 0.01 — — 1.104 0.032 — —

r3 2.21 0.02 0.28 0.01 0.20 0.01 — — 0.414 0.024 — —

gbl 0.00 2.93 0.45 0.20 0.15 0.12 — — 1.039 1.066 2.22 0.05

CAPE–SREH–SHR0-6 r1 22.32 0.17 0.58 0.17 20.18 0.20 1.23 0.17 — — — —

r2 0.38 0.03 0.61 0.01 0.04 0.02 0.78 0.02 — — — —

r3 2.39 0.02 0.25 0.01 0.20 0.01 0.14 0.01 — — — —

gbl 0.11 2.97 0.47 0.38 0.02 0.38 0.71 0.81 — — 2.13 0.05

TABLE 2. Posterior mean and standard deviations (SD) of the parameters [low region (r1), intermediate region (r2), high region (r3), and

global (gbl)] of the top three annual models.

Annual model Region

a0 CAPE SREH SHR0-6 SHR0-T b

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

CAPE–SREH r1 22.55 0.15 0.48 0.08 0.71 0.14 — — — — — —

r2 1.01 0.02 0.42 0.01 0.34 0.01 — — — — — —

r3 2.71 0.01 0.24 0.08 0.14 0.01 — — — — — —

gbl 0.36 3.38 0.38 0.30 0.40 0.46 — — — — 2.08 0.05

CAPE–SREH–SHR0-T r1 22.20 0.12 0.48 0.03 0.03 0.05 — — 2.07 0.11 — —

r2 0.09 0.04 0.41 0.01 0.19 0.01 — — 1.81 0.04 — —

r3 2.24 0.03 0.27 0.01 0.13 0.01 — — 0.74 0.04 — —

gbl 20.03 2.61 0.39 0.26 0.12 0.14 — — 1.56 0.87 2.19 0.05

CAPE–SREH–SHR0-6–

SHR0-T

r1 22.12 0.12 0.66 0.04 20.63 0.08 2.05 0.10 0.27 0.13 — —

r2 0.23 0.04 0.51 0.01 0.00 0.02 0.84 0.03 0.83 0.06 — —

r3 2.05 0.03 0.27 0.01 0.13 0.01 0.09 0.01 0.93 0.05 — —

gbl 0.12 3.05 0.47 0.40 20.16 0.64 0.97 1.47 0.66 0.55 2.16 0.05
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thresholds where nearly all tornadoes can be observed

[p(b) . 0.995], the threshold levels ranged from 5.9 to

7.2 people per square kilometer. The thresholds in annual

and seasonal time scales are consistent with previous

findings (Cheng et al. 2013, 2015; King 1997). The higher

winter threshold levels may be related to the higher

proportion of nocturnal tornadoes occurring in the winter

and shorter day length, both of which affect the ability to

observe tornadoes, particular when no damage results

(Ashley et al. 2008). Despite the improved observational

capacity, the number of unobserved tornadoes is pre-

dicted to be higher in the warm season because of higher

activity in comparison to the cool season and the shifting

of tornado activity northward to the northern plains and

the Prairies (Fig. 7), where population densities are

sparser. It is also possible that this increase in the warm

season is a result of the stronger capping inversions and

weaker synoptic-scale forcing experienced during that

period of the year, which is not explicitly accounted for in

the model as there are no predictor variables of convec-

tive inhibition (CIN) owing to its high collinearity with

CAPE. Based on the current model configuration, the

models indicate that tornado observations are typically

underestimated from the western United States north-

ward to the central Prairies, and toward eastern Ontario

and southwestern Quebec, as well as in parts of the

Central Plains region. With the exception of the Central

Plains, tornado activity is primarily a warm season

phenomenon.

As previously mentioned, the predictive confirmation

of the present modeling framework was based on split-

ting the 30-yr dataset into two subsets; the calibration

(1980–94) and predictive validation (1995–2009) data-

sets. The former one was used to obtain parameter es-

timates through Bayesian updating, and the resulting

parameter posteriors along with the associated co-

variance were then tested independently against the

latter dataset. This skill assessment test provided evi-

dence that the posterior mean predictions per grid cell

derived by the annual, warm, cool, or even the monthly

model predictions were fairly consistent between the

calibration and predictive confirmation temporal do-

mains (Table 5 and Fig. S7A in the supplemental in-

formation). The same conclusion is supported by the

second skill assessment test aiming to compare the

inference drawn by the binomial–Poisson and zero-

inflated Poisson models. The comparison of the perfor-

mance of the two strategies, usingCAPE–SREH(annual,

warm, spring, and summer seasons) and CAPE–SHR0-6

(cool, autumn, and winter seasons) as predictors, in-

dicated similar values of the root-mean-square error

and Pearson correlation coefficient values between

the observed number of tornadoes and posterior

mean predictions per grid cell (Table 6 and Fig. S8A

in the supplemental information). The parameter

posterior distributions (central tendency and spread)

were similarly robust between the two models across

all the periods examined (Fig. 9A in the supplemental

information).

4. Discussion

We have developed a novel Bayesian hierarchical

modeling approach to accommodate the regional vari-

ability in tornadic environments and more effectively

predict tornado occurrence in different seasonal periods

in North America. The delineation of the spatially ho-

mogeneous regions that formed the foundation of our

hierarchical configuration was based on the spatial pat-

terns of the CAR term used to capture the residual

variability of the explanatory model. The basic premise

of the proposed strategy was that the imperfections in

the model structure could be partly ameliorated by

relaxing the assumption of a constant characterization of

the underlying mechanisms over the entire spatial do-

main modeled. Our Bayesian hierarchical framework

illustrates that the tornado occurrence and the associ-

ated causal linkages exhibit clear regional and seasonal

TABLE 4. As in Table 2, but for the top three cool season models.

Cool-season model Region

a0 CAPE SREH SHR0-6 SHR0-T b

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

CAPE–SHR0-6–SHR0-T r1 22.82 0.13 0.72 0.04 — — 1.68 0.11 20.01 0.18 — —

r2 20.26 0.08 0.33 0.01 — — 0.55 0.04 1.27 0.11 — —

gbl 21.55 5.27 0.52 2.12 — — 1.69 3.66 0.70 3.86 3.74 0.20

CAPE–SREH–SHR0-6–

SHR0-T

r1 22.87 0.13 0.69 0.04 20.31 0.08 1.85 0.12 0.03 0.18 — —

r2 20.14 0.07 0.30 0.01 20.17 0.02 0.66 0.04 1.14 0.10 — —

gbl 21.34 6.27 0.48 1.99 20.24 1.83 1.23 4.31 0.65 3.73 3.59 0.20

CAPE–SHR0-6 r1 22.37 0.10 0.50 0.04 — — 1.34 0.07 — — — —

r2 0.63 0.03 0.32 0.01 — — 0.80 0.02 — — — —

gbl 20.89 6.36 0.44 1.38 — — 1.09 2.81 — — 3.91 0.20
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patterns, as reflected in the spatiotemporal variability of

the relative importance of the explanatory variables

examined.

Our analysis underscored the role of CAPE as a key

explanatory variable of tornado occurrence. CAPE is a

key criterion for deep moist convection, as it accounts

for both lower-tropospheric moisture and lapse rate. For

most tornadoes, it provides the buoyant energy needed

for developing updrafts, which is one of the ingredients

required for tornado formation (Rasmussen 2003).

SREH appears to be critical in predicting tornado oc-

currence in the high-activity regions (Great Plains,

Midwest and Ohio River valley, northeastern U.S. sea-

board, and Gulf Coast states) and during the peak

(warm) season, suggesting that mesocyclonic, supercell-

type storms are the primary tornado producers in these

areas. SHR0-6 and to a lesser extent SHR0-T are better

predictors during the cool period of the year. This

finding is indicative of more frequent QLCS tornadoes

during the cool season (Smith et al. 2012), when the

prevailing conditions are characterized by relatively

weak thermodynamic instability but strong deep-layer

wind shear; that is, wind increases significantly with

height up to the upper troposphere, where the sub-

tropical jet can generate regions of upper-level di-

vergence (Trapp et al. 2005; Cook and Schaefer 2008;

Edwards et al. 2012).

The distribution of tornadoes associated with differ-

ent convective modes is not as well known west of the

Rockies as to the east (Smith et al. 2012). Convective

modes for tornadoes in Canada are even less certain. It is

hypothesized that a nontrivial fraction of tornadoes in

FIG. 7. The 30-yr (1980–2009) tornado (left) observations and predicted tornado observations (center) before and (right) after the

correction for population bias during the (top) annual, (middle) warm, and (bottom) cool seasons. The results of the annual or warm and

cool periods are based on the CAPE–SREH and CAPE–SHR0-6–SHR0-T models, respectively.
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the eastern and western seaboard provinces, from the

Prairies to southern Ontario and Quebec, are likely to

be of the landspout type. They are typically associated

with meso- and local-scale circulations in the boundary

layer (e.g., sea- and lake-breeze fronts are thought to

play a role in the development of these tornadoes)

(Hagemeyer and Schmocker 1991; King et al. 2003).

Although the necessary conditions for these formations

(e.g., low-level tropospheric boundary with significant

horizontal wind shear and rapidly deepening moist

convection along the boundary) are difficult to quantify

in reanalysis datasets, such tornadoes prefer an atmo-

sphere with only weak vertical wind shear at relatively

low levels (as opposed to supercells), which may be re-

flected in the relatively weaker and less identifiable in-

fluence of SREH and SHR0-6 (compared to SHR0-T) in

the aforementioned regions. However, little research

has been done to advance our understanding of the re-

gional variability of convective modes in Canada. Fur-

ther, the mechanisms underlying the convective mode in

southwestern Nova Scotia are unlikely to resemble

those in Manitoba, and therefore drawing general

conclusions about the tornado activity over the entire

Canadian region could be misleading. Tornadoes in

autumn are among the most poorly predicted. Although

this finding may be related to TC tornadoes requiring

explanatory variables that were not considered in this

study (e.g., TC radial distance and specific humidity

gradient) (Belanger et al. 2009), we note that TC tor-

nadoes mostly occur in September and they are not

a large fraction for most years (Belanger et al. 2009). In

a similar manner, the low-topped supercell tornado-

genesis during the cold season in California are not

representative of the majority of autumn tornadoes

TABLE 6. Comparison of the performance of the CAPE–SREH (annual, warm, spring, and summer) and CAPE–SHR0-6 (cool, au-

tumn, and winter) models based on the RMSE and Pearson correlation coefficient values between observed number of tornadoes and

posterior mean predictions per grid cell.

Hierarchical binomial–

Poisson model

Hierarchical zero-inflated

Poisson model

RMSE r RMSE r

CAPE–SREH Annual 0.566 0.886 0.576 0.883

Warm 0.509 0.863 0.519 0.858

Spring 0.317 0.846 0.319 0.844

Summer 0.348 0.790 0.353 0.784

CAPE–SHR0-6 Cool 0.236 0.778 0.236 0.778

Fall 0.174 0.713 0.174 0.712

Winter 0.108 0.762 0.107 0.764

TABLE 5. Performance of annual, warm, cool, and monthly average warm (March–August) and cool season (September–February)

model predictions based on 30-yr calibration (1980–2009), 15-yr calibration (1980–94), and 15-yr predictive confirmation (1995–2009)

between observed number of tornadoes and posterior mean predictions per grid cell.

1980–2009 1980–94 1995–2009

RMSE r RMSE r RMSE r

CAPE–SREH Annual 0.566 0.886 0.696 0.795 0.860 0.848

CAPE–SHR0-6 Warm 0.509 0.863 0.620 0.778 0.722 0.810

Cool 0.236 0.778 0.236 0.618 0.432 0.659

CAPE–SREH March 0.148 0.493 0.146 0.402 0.176 0.401

April 0.161 0.670 0.176 0.565 0.250 0.557

May 0.270 0.779 0.290 0.667 0.406 0.681

June 0.256 0.663 0.330 0.549 0.312 0.613

July 0.186 0.519 0.218 0.429 0.232 0.448

August 0.139 0.500 0.162 0.405 0.170 0.420

CAPE–SHR0-6 September 0.105 0.501 0.104 0.347 0.178 0.415

October 0.088 0.496 0.082 0.361 0.154 0.431

November 0.096 0.557 0.108 0.444 0.142 0.477

December 0.060 0.467 0.068 0.342 0.088 0.399

January 0.064 0.483 0.056 0.251 0.114 0.449

February 0.062 0.523 0.070 0.382 0.090 0.467
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(Hanstrum et al. 2002). In any event, model perfor-

mance in autumn is admittedly problematic.

Recent ensembles of global climate model projections

suggest that a significant increase in the frequency of

severe thunderstorm environments could be expected in

the future (Diffenbaugh et al. 2013). Even though ver-

tical wind shear is projected to decrease as the equator-

to-pole temperature gradient decreases, future climate

simulations show those days with both high CAPE

(primarily because of an increase in low-level moisture

and temperature) and strong low-level wind shear will

likely increase, suggesting an increasing likelihood of

atmospheric conditions favorable for tornadoes. While

existing studies addressing the causal connection be-

tween tornadoes and climate change have focused

mainly on environments that are conducive to severe

thunderstorms capable of producing EF2 and greater

intensity tornadoes (primarily supercell thunderstorms),

FIG. 8. Exceedance probability of one F0–F5 tornadic event over the course of (top) 5 years, (middle) 2 years, and

(bottom) 1 year in the warm season, for the period (left) 1980–94 and (right) 1995–2009. These probabilistic

statements are based on the predicted density distributions of the best-performing (CAPE–SREH) model.
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rarely have studies examined projected changes in tor-

nado activity for all intensities and presumably different

types of development. Climate change could conceiv-

ably shape tornado development of all types, and con-

sideration of region-specific tornadic environments may

better characterize the atmospheric conditions favor-

able for tornadoes across different areas throughout

North America. As a result, the present hierarchical

modeling configuration could be adapted to climate

change impact assessment to more effectively project

the overall changes of tornado activity in high-risk areas.

Notwithstanding the encouraging results from the

predictive and structural confirmation, our intent with

the presented modeling framework is not to develop an

early warning system but rather to offer a modeling tool

that can be used to characterize the frequency of tor-

nado occurrence in a particular location in North

America (e.g., exceedance probability of more than 1

tornado within a selected period of the year) (Fig. 8).

Following this line of reasoning, our approach effec-

tively postulates that atmospheric parameters varying

on climate time scales can be used to draw inferences

about tornadic events with a lifetime of no more than a

few hours or even only a few minutes. While this

adoption of a coarser temporal resolution (seasonal or

monthly averages) differs significantly from the typically

used predictor variables on shorter (subdaily) time

scales, we note that this modeling practice is popular in

other disciplines (e.g., limnology), whereas statistical

models are used to reproduce the average prevailing

conditions in a certain period of the year (growing sea-

son) and subsequently to predict the likelihood of oc-

currence of episodic events, such as end-of-summer

hypoxia, exceedance of certain threshold values of

phytoplankton abundance, or cyanobacteria outbreaks

(Arhonditsis and Brett 2005). In the context of ecosys-

tem dynamics, the causal linkage is more evident as

episodic events are typically the escalation of a complex

interplay between physical, chemical, and biological

processes that occur over a longer time period. Re-

garding the underlying mechanisms of tornadogenesis

though, the credibility of the present probabilistic map-

ping relies on the strength of the association between ‘‘the

changes in the moments (central tendency, spread) of the

distribution of the environments occurring in the course

of a month/season to faithfully capture the changes in the

frequency of extreme subdaily environments (tails of the

same distribution) associated with tornado occurrence’’

(Cheng et al. 2015, p. 9).

In conclusion, we introduced a Bayesian framework

to obtain a regional characterization of tornado activity

in North America in relation to large-scale climatic

processes. In the context of statistical modeling, the

hierarchical configuration represents a clear advance-

ment over the technical limitations of the CAR term as

well as the conceptual simplifications of the globally

common parameter specification. Our analysis provides

evidence that regional variability of tornado activity can

be described using as explanatory variables the con-

vective available potential energy, storm-relative hel-

icity, and vertical wind shear data. The spatial variability

of tornado occurrence during the warm season can be

well explained by convective available potential energy

and storm-relative helicity alone, while vertical wind

shear is clearly better at capturing the spatial variability

of the cool season tornado activity. A plausible next step

would be the implementation of the present hierarchical

framework to accommodate year-to-year variability

rather than reproducing the spatial patterns of long-

term average tornado occurrences. Two interesting

facets of that exercise would be the identification of the

optimal explanatory or predictor variables [including

outputs of global climate models (Taylor et al. 2012)]

and the most efficient time series modeling strategy to

achieve year-specific predictions of tornado activity

[e.g., dynamic linear modeling (Sadraddini et al. 2011)].

By the same token, the influence of large-scale climate

oscillations, such as El Niño–Southern Oscillation and

Madden–Julian oscillation, on the seasonal and regional

tornado activity can be examined.
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SECTION A 

BAYESIAN HIERARCHICAL MODELLING 

Table S1A: Performance of the seasonal models based on the root mean square error (RMSE) and Pearson correlation coefficient values 

between the observed number of tornadoes and the posterior mean predictions per grid cell.  

Spring  RMSE   r   Summer  RMSE   r   Fall  RMSE   r   Winter  RMSE   r  

 CAPE_SREH_SHR0-6_SHR0-T  

  

0.310  

  

0.854   CAPE_SREH    0.348  

  

0.790   CAPE_SREH_SHR0-6_SHR0-T  

  

0.170  

  

0.730   CAPE_SHR0-6_SHR0-T    0.105  

  

0.776  

 CAPE_SREH_SHR0-6    0.310  

  

0.854   CAPE_SREH_SHR0-6    0.349  

  

0.789   CAPE_SREH_SHR0-6    0.171  

  

0.724   CAPE_SREH_SHR0-6_SHR0-T    0.105  

  

0.775  

 CAPE_SREH_SHR0-T    0.316  

  

0.847   CAPE_SHR0-6_SHR0-T    0.350  

  

0.787   CAPE_SREH_SHR0-T    0.172  

  

0.723   CAPE_SREH_SHR0-6    0.107  

  

0.766  

 CAPE_SREH    0.317  

  

0.846   CAPE_SHR0-6    0.362  

  

0.772   CAPE_SHR0-6_SHR0-T    0.172  

  

0.721   CAPE_SHR0-6    0.108  

  

0.762  

 CAPE_SHR0-6_SHR0-T    0.339  

  

0.822   CAPE_SREH_SHR0-6_SHR0-T    0.364  

  

0.772   CAPE_SHR0-6    0.174  

  

0.713   CAPE_SHR0-T    0.119  

  

0.700  

 CAPE_SHR0-6    0.350  
  

0.809   CAPE_SREH_SHR0-T    0.398  
  

0.728   CAPE_SREH    0.174  
  

0.712   CAPE_SREH_SHR0-T    0.119  
  

0.697  

 CAPE_SHR0-T    0.923  

  

0.391   CAPE_SHR0-T    0.694  

  

0.612   CAPE_SHR0-T    0.199  

  

0.604   CAPE_SREH    0.155  

  

0.456  
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Table S2A: Posterior mean and standard deviations of the parameters* of the top three models in the spring. 

Spring 
 

α0 CAPE SREH SHR0-6 SHR0-T β 

    mean sd mean sd mean sd mean sd mean sd mean sd 

CAPE-SREH-

SHR0-6  

r1 -3.78 0.31 0.14 0.31 0.25 0.22 1.03 0.26 

    r2 -1.11 0.05 0.40 0.01 0.02 0.03 1.10 0.03 

    r3 1.40 0.02 0.16 0.01 0.29 0.01 0.34 0.02 

    gbl -1.17 3.20 0.23 0.37 0.19 0.33 0.80 0.78 

  

2.28 0.10 

  
            

CAPE-SREH-

SHR0-T  

r1 -4.50 0.48 0.23 0.06 0.18 0.16 

  

1.70 0.42 

  r2 -1.11 0.07 0.24 0.01 0.23 0.03 

  

0.99 0.08 

  r3 1.74 0.04 0.17 0.01 0.29 0.01 

  

-0.04 0.05 

  gbl -1.21 3.80 0.22 0.40 0.24 0.19 

  

0.93 1.38 2.38 0.10 

  
            

CAPE-SREH-

SHR0-6-SHR0-

T 

r1 -4.12 0.47 0.32 0.12 -0.03 0.25 0.93 0.26 0.97 0.50 

  r2 -1.35 0.08 0.37 0.01 0.00 0.02 1.08 0.04 0.47 0.08 

  r3 1.16 0.04 0.12 0.01 0.33 0.01 0.31 0.02 0.39 0.08 

  gbl -1.41 3.28 0.27 0.25 0.10 0.43 0.77 0.83 0.61 0.68 2.34 0.10 

*r1: low region, r2: intermediate region, r3: high region, gbl: global parameter 

 

Table S3A: Posterior mean and standard deviations of the parameters* of the top three models in the summer. 

Summer 

 

α0 CAPE SREH SHR0-6 SHR0-T β 

    mean sd mean sd mean sd mean sd mean sd mean sd 

CAPE-SREH  

r1 -2.80 0.13 0.67 0.07 0.29 0.10 

      r2 -0.09 0.03 0.59 0.02 0.25 0.02 

      r3 1.87 0.02 0.35 0.07 0.18 0.01 

      gbl -0.39 2.89 0.54 0.28 0.24 0.15 

    

1.89 0.06 

 
 

            

CAPE-SREH-

SHR0-6  

r1 -2.78 0.20 0.68 0.21 0.10 0.11 1.13 0.18 

    r2 -0.23 0.04 0.75 0.03 0.06 0.03 0.89 0.04 

    r3 1.80 0.02 0.37 0.01 0.15 0.01 0.30 0.01 

    gbl -0.36 2.83 0.60 0.37 0.10 0.15 0.75 0.82 

  

1.90 0.06 

 
 

            

CAPE-SHR0-6-

SHR0-T  

r1 -3.24 0.21 1.41 0.16 

  

1.52 0.21 0.61 0.10 

  r2 -0.53 0.05 0.80 0.03 

  

0.71 0.04 0.71 0.05 

  r3 1.75 0.02 0.29 0.01 

  

0.10 0.02 0.57 0.03 

  gbl -0.68 3.21 0.85 0.89     0.74 0.96 0.63 0.15 1.76 0.06 

*r1: low region, r2: intermediate region, r3: high region, gbl: global parameter 
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Table S4A: Posterior mean and standard deviations of the parameters* of the top three models in the autumn. 

Fall 

 

α0 CAPE SREH SHR0-6 SHR0-T β 

    mean sd mean sd mean sd mean sd mean sd mean sd 

CAPE-SREH-

SHR0-6-SHR0-

T 

r1 -2.21 0.11 0.97 0.11 -0.17 0.08 1.38 0.13 -0.58 0.16 

  r2 0.46 0.07 0.29 0.01 -0.15 0.02 0.44 0.04 0.51 0.11 

  gbl -0.93 5.74 0.66 3.09 -0.13 0.86 0.88 3.75 -0.03 3.68 3.65 0.20 

              
CAPE-SREH-

SHR0-6  

r1 -2.10 0.09 0.81 0.12 0.11 0.09 0.70 0.10 

    r2 0.78 0.03 0.28 0.01 -0.16 0.02 0.50 0.03 

    gbl -0.59 5.99 0.58 2.45 -0.07 1.85 0.60 1.70 

  
3.75 0.20 

 
 

            
CAPE-SREH-

SHR0-T  

r1 -2.47 0.10 0.20 0.08 -0.02 0.06 

  
0.84 0.12 

  r2 0.37 0.06 0.17 0.01 -0.10 0.02 

  
0.93 0.07 

  gbl -0.84 5.80 0.21 1.29 -0.06 1.13     0.84 1.48 3.30 0.19 

*r1: low region, r2: intermediate region, gbl: global parameter 

 

 

Table S5A: Posterior mean and standard deviations of the parameters* of the top three models in the winter. 

Winter 

 

α0 CAPE SREH SHR0-6 SHR0-T β 

    mean sd mean sd mean sd mean sd mean sd mean sd 

CAPE-SHR0-

6-SHR0-T 

r1 -11.54 0.74 0.47 0.08 

  

1.12 0.239 7.31 0.74 

  r2 -1.85 0.24 0.23 0.01 

  

0.99 0.088 1.33 0.30 

  gbl -6.05 10.66 0.33 1.62 

  

1.09 1.83 3.86 8.81 7.01 0.86 

              CAPE-SREH-

SHR0-6 –

SHR0-T 

r1 -13.04 0.74 0.54 0.06 -0.39 0.11 1.24 0.22 8.90 0.65 

  r2 -2.38 0.23 0.23 0.01 -0.31 0.03 1.16 0.09 1.89 0.29 

  gbl -6.67 11.74 0.38 2.23 -0.37 1.19 1.22 2.19 4.98 9.17 6.86 0.83 

 
 

            
CAPE-SREH-

SHR0-6 

r1 -6.78 0.39 0.44 0.04 -0.06 0.13 3.19 0.23 

    r2 -0.81 0.06 0.19 0.01 -0.13 0.03 1.38 0.05 

    gbl -3.50 8.05 0.32 1.93 -0.11 0.90 2.26 4.44 

  

6.56 0.81 

*r1: low region, r2: intermediate region, gbl: global parameter 
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Table S6A: Posterior mean and standard deviations of the parameters* of the fourth best to worst models in the annual 

period. 

Annual 
 

α0 CAPE SREH SHR0-6 SHR0-T β 

    mean sd mean sd mean sd mean sd mean sd mean sd 

CAPE-SREH-

SHR0-6 

r1 -2.12 0.14 0.58 0.11 -0.11 0.15 1.20 0.13 

    r2 0.53 0.03 0.51 0.01 0.05 0.02 0.89 0.02 

    r3 2.59 0.01 0.25 0.01 0.15 0.01 0.16 0.01 

    gbl 0.31 3.01 0.44 0.46 0.03 0.26 0.75 0.81 

  

2.06 0.05 

              

CAPE-SHR0-6-

SHR0-T 

r1 -1.87 0.10 0.74 0.03 

  

1.86 0.09 -0.05 0.11 

  r2 0.22 0.04 0.48 0.01 

  

0.84 0.02 0.88 0.06 

  r3 2.07 0.03 0.21 0.01 

  

0.17 0.01 1.11 0.05 

  gbl 0.17 2.84 0.48 0.42 

  

0.95 1.25 0.68 0.97 2.19 0.05 

              

CAPE-SHR0-6 

r1 -2.10 0.14 0.59 0.12 

  

1.15 0.10 

    r2 0.50 0.03 0.51 0.01 

  

0.95 0.02 

    r3 2.68 0.01 0.22 0.12 

  

0.25 0.01 

    gbl 0.39 3.06 0.43 0.40 

  

0.77 0.81 

  

2.08 0.05 

  
            

CAPE-SHR0-T 

r1 -1.92 0.09 0.47 0.02 

    

1.95 0.08 

  r2 0.11 0.04 0.39 0.01 

    

1.96 0.04 

  r3 2.28 0.02 0.25 0.02 

    

0.89 0.03 

  gbl 0.26 2.59 0.37 0.21         1.60 0.91 2.24 0.05 

*r1: low region, r2: intermediate region, r3: high region, gbl: global parameter 

 

Table S7A: Posterior mean and standard deviations of the parameters* of the fourth best to worst models in the warm 

season. 

Warm 
 

α0 CAPE SREH SHR0-6 SHR0-T β 

    mean sd mean sd mean sd mean sd mean sd mean sd 

CAPE-SREH-

SHR0-6-SHR0-

T 

r1 -2.48 0.14 0.74 0.08 -0.61 0.13 1.64 0.13 0.52 0.08 

  r2 0.14 0.04 0.64 0.01 0.04 0.02 0.76 0.03 0.50 0.04 

  r3 2.18 0.02 0.24 0.01 0.21 0.01 0.03 0.01 0.48 0.03 

  gbl 0.02 3.26 0.54 0.44 -0.12 0.61 0.76 1.10 0.50 0.10 2.18 0.05 

              

CAPE-SHR0-6 

r1 -2.26 0.14 0.70 0.11 

  

1.14 0.12 

    r2 0.35 0.03 0.64 0.01 

  

0.81 0.02 

    r3 2.59 0.01 0.22 0.11 

  

0.15 0.01 

    gbl 0.14 3.28 0.52 0.42 

  

0.69 0.87 

  

2.11 0.05 

              

CAPE-SHR0-6-

SHR0-T 

r1 -2.41 0.13 0.93 0.06 

  

1.41 0.11 0.55 0.08 

  r2 0.11 0.04 0.64 0.01 

  

0.79 0.02 0.56 0.04 

  r3 2.39 0.02 0.22 0.01 

  

0.07 0.01 0.50 0.03 

  gbl 0.11 3.46 0.59 0.90 

  

0.73 1.04 0.54 0.11 2.23 0.05 

  
            

CAPE-SHR0-T 

r1 -2.33 0.12 0.60 0.03 

    

1.51 0.09 

  r2 0.17 0.04 0.50 0.01 

    

1.21 0.03 

  r3 2.43 0.02 0.28 0.03 

    

0.40 0.02 

  gbl 0.10 3.08 0.46 0.26         1.01 1.64 2.24 0.05 

*r1: low region, r2: intermediate region, r3: high region, gbl: global parameter 
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Table S8A: Posterior mean and standard deviations of the parameters* of the fourth best to worst models in the cool 

season. 

Cool 

 

α0 CAPE SREH SHR0-6 SHR0-T β 

    mean sd mean sd mean sd mean sd mean sd mean sd 

CAPE-SREH-

SHR0-6 

r1 -2.42 0.11 0.47 0.05 -0.05 0.08 1.39 0.08 

    r2 0.65 0.03 0.30 0.01 -0.16 0.02 0.90 0.02 

    gbl -0.81 6.21 0.41 1.82 -0.10 1.36 1.14 2.65 

  

3.76 0.19 

              

CAPE-SREH 

r1 -1.71 0.06 0.19 0.05 0.10 0.06 

      r2 1.35 0.02 0.18 0.01 0.02 0.01 

      gbl -0.11 5.46 0.20 0.86 0.05 1.23 

    

4.39 0.20 

              

CAPE-SHR0-

T 

r1 -4.75 0.56 -0.33 0.93 

    

2.17 0.47 

  r2 -1.45 0.06 0.38 0.01 

    

2.57 0.06 

  gbl -3.07 6.60 0.10 2.73 

    

2.38 2.16 4.49 0.22 

              

CAPE-SREH-

SHR0-T 

r1 -2.20 0.12 0.48 0.03 0.03 0.05 

  

2.07 0.11 

  r2 0.09 0.04 0.41 0.01 0.19 0.01 

  

1.81 0.04 

  gbl -0.03 2.61 0.39 0.26 0.12 0.14     1.56 0.87 4.99 0.22 

*r1: low region, r2: intermediate region, gbl: global parameter 

 

Table S9A: Posterior mean and standard deviations of the parameters* of the fourth best to worst models in the spring 

season. 

Spring 
 

α0 CAPE SREH SHR0-6 SHR0-T β 

    mean sd mean sd mean sd mean sd mean sd mean sd 

CAPE-SREH 

r1 -3.90 0.27 0.23 0.14 0.42 0.21 

      r2 -0.52 0.03 0.30 0.02 0.28 0.03 

      r3 1.72 0.02 0.15 0.14 0.30 0.01 

      gbl -0.85 3.57 0.23 0.35 0.33 0.26 

    

2.23 0.09 

              

CAPE-SHR0-6-

SHR0-T 

r1 -4.61 0.51 0.33 0.07 

  

0.87 0.19 1.45 0.43 

  r2 -1.39 0.08 0.39 0.01 

  

1.05 0.03 0.58 0.08 

  r3 1.83 0.03 0.35 0.01 

  

0.64 0.02 -0.82 0.07 

  gbl -1.32 4.09 0.36 0.09 

  

0.86 0.40 0.44 1.84 2.47 0.10 

              

CAPE-SHR0-6 

r1 -3.79 0.32 0.15 0.36 

  

1.16 0.24 

    r2 -1.13 0.06 0.40 0.01 

  

1.12 0.03 

    r3 1.58 0.02 0.21 0.36 

  

0.43 0.02 

    gbl -1.10 3.57 0.26 0.35 

  

0.90 0.75 

  

2.11 0.10 

  
            

CAPE-SHR0-T 

r1 -4.43 0.47 0.24 0.06 

    

1.72 0.40 

  r2 -1.05 0.07 0.29 0.01 

    

0.98 0.07 

  r3 2.45 0.03 0.29 0.06 

    

-0.72 0.04 

  gbl -1.00 4.14 0.28 0.29         0.63 1.68 2.76 0.10 

*r1: low region, r2: intermediate region, gbl: global parameter 
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Table S10A: Posterior mean and standard deviations of the parameters* of the fourth best to worst models in the summer 

season. 

Summer 

 

α0 CAPE SREH SHR0-6 SHR0-T β 

    mean sd mean sd mean sd mean sd mean sd mean sd 

CAPE-SHR0-6 

r1 -2.90 0.16 0.79 0.15 

  

1.17 0.17 

    r2 -0.26 0.04 0.79 0.03 

  

0.88 0.03 

    r3 1.90 0.02 0.37 0.15 

  

0.33 0.01 

    gbl -0.44 3.16 0.65 0.57 

  

0.80 0.58 

  

1.80 0.06 

              
CAPE-SREH-

SHR0-6-SHR0-

T 

r1 -3.24 0.22 1.45 0.16 -0.24 0.20 1.78 0.27 0.51 0.11 

  r2 -0.48 0.05 0.79 0.03 0.12 0.03 0.71 0.06 0.69 0.05 

  r3 1.67 0.02 0.32 0.01 0.13 0.01 0.12 0.02 0.50 0.03 

  gbl -0.79 3.35 0.85 1.16 0.00 0.38 0.87 1.32 0.57 0.33 1.91 0.06 

              

CAPE-SREH-

SHR0-T 

r1 -4.50 0.48 0.23 0.06 0.18 0.16 

  

1.70 0.42 

  r2 -1.11 0.07 0.24 0.01 0.23 0.03 

  

0.99 0.08 

  r3 1.74 0.04 0.17 0.01 0.29 0.01 

  

-0.04 0.05 

  gbl -1.21 3.80 0.22 0.40 0.24 0.19 

  

0.93 1.38 2.38 0.10 

              

CAPE-SHR0-T 

r1 -2.81 0.14 0.78 0.06 

    

1.38 0.09 

  r2 -0.64 0.05 0.75 0.02 

    

1.31 0.03 

  r3 1.75 0.02 0.34 0.06 

    

0.60 0.02 

  gbl -0.55 2.97 0.62 0.38         1.10 0.78 1.88 0.06 

*r1: low region, r2: intermediate region, r3: high region, gbl: global parameter 

 

Table S11A: Posterior mean and standard deviations of the parameters* of the fourth best to worst models in the autumn 

season. 

Fall 

 

α0 CAPE SREH SHR0-6 SHR0-T β 

    mean sd mean sd mean sd mean sd mean sd mean sd 

CAPE-SHR0-

6-SHR0-T 

r1 -2.12 0.11 0.93 0.11 

  

1.17 0.11 -0.49 0.15 

  r2 0.33 0.07 0.32 0.01 

  

0.31 0.03 0.71 0.10 

  gbl -0.75 5.55 0.59 2.55 

  

0.71 2.91 0.14 3.91 3.88 0.20 

              

CAPE-SHR0-6 

r1 -2.07 0.09 0.71 0.13 

  

0.69 0.07 

    r2 0.78 0.03 0.30 0.01 

  

0.36 0.03 

    gbl -0.60 5.66 0.51 2.00 

  

0.56 1.93 

  

3.95 0.21 

              

CAPE-SREH 

r1 -1.94 0.07 0.09 0.08 0.04 0.06 

      r2 1.05 0.02 0.10 0.01 -0.12 0.02 

      gbl -0.44 5.96 0.11 1.01 -0.06 1.93 

    

3.70 0.19 

              

CAPE-SHR0-T 

r1 -3.75 0.52 0.06 0.88 

    

0.84 0.34 

  r2 -0.59 0.05 0.36 0.01 

    

1.42 0.06 

  gbl -1.89 5.84 0.20 2.60         1.10 2.80 4.39 0.22 

*r1: low region, r2: intermediate region, gbl: global parameter 
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Table S12A: Posterior mean and standard deviations of the parameters* of the fourth best to worst models in the winter 

season. 

Winter 

 

α0 CAPE SREH SHR0-6 SHR0-T β 

    mean sd mean sd mean sd mean sd mean sd mean sd 

 
 

            

CAPE-SHR0-6 

r1 -6.88 0.40 0.45 0.04 

  

3.17 0.21 

    r2 -0.79 0.06 0.21 0.01 

  

1.26 0.04 

    gbl -3.67 8.41 0.31 1.52 

  

2.17 4.87 

  

6.51 0.77 

              

CAPE-SHR0-T 

r1 -12.01 1.43 0.22 0.22 

    

8.34 1.24 

  r2 -3.59 0.15 0.32 0.01 

    

3.80 0.13 

  gbl -7.12 9.81 0.26 1.23 

    

5.59 7.43 6.47 0.75 

              

CAPE-SREH-SHR0-T 

r1 -12.35 1.58 0.14 0.26 0.27 0.34 

  

8.31 1.54 

  r2 -3.81 0.15 0.30 0.01 -0.16 0.03 

  

4.15 0.13 

  gbl -7.23 10.78 0.20 1.23 0.08 2.27 

  

5.80 7.41 6.52 0.75 

              

CAPE-SREH 

r1 -6.27 0.60 0.24 0.14 0.33 0.37 

      r2 0.20 0.03 0.18 0.01 0.23 0.02 

      gbl -2.79 8.61 0.17 1.23 0.29 2.09         7.93 0.85 

*r1: low region, r2: intermediate region, gbl: global parameter 
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Figure S1A: Spatial distribution of the conditional autoregression (CAR) term (left) and delineation of 

hierarchical regions (right) for the spring, summer, autumn and winter seasons (top to bottom). The results of 
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the spring/autumn, summer, and winter seasons are based on the CAPE-HLCY-SHEAR-VWSH, CAPE-HLCY, 

and CAPE-SHEAR-VWSH models, respectively. 

 

 

Figure S2A: Delineation of the regions considered with the hierarchical models for predicting tornado occurrences during 

the spring season. 

 Figure S3A: Delineation of the regions considered with the hierarchical models for predicting tornado occurrences 

during the summer season. 
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 Figure S4A: Delineation of the regions considered with the hierarchical models for predicting tornado occurrences 

during the autumn season.

 Figure S5A: Delineation of the regions considered with the hierarchical models for predicting tornado occurrences 

during the winter season. 
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Figure S6A: 30-yr (1980-2009) tornado observations (left) and predicted tornado observations before (center) 

and after (right) the correction for population bias during the spring, summer, autumn, and winter seasons (top 

to bottom), respectively. The results of the spring/autumn, summer, and winter seasons are based on the CAPE-

SREH-SHR0-6-SHR0-T, CAPE-SREH, and CAPE-SHR0-6-SHR-0-T models, respectively. 
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Figure S7A: Calibration of the annual (CAPE-SREH), warm (CAPE-SREH) and cool season (CAPE-SHR0-6) 

models (1980-1994): observed (outer left panels) and modeled (inner left panels) tornado counts. Predictive 

confirmation (1995-2009): observed (inner right panels) and predicted (outer right panels) tornado counts. Top, 

middle, and bottom panels correspond to annual, warm and cool season models. 
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Figure S8A: Structural model confirmation: Comparison between observed (left panels), predicted mean 

tornado counts of the hierarchical binomial-Poisson (middle panels) and the zero-inflated Poisson models (right 

panels) for the annual (CAPE-SREH), warm (CAPE-SREH) and cool season (CAPE-SHR0-6). Top, middle, 

and bottom panels correspond to annual, warm and cool season models. 
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Figure S9A: Parameter posteriors of the binomial-Poisson (red) and zero-inflated Poisson models (blue) that 

consider the variables CAPE, SREH (annual, warm season), and CAPE, SHR0-6 (cool) to predict F0-F5 

tornadoes. The lower and upper edges of the bottom and top whiskers represent the 2.5 and 97.5 percentiles, 

respectively. The boxes encompass the parameter values that correspond to 68.27% of the probability mass (1 

standard deviation around the mean) of the posterior distributions, while the lines inside represent the medians. 

Left panels: a0 – model intercept; Middle panels: regression coefficients of CAPE; Right panels: regression 

coefficients of SREH (Annual, Warm)/SHR0-6 (Cool); Top panels: Region 1; Middle panels: Region 2; Bottom 

panels: Region 3. 
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SECTION B 
TORNADO TYPES: BASIC INTRODUCTION1 

Tornado type 

Definition/Description and 

radar-based storm mode classification 

criteria 

F-Scale rating 

 

Favored Regions 

 

Seasonal spatial distribution 

 

Supercell  
 

Subcategories: 

 

Discrete/Isolated,  

 

Cell Cluster,  

 

Cell in Line/ 

Broken Line 

  

 

 

 

 

(In between 

Supercell and 

QLCS: 

Line in Hybrid) 

 

Supercells are storms that have a 

rotating updraft, i.e., a deep, persistent 

mesocyclone. Supercell has an 

organized structure that self 

propagates continuously.  

Supercells are of two types: Right-

Movers and Left-Movers. Right-

Movers and Left-Movers form when 

the horizontal vortices are lifted by the 

main updraft, splitting the main 

updraft in two separate updrafts, 

where one rotates cyclonically (Right-

Mover) and the other anticyclonically 

(Light-Mover).  

Over 95% are Right Movers. 

 

Supercells require a peak rotational 

velocity ≥10m s-1, rotation ≥ ¼ the 

depth of the storm, and rotation 

duration of at least 10-15 min. 

EF2+ tornadoes are most 

commonly associated with 

supercells compared to other 

storms, while nearly all EF3+ are 

produced by some form of 

supercell 

 

Weak mesocyclones are most 

common with weak (EF0-1) 

tornadoes, while EF3+ tornadoes 

have almost exclusively strong 

mesocyclones. 

Discrete & Cluster – (Fig. 7a, 

7b, 10a ref. 1) - central 

Favored regions are located 

over the central Great Plains 

and portions of Mississippi 

and Alabama. Lower values 

extend east toward the spine 

of Appalachians and the mid-

Atlantic region. Maximum 

shows a pronounced bimodal 

spatial distribution – Great 

Plains and Mid-Atlantic 

Region 

 

Cell in Line - (Fig. 7c ref. 1) 

Maximum is located farther 

east of the Great Plains in the 

lower Mississippi Valley 

northward to the lower Ohio 

Valley. 

 

(Fig. 13 ref. 1) Discrete & 

Cluster RM supercells – Vary 

substantially by season. 

Large peak in the Spring 

(May) in southern Great 

Plains, northward into the 

northern Great Plains and 

Midwest during the summer, 

then back southward into the 

lower Mississippi Valley 

during the fall. A secondary 

peak exists in September 

across the mid-Atlantic and 

Southeast regions and is 

mostly attributed to TC 

(marginal supercell) in 2004-

5. Tornadoes are most 

common across the interior 

northern Gulf coast during 

the winter. 

 

 

Quasi-Linear 

Convective 

Systems (QLCS)  
 

Subcategories:  

 

Bow echo, 

 

Squall Line 

 

 

A type of mesoscale convective 

system where the thunderstorms are 

oriented linearly, i.e., in the form of a 

line. 

 

Bow echo: A line of thunderstorms 

where the center of the line advances 

ahead, creating a bowed feature. 

They are formed by a strong flow at 

the rear/backside of the line, causing 

the line to have a bowed shape.  

EF1+ more frequently reported 

with QLCS convective modes 

compared to the total sample of 

tornado events.  

 

QLCS EF0 are likely 

underreported 4 

QLCS – (Fig. 7d, 9d ref. 1) 

Maximum east of the Great 

Plains, from Mississippi and 

Alabama northward into the 

middle Mississippi Valley 

and the lower the Ohio 

Valley.  

  

 

(Fig. 15 ref. 1) 

Maximum in Spring (MAM) 

(Fig. 15) onto summer in a 

eastward shift, from the Great 

Plains toward the Mississippi 

and Ohio Valleys. 

 

Late Fall and winter – QLCS 

are nearly as frequent as 

Supercells and are primarily 

in the Mississipppi Valley. 
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Squall Line: Line of thunderstorms 

where the most intense radar echoes 

are at the leading edge of the system, 

with a second, larger region of 

enhanced radar reflectivity associated 

with a trailing stratiform precipitation. 

 

Mesovortices can form within QLCS, 

often on the northern side of the Bow 

Echo, where cyclonic rotation is 

favored. mesovortices are relatively 

shallow compared to supercell 

mesocyclones 2,3 

 

QLCS events consist of contiguous 

reflectivity at or above the threshold 

for a horizontal distance of at least 

100 km and a length-to-width aspect 

ratio of at least 3-to-1 at the time of 

the event. 

 

Disorganized - 

 

Subcategories: 

 

Discrete cell,  

 

cell in cluster,  

 

cluster 

 

(All are considered 

nonsupercells, 

which could be 

landspouts, 

gustnadoes, 

waterspouts) 

Tornadoes that are not preceded by 

mesocyclones during the early stages 

of storm development.  

 

They usually develop in a benign 

synoptic environment under a rapidly 

developing convective cloud. 

 

The initial circulations are formed as 

shear instabilities along convergence 

lines. The circulations initiated are at 

low levels and are not deep convective 

clouds. As these vortices propagated 

along the convergence line they 

strengthen to tornadic intensity when 

they became collocated with the 

Usually are of lower-end EF0-EF1 

damage scale, but rarely they 

could exceed EF1+. 

 

 

 

Colorado Front Range and 

southern half of the Florida 

peninsula (Fig. 10d ref. 1) 

and also the Upper-

Midwest/Northern Plains 

(Fig. 16 ref. 1) Peak during 

Summer 

for both Florida – diurnal 

convection is common with 

local sea-breeze circulations, 

and Colorado Front Range. 

 

Some disorganized mode 

tornado events along the Gulf 

coast in the fall were related 

to TC landfalls, when 

supercell structures were not 

apparent. 

 

Some tropical cyclone 

tornadoes and tornadoes in 
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updraft of a rapidly developing storm. 

Vortex stretching is responsible for 

intensifying the initial rotation. 

 

 

Disorganized is classified as cells and 

cluster clearly not achieving QLCS or 

supercell criteria. 

 

Clusters were conglomerates of 

storms meeting the reflectivity 

threshold but not satisfying either cell 

or QLCS criteria. 

 

  

the central valley of 

California are low-top 

supercells  

TC-associated 

 

Subcategory: 

 

TC proportion: 

79% 

unambiguously 

supercell 

9% marginal 

supercell 

12% 

nonsupercellular. 

 

A) Tornadoes that forms within a 

Tropical Cyclone 

 

TC tornadoes account for about 5-7% 

to all (TC and non-TC) tornadoes. 

 

Within TC supercell: 

Weak TC supercell mesocyclones are 

far more common than non-TC 

tornadic supercells 

(14% weak mesocyclone 

23% moderate mesocyclone 

63% weak mesocyclone) 

 

TC supercells are smaller-scale, and 

harder to detect. 

 

Nonsupercell tends to be closer to the 

center (eye) 

 

Mostly Low EF Damages. 

Discrete supercells have highest 

percentage within all TC 

tornadoes, but are still relatively 

low. 

Southeast and Mid-Atlantic 

Coast 

Prime Season is August and 

September. 

 

Account for 64% of tornadic 

supercells in September. 
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Tornado type  

Part 2. Storm Environment Characteristics5,6 

 

CAPE  

(Fig 1, Table 1) 

SHR0-6  

& SREH 

Additional Covariates: 

LCL , CIN, Using “Effective 

inflow layer technique” 

Summary:  

Supercell 

 

Subcategories: 

 

Discrete/Isolated,  

 

Cell Cluster,  

 

Cell in 

Line/Broken Line 

 

 

 

 

(In between 

Supercell and 

QLCS: 

Line in Hybrid) 

 

Discrete – Most-Unstable (MU)CAPE 

–  

mean ~ 2170 J Kg-2 

 

Cell-in-Line RM - MUCAPE –  

mean ~ 1560 J Kg-2 

 

Difference between Discrete and 

QLCS are statistically significant.  

 

Difference between Discrete and 

Disorganized are also statistically 

significant.  

 

Only 15% of Supercell have low 

CAPE ( <500 J Kg -1) 

>30-40 kts 

 

Strongest in general during 

Winter and Transition Seasons, 

where events occur in Deep 

south, southern Great Plains and 

lower Ohio Valley. 

 

Weaker vertical wind shear is 

associated with summer northern 

Plains events. 

 

Together for all year, SHEAR 

for all supercells is in highest 

range, and QLCS are similar. 

Marginal supercells (TC) and 

Disorganized are much lower. 

 

Difference of EF2+ Supercell 

and EF2+ QLCS are statistically 

significant (Table 4, 3rd column) 

but not operational significant. 

 

LCL – level of Condensation 

Level – indicate low level 

moisture 

 

CIN – Convective Inhibition 

 

-Not much difference between 

Supercell and QLCS. 

Only substantial difference is 

in summer. QLCS LCL 

heights are lower due to lower 

surface temperature associated 

with QLCS. 

 

Effective BWD, Effective 

SREH - Effective - accounts 

for the depth of buoyancy. 

 

Different low-level shear such 

as 0-1km SHEAR, 0-1km 

SREH. 

The spring environments in 

the Great Plains and 

Mississippi Valley did not 

display the largest CAPE, 

lowest LCL heights, or 

strongest vertical shear 

compared to the other seasons, 

but the spring had no 

consistent weakness in any of 

the ingredients, such as 

weaker buoyancy in the 

winter or weaker low-level 

shear in the summer. 

 

SHEAR parameters 

discriminated well between 

the disorganized tornadic 

storms and supercells. 

 

Environmental differences 

between the supercells and 

QLCS were relatively small, 

indicating that point measures 

of buoyancy and vertical wind 

shear alone are not able to 

clearly discriminate between 

storm modes in a practical 

sense. Thus, convective mode 

forecasts must necessarily rely 

on factors such as shear vector 

and mean wind orientation to 

Quasi-Linear 

Convective 

Systems (QLCS)  
 

Subcategories:  

 

Squall Line,  

 

QLCS - MUCAPE – mean ~ 1380 J 

Kg-2 

 

Over 45% have CAPE <500. 

 

CAPE for QLCS tends to be smaller 

than supercell for each season, 

particularly winter (CAPE can 

>30-40 kts 

 

SHR0-6 and 0-3 km SREH 

cannot discriminate strongly 

between QLCS and supercell 

tornado events during most 

seasons. However, they are 

relatively lower during the 
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Bow echo 

 

discriminate strongly between QLCS 

and supercell tornado events during the 

winter.) 

 

 

transition seasons and winter, 

compared to the Supercell 

events. 

 

Winter and Fall QLCS tornadoes 

occur in vertical shear 

environment supportive of 

supercells 

the storm initiation focus [i.e., 

a surface dryline or cold front, 

after ref. 7], the magnitude of 

the ascent along the initiating 

boundary, as well as initial 

storm spacing and potential 

storm interactions8. 

Disorganized - 

 

Subcategories: 

 

Discrete cell,  

 

cell in cluster,  

 

cluster 

 

(All are considered 

nonsupercells, 

which could be 

landspouts, 

gustnadoes, 

waterspouts) 

 

 

Discrete - CAPE – mean ~ 1643 J Kg-2 

 

CAPE is slightly higher than QLCS. 

SHR0-6 - ~ median 20-30 

 

Thus,SHR0-6 provide the 

strongest discrimination between 

all RMs and the disorganized 

modes 

  

TC-associated 

[Edwards et al. 

2012] 

 

Discrete supercell 

34% 

QLCS 3% 

(nonsupercell) 

Cluster 3% 

(nonsupercell) 

Supercell-in-line 

10% 

Supercell-in-cluster 

Supercell (TC vs non TC): TC 

supercells have much greater deep-

tropopsheric moisture (as indicated by 

high precipitable water),  

Reduced lapse rate, as a result, lower 

CAPE 

 

 

SREH 0-1 km similar but 

slightly higher 

 

SHR0-6 and SREH is lower in 

TC-nonsupercells vs TC-

supercells 

 Summary [Edwards et al., 

2012]:  

TC tornadoes are far more 

common with supercells.  

Biggest difference between 

TC and non-TC supercells is 

moisture through the 

troposphere.  

 

Nonsupercell TC tornado 

environment are rather 

unknown and will be for 

awhile due to:  



10.1175/JCLI-D-15-0404.s1  CHENG ET AL. 

22 
 

35% 

Discrete 

nonsupercell 2% 

Marginal discrete 

supercell 3% 

Marginal supercell 

in cluster 5% 

Marginal supercell 

in line (1%) 

Cell-in-cluster 4% 

Unclassified 1% 

 

-the relatively sparse sample 

size; 

-the apparent similarities in 

mesoscale environments 

between TC tornadoes of 

supercell and nonsupercell 

origins; 

-their typically weak and 

short-lived nature; 

-virtually nonexistent direct 

documentation (i.e., photos, 

video, mobile radar sampling) 

including supposed eyewall 

tornadoes, rendering their 

true frequency highly 

uncertain; 

-lack of high-resolution and 

proximal radar interrogation 

in real time to ascertain 

smaller-scale circulations 

even than the relatively small 

TC supercellular 

mesocyclones; 

-the lack of real-time, fine 

scale observational data that 

can help forecasters to 

diagnose, with suitable 

precision, 

any small-scale (i.e., 108–101 

km and min in space and 

time, respectively) patterns of 

convergence, instability, 

and vorticity. 
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Figure S1B. Conceptual model of the life cycle of a bow echo. Black dots indicate tornado locations. Black arrows 

indicate location of the rear-inflow jet. Reproduced from ref. 9 and originally adapted from ref. 10 . 

 

 

Figure S2B: Schematic demonstrating each of the nine storm morphologies used in the classification system. 

Morphologies are abbreviated as follows: IC, isolated cells; CC, clusters of cells; BL, broken line; NS, squall line with no 

stratiform rain; TS, squall line with trailing stratiform rain; PS, squall line with parallel stratiform rain; LS, squall line 

with leading stratiform rain; BE, bow echo; and NL, nonlinear system. Reproduced from ref. 11. 
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